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1 From single species through multi-species to ecosystem
models

1.1 Classical single species models (assessment models)

Two main classes of single-species models:

• bulk biomass models

• age structured models

These are sometime chosen to match data structure, but not always

1.1.1 Handout

Single-species models can be classified into two main types:

• bulk biomass models

• age structured models

These are sometime chosen to match data structure, but not always. For example, someti-
mes it is better to fit bulk biomass models even when age data exist and vice versa.

1.2 Fitting methods

• Statistical
• “by hand”

Methods vary, from just making the model output “look like” the trends in the data to
complicated nonlinear methods of minimisation.

1.3 Multispecies models

Added complexity:

• multiple species
• biological interactions
• technical interactions

The species may or may not be caught in the same gear(s)
A species may be predators or prey

1.4 Ecosystem models

Typical desired additions:

• hydrography (currents)
• spatial factors

Example: Atlantis
Further reading, best practices: url{http://www.fao.org/3/a-i0151e.html}

5

http://www.fao.org/3/a-i0151e.html


1.5 Socio- economics

In EAFM we typically also want to take into account:

• social issues (e.g. employment)
• economics (e.g. profitability of the fisheries)

1.6 Including everything

Figure (c) CSIRO, see website link for Atlantis: htt-
ps://research.csiro.au/atlantis/

1.7 Classification of models (a)

Further reading: Models for an ecosystem approach
to fisheries by Plaganyi, published by FAO in 2007.
http://www.fao.org/tempref/do
rep/fao/010/a1149e/a1149e.pdf

• bulk-biomass vs age/length disaggregated
• temporal vs equilibrium
• strategic vs tactical [long-term yield vs assessments]
• single vs multispecies
• single vs multifleet
• spatial vs non-spatial
• stock component details: age, length, maturity, sex, . . .

url{http://www.fao.org/tempref/do
rep/fao/010/a1149e/a1149e.pdf}
(more in other lectures)

1.8 Classification of models (b)

Plagányi, É.E. 2007. Models for an Ecosystem Approach to Fisheries. FAO
Fisheries Technical Paper No. 477. Rome, FAO. 2007. 108p. ISBN 978-92-5-105734-6.
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1.8.1 Handout

Further reading: Models for an ecosystem approach to fisheries by Plaganyi, published by
FAO in 2007. url{http://www.fao.org/tempref/do
rep/fao/010/a1149e/a1149e.pdf}

2 Statistical techniques for stock assessments

2.1 Biological models

• Conceptual model of biology

• Mathematical description of the model

• Population models: Usually a forward prediction model

• Growth etc: Mathematical description of process

• Remember:Parsimony!

2.1.1 Details

When a biological process is to be modeled, the first step is toobtain a conceptual view
of the process, followed by a mathematical description, i.e. mathematical formula which
describes the process.

2.2 Formal statistical procedures

Model contains parameters
Model predicts data
Parameters are estimated by fitting model to data

Parameters

Simulation model

Recruitment indices

Length measurements

CPUE/Survey indices

Short−term predictions

Medium−term predictions

Long−term predictions

Comparing data and fit

Predicted data

Landings

2.2.1 Details

A formal statistical procedure always contains a model which describes mathematically
how the data have been obtained, i.e. usually specifies the probability distribution. A
statistical model always contains unknown parameters (otherwise it is a probabilistic model).

The parameters can subsequently be estimated using techniques which ensure that the
model predicts the data as well as possible.
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2.3 Population models

Some basic population model types:

• Equilibrium bulk biomass/production model

• Dynamic bulk biomass model

• Dynamic age structured production model

• Back-calculation model

3 Production models

3.1 History

Stock-production models: Typical for whales, shrimp, nephrops and other difficult to
age species

Originally: Assumed equilibrium (oversimplified)
Now: Use dynamic stock-production models

3.1.1 Details

The so called stock-production models have been used to estimate stock sizes for whales,
shrimp and other difficult to age species. Originally, such models assumed that the stock
was at an equilibrium, but in recent decades such oversimplified models are not used much
since catches are known to affect stock size and so dynamic models are needed.

