Sampling
 fish5101fishsci Introduction to fish population dynamics

Gunnar Stefansson

December 19, 2016

Design issues

Figure : The variance vs mean relationship for an estimated proportion
Length distributions are basically count data, as are the number of fish at a given age if simple random sampling is used for age readings. In the case of simple random sampling from an entire population of fish, the number of fish in a given age or length cell should follow a binomial distribution.
This implies that the probability of obtaining exactly x fish in a given cell is given by binomial probabilities:

Simulating sampling schemes

Want to estimate a proportion p
Histogram of phat
Sample independently individual fish (in group $=1$; or not=0): get binomial distribution for $\mathrm{x}=$ number of positives

Estimated proportion: $\hat{p}=x / n$
Known expected value and variance: $E[\hat{p}]=p, V[\hat{p}]=n p(1-p)$

Example: In R it is very easy to simulate the effects of different sampling schemes and there are several ways to do this. Consider the red/green marble experiment.
R code for the red/green marble experiment

```
n<-25
numred<-10
numgreen<-30
green<-rep("G", numgreen)
```


Correlation issues

When correlation issues occur the model is usually wrong
Primary issue: Intra-haul correlation, of Pennington and Volstad
Fish within a station s are more similar than across stations.
A model of the process needs to include a (random) station effect: $y_{s j}=\mu+\alpha_{s}+\epsilon_{s j}$

Here, $y_{s j}$ could be the length of fish j at station s.
The resulting correlation between fish at the same station is the intrahaul correlation