3.2 An equilibrium model

A simple equilibrium production model:
Y = rB(1− B

K )

0 200 400 600 800 1000

0
10

20
30

40
50

60

Blev

yl
ev

Equilibrium yield and biomass

3.2.1 Details

A traditional model of the possible production of a stock is given by the equilibrium
production model.

Definition 3.1. Equilibrium production model

Y = rB(1−
B
K
)
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B=biomass
K=maximum biomass corresponding to no fishing
r=rate of population increase
Y=production

If the production is described using the equilibrium production model, then this is also the
equilibrium yield, i.e. the yield that can be obtained at this level of biomass.

3.2.2 Examples

Example 3.1. The production, or equilibrium yield, curve can easily be plotted given
values ofr andK, e.g. with the following R code.

r<-0.25

K<-1000

Blev<-(0:100)*10

ylev<-r*Blev*(1-Blev/K)

plot(Blev,ylev,'l')

3.3 Simple forward projections

GivenB the production isrB(1−B/K).

If the catch isY the stock biomass will become

B+ rB(1−B/K)−Y.

Notably, the stock increases ifY is less than the
production and vice versa.

0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

Blevels

E
Y

le
ve

ls

Equilibrium yield with a constant catch line.

3.3.1 Examples

Example 3.2. Suppose a stock starts out atB = K = 1000 tonnes and gets fished with
constant catch,Y = 100 tonnes.

The following R code will track the development of the stock for the first few years.
http://tutor-web.net/fish/fish5108statass/lecture20/stockprod.r
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3.4 The problem with equilibrium models

Over-fished=catch above sustainable yield

Observed biomass and catch all above the under-
lying curve

Note: Will overestimate production if assume equili-
brium 0 200 400 600 800 1000

0
10

0
20

0
30

0

B

Y

The
bias issue when estimating data from an equilibri-
um model. The solid line is the true model and the
dot/dashed line is from generated data when fishing
is 1.5 times the equilibrium catch.

3.4.1 Details

Suppose data are collected on biomass and yield while a stockis being over-fished, i.e.
the annual catch is more than the annual sustainable yield. In this case the stock will be
reduced each year.

The problem is that even in the best scenario, when perfect information is available on
historical yields and biomass, the corresponding data points, (By,Yy), are all above the
equilibrium curve.

In this case, the approach of assuming that the data are measurements of points on the
equilibrium curve is clearly extremely dangerous and will lead to serious overestimation of
the production for any given level of biomass.

3.4.2 Examples

Example 3.3. The following R code simulates the development of a stock which is
being over-fished each year. The stock is fished using a simplerule which is to take
double the sustainable yield (SY).

http://tutor-web.net/fish/fish5108statass/lecture20/stockprod-1.r
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3.5 A dynamic biomass model

A simple forward projection model:

By+1 = By + rBy(1−By/K)−Yy

where the catch is specified according to some rule,
e.g. proportional harvest:

Yy = pBy. 0 200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

Blevels

S
Y

le
ve

ls

Equilibrium yield and curve describing the
trajectory of catch and biomass under a constant
harvest strategy.

3.5.1 Details

The simplest model for describing the development of a stockis probably the simple bulk
biomass model.

Definition 3.2. Simple bulk biomass model

By+1 = By + rBy(1−By/K)−Yy.

Yy=annual catches taken from the stock

In order to investigate the behavior of the simple bulk biomass model, the catch can be
simulated according to some simple rule, e.g. as a proportion of the stock size,Yy = pBy.

3.5.2 Examples

Example 3.4. http://tutor-web.net/fish/fish5108statass/lecture20/stockloop.r

3.6 Unknown parameters

Model: By+1 = By + rBy(1−By/K)−Yy

Unknown parameters:r, K, andB0.

• Given model and parameters, the trajectory can be generated.

• Assumes catches are known constants (no error)

• Parsimony: May (need to) assumeB0 = K.
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3.6.1 Details

Even the simplest population dynamics models contain parameters which are unknown. In
the equilibrium surplus production models these parameters arer andK.

In the dynamic production model,By+1 = By + rBy(1−By/K)−Yy, the unknown para-
meters arer, K, and the initial population size,B0. This approach assumes that the catches
are simply known constants (i.e. without error). An important aspect of this approach is
that for a given set of parameters the entire population trajectory can be generated.

3.6.2 Assignment

Assignment 3.1.Take each figure in this section and redraw it in R using the commands
behind each figure. Next, rerun the commands for each figure using different assumpti-
ons: Investigate the effects of varyingK, r, B0 and the harvest ratep (or the constant
catch, as the case may be). Draw conclusions concerning the sustainability of different
harvesting regimes.

4 Fitting criteria

4.1 The issue of fitting to data

Have some internal model of stock development
Model may be bulk or age-based
Need to compare to data-not contort the data!
Data may be bulk or age-based
Note several possible combinations: model or data may be complex or simple

4.1.1 Details

Suppose there is some given (internal) model of stock development. This model may be a
bulk (biomass production) model or a highly disaggregated (e.g. age-based) model.

Such a model will inevitably contain several unknown parameters which can only be estima-
ted based on some measurements. Thus, there is a need to make some formal comparison
with data.

There is no a priori specification of whether the data need to be disaggregated or bulk-
biomass. It is important that actual data be used with as little transformation as possible.
For example, catch and effort data should NOT be transformedto catch and CPUE data.

In particular, there are several possible combinations of disaggregated or complex models
and bulk or disaggregated data. For example a model may be age-based but fitted to length
data and so forth.
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4.2 Linking biomass to an index

Annual index of total abundance:

Iy = qByeεy

Assumeε comes from Gaussian distribution
q is catchability

4.2.1 Details

Recall that a statistical model always links some mathematical model to data. For example,
if Iy is an index of abundance in yeary andBy is the model-based biomass in yeary, then
one could usêIy = qBy as a predicted index. In this simple model it is assumed that there
is a constant catchability which describes how the index relates to stock biomass.

If the model is a simple dynamic production model,By+1 = By + rBy(1−By/K)−Yy, the
primary unknown parameters arer, K, andB0 but in additionq needs to be estimated.

For a given set of parameters several potential measures of the quality of the model can be
defined. The simplest is without doubt a direct sum of squares:

∑

y

Ä

Iy − Îy
ä2

though it may be more appropriate to use log-transformed data:

∑

y

Ä

ln(Iy)− ln(Îy)
ä2

The actual indices are usually assumed to be related to the predicted indices on a log-scale
and one may specify a formal distribution, such as log-normal for the measurements. Thus,
one would commonly assume thatln(Iy) = ln(Îy)+ εy and often assume further that the
deviations come from a Gaussian distribution.

Continuing in this manner leads to the full statistical model for the data.

Definition 4.1. Annual index of total abundance:

Iy = qByeεy
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4.3 Fitting in a VPA setting

• VPA/cohort analysis gives historical information

• Survey indices provide time series proportional to abundance

• Effort data provide time series proportional toFy

• Can connect through regression (i.e. revise the terminal year)

• Can reduce to single parameter (Fterm)

• Better to formally estimate using a statistical approach, e.g. minimize
∑

(Ey − (1/q)Fy)
2

over the terminalFterm.

• Can also write up formal methods (e.g. ADAPT) for estimatingan entire para-
meter set, including selection patternsa.

4.3.1 Details

In order to move forward from simple VPA or cohort analysis (which typically assumes
a given fishing mortality in the last year), towards objective methods of assessment, some
model is needed whereby fishing mortality can be estimated.

The simplest such relationship is probably to consider effort data, which might be related
to fishing mortality through a simple linear relationship:

F = qE.

The available data are nowEy and the model predicted fishing mortality isFy, for any value
of F in the last year.

A natural way forward is to estimate the fishing mortality in the last year to be the value
which gives the best linear fit to the effort data.

In this case the nonlinearity lies in the VPA (or cohort analysis) which is used to compute
the historical fishing mortality.

A serious problem with this particular method is that the basic model,F = qE reverses the
usual statistical model framework, i.e. the dataE is used to predict the modelF and not
vice versa. In this simple version, the problem can easily bealleviated by reversing the
direction, i.e. writingE = (1/q)F and minimizing the sum of squares

∑
(Ey − (1/q)Fy)

2

Several points should be noted:

• VPA/cohort analysis mainly gives historical information

• Survey indices provide a time series proportional to abundance

• Effort data provide a time series proportional toFy
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• Can connect through regression (i.e. revise the terminal year)

• Can reduce to single parameter (Fterm).

• Better to formally estimate using a statistical approach, e.g. minimize
∑

(Ey − (1/q)Fy)
2

over the terminalFterm

• Can also write up formal methods (e.g. ADAPT) for estimatingentire parameter set,
including e.g. selection patternsa, annual recruitment etc.

4.3.2 Examples

Example 4.1. It is possible to carry out a Virtual Population Analysis forthe Icelandic
summer spawning herring. The input for the VP-Analysis (i.e. mortality coefficients for
the last year) is adjusted in such a way that the time sequenceof the stock assessment is
as consistent as possible with the acoustic surveys.

The model is an age-based model and uses catches in numbers atage. However the model
fitting mechanism is of the same form as before, i.e. a sum of squares is minimized in
order to find the estimate.

4.3.3 Handout

The simplest case of estimating stock sizes in a back-calculation setting is when a selection
pattern is assumed to be known and fishing mortality on the oldest ages are assumed to be
equal (or proportional to) to the fishing mortality on some younger ages. Here, only one
value remains unknown, the terminal fishing mortalityFterm.

In principle, any data set can be used to estimate the terminal fishing mortality. This inclu-
des survey indices, an effort time series, commercial CPUE data and so forth.

4.4 ADAPT
Simplified ADAPT:

• Start with VPA or cohort analysis

• Use regression to predict indices - getSSE

• Find the best possible regression by varyingFterm

• NB: The index-values are on the y-axis!!

SSE =
∑

a,y
wa [lnUay − (αa +βa lnNay)]

2

Often we setwa = 1 for most ages. Usually we setβa = 1 for most ages.

Full ADAPT: Use nonlinear minimization and estimate initial age composition, annual
Fy and recruitment along withqa.
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4.4.1 Details

The Adaptive framework (ADAPT) for stock assessments are a straight-forward nonlinear
statistical estimation technique.

An internal stock-projection model is used. This could be backwards computation but more
often forward projection using cohort analysis is used.

Unknown parameters will typically include recruitment, selection parameters and overall
annual mortality rates along with the initial age-disaggregated population size and catchabilities
(or similar parameters).

For a given set of parameters, the stock can be used to predicte.q. survey indices.

The prediction error can now be minimized to estimate unknown parameters.

This approach requires a number of assumptions, e.g. that the catch data is known. The
following describes the approach a little more fully.

The collection of catch data concerning various important fish stocks are of such quality
that it is possible to assume that the data are reasonably well measured, i.e. contains little
measurement error. This results in the assumption that if VP-Analysis is employed with the
correct input it will provide a sound stock estimate. This estimate could in turn be used to
predict indices from survey data and therefore it is feasible to verify whether a given stock
estimate is in accordance with a time series of survey data.

One possible way to conduct such a comparison is through stating that for given mortality
coefficients in the last year and a given relationship with indices, the deviation in the for-
ecast concerning indices is given by:

SSE =
∑

a,y
wa [lnUay − (αa +βa lnNay)]

2

In a simplified version of ADAPT, using cohort analysis for back-calculation, the unknown
coefficients in the model are onlyαa , βa and the overall fishing mortality rate for the last
year. The selection pattern for the last year can be given on the basis of the patterns of
previous years (i.e. restricted or set to the average), and fishing mortality on the oldest fish
is fixed (i.e. restricted to an average of younger age groups)so it becomes unnecessary to
estimate all mortality coefficients and only the multiplier(Fy) needs to be estimated.

In the simplified version, for a given fishing mortality multiplier, the best estimate of the
coefficientsαa andβa will be obtained from a simple linear regression. Thus, it becomes
simple to compute SSE for each value onFy. Different values may be tested forFy until a
low value for SSE has been established. Thus, an estimation of the fishing mortality for the
last year has been obtained.

The SSE-equation contains scaling coefficients (weights),wa, which need to indicate the
relative precision for the main age groups in the groundfish survey data. These numbers
can be estimated by examining how low the sums of squares can be for each age group.

It should be noted that the equation assumes different coefficientsαa andβa for each age
group. By way of simplification, it could be stated thatβa = 1 for all age groups, but little
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can be said forαa, which then becomes the catchability coefficient (denotedqa).

4.5 Abundance index (research or log-books)

• Log-books: catch per towing hour

– use mean weight to get number of fish per towing hour

– use age determination to get number per age group

• Groundfish survey: direct count

– use age determination to get number per age group

– Other research cruises...

4.5.1 Details

In the above discussion it has been assumed that survey information is available. A survey
index could in principle be age-disaggregated, a bulk index, or any other measure which
can in some way be linked to stock size or fishing mortality.

In principle a survey is not needed, as it is possible to use commercial catch-per-unit-
effort data, effort data, or other measures. On the other hand, it is quite likely that data
from commercial fleets will have time trends as far as relationships with stock size are
concerned.

4.6 Nature of relationships

• Poor relationship betweenN andU

– Is VPA bad?

– Uncertain indices?

– VariableM?

• Good relationship betweenN andU

– VPA and indices OK

– M stable

• N −U bad butU −U good

– VariableM and/or VPA bad

4.6.1 Details

Various different methods for the estimation of current stock size have been introduced in
the above sections. No single method is perfect, but there are certain indications that some
methods are much better than others.

What we can learn from these methods is that if there is any cause for doubt regarding the
estimate of stock size, it is desirable to try other methods and data sets in order to examine
whether the results are verifiable when the problem is viewedthrough a different pair of
spectacles.
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5 Formal statistical stock assessments in dynamic bulk producti-
on model

5.1 Aggregate data

Have only total catch and abundance data,Yy andIy.
No error in catches:

By+1 = By + rBy(1−By/K)−Yy

Errors in indices:

Iy = qByeεy

or:
Îy = qBy

and
ln Iy = ln Îy + εy

5.1.1 Examples

Example 5.1. Nephrops in Icelandic waters, 1980-1998:

http://tutor-web.net/fish/fish5108statass/lecture40/nephrons-80-98.r

5.2 Initial values for bulk production models

1. Define the model and parameters to be estima-
ted.

2. Initialize parameters.

3. Evaluate the model fit.

4. Optimize the model fit.
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5.2.1 Details

It is usually quite important to carefully select the initial values and parameter transformati-
ons when fitting stock-production models. There are severalreasons for this.

Firstly, if the initial biomass (B0) and productivity (r) are too low, then forward projections
will result in zero or negative biomass values and in turns problems with fitting. Similarly,
if parameters are estimated on the original scale, a minimization algorithm will not know
that the parameters typically need to be positive and may test negative values. One solution
is to use the logarithms of the parameters for optimization.
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A simple approach to obtaining initial values of the right magnitude is to select scenarios
which correspond to data without negative biomasses etc. For example, if the initial bi-
omass is chosen equal to the total historical catch and a verylow productivity is used, then
the corresponding modeled stock biomass will correspond toa depletion model, but one
which can explain the catches (though it may give a poor fit to the indices).

Similarly, if the initial values of catchability are set to some ratio of the survey index to
catch, then this will lead to appropriate units forq.

5.2.2 Examples

Example 5.2. The initialization of a dynamic bulk biomass model involvessetting
initial values for all parameters. A procedure is then needed to forward project the
population and subsequently to evaluate the quality of the fit to the data. The full
example of R commands to project the stock forward and plot the predicted index from
initial parameter values is as follows:

http://tutor-web.net/fish/fish5108statass/lecture40/bulkprodmodel.r

5.2.3 Handout

The estimation procedure is usually separated into a few parts, namely initialization of
parameters, projection based on those parameters, evaluation the fit to data, and search for
parameters which give the best fit to the data.

5.3 Estimation in bulk production models

1. Define the model and parameters to be estima-
ted

2. Initialize parameters

3. Evaluate the model fit

4. Optimize the model fit
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5.3.1 Details

Having obtained initial values, the next step is to project the future stock and evaluate the
model fit using actual data. A minimization algorithm is thenused to estimate the parameter
values.

5.3.2 Examples
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Example 5.3. The following procedure will project forward the population and evaluate
the quality of the fit to the data:

http://tutor-web.net/fish/fish5108statass/lecture40/forwardprojection.r

5.3.3 Handout

The estimation procedure is usually separated into a few parts, namely initialization of
parameters, projection based on those parameters, evaluation the fit to data and then search
for parameters which give the best fit to the data.

5.4 Revising the model

Need to verify output
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5.4.1 Examples

Example 5.4. Modify the model to follow the assumptionB0 = K.
http://tutor-web.net/fish/fish5108statass/lecture40/bo-k.r

5.5 More nephrops case studies

Longer time series are available

Series can be spatially disaggregated

See file nephrops.dat

Caveat: Fleet changes may have occurred during the
time period - invalidates the analysis.
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5.5.1 Examples
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Example 5.5. Data onNephrops norvegicus from the MRI 2011 annual report (see
http://www.hafro.is).

Read in the data, fit, and plot
http://tutor-web.net/fish/fish5108statass/lecture40/nephronsfull.r

6 Case studies of stock-production models

6.1 History

6.1.1 Details

Recall that stock-production models have been used to estimate stock sizes of difficult to
age species including whales and shrimp.
Initially, these models assumed that the stock was at equilibrium which is obviously an
oversimplification.
Such models have been replaced with dynamic models.

6.2 Prawn models

6.2.1 Details

The simple bulk biomass model (see definition 2.2 of tutorial8) can be modified in various
ways to suit real situations. Recruitment indices for deep-sea prawn are, for example,
available and should contain such information. It is known that cod feed to a considerable
extent on deep-sea prawn and this factor should be entered straight into the model. Natural
mortality is, on the other hand, less well known and it is difficult to estimate the increase in
biomass between years.

Definition 6.1. Prawn model:

By+1 = αBy −Yy +βRy −δDy

Ry= recruitment index
Dy=index of cod predation on prawn
α= production excluding recruitment and mortality excluding predation by cod

The system is described in such a way that biomass at the beginning of the year is multiplied
by a coefficient, catch is subtracted, recruitment is added and predation is subtracted.

Unknown coefficients in the model areq, α, β , δ , q andB0 . Given these coefficients, it
is possible to computeBy for all the years. Estimation of the coefficients is arrived at by
establishing the values that match existing data on catch per unit effort most closely.

This model can then be used to examine biomass changes from one year to the next. For a
given size of the cod stock, the effect of catches on the stockcan be examined.
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6.2.2 Examples

Example 6.1. The following data provides an example of the type of data needed for a
prawn model:

http://tutor-web.net/fish/fish5108statass/lecture50/prawnmodel.dat

The data can be entered into a spreadsheet and the calculations completed. When
using the spreadsheet, we begin by guessing the values of unknown coefficients. These
values are then used to update the stock and make predictionsas to catch per unit effort.
Then the quadratic deviation of the projection is computed.Finally, different values for
the coefficients are tested in order to examine which values give the lowest quadratic sum.

http://tutor-web.net/fish/fish5108statass/lecture50/prawnmodelexpanded.dat

As can be seen from the last column, an estimate is obtained ofthe amount of prawn
consumed by cod on an annual basis. This is denoted asδD.

It is possible to plot measured and projected catch per unit effort. Although it is seen that
the predictions match the data quite closely, it is also clear that the number of parameters
is high compared to the number of data points.

This model was introduced in (Stefánsson et.al. 1994)). Theresults of stomach content
investigations in Icelandic waters have been presented in various articles by Pálsson et.al.

Example 6.2. Herring models
Acoustic surveys provide an estimation of the size of the herring stock at a certain point
in time.

Measurements of stock size do, however, not give any information on yield potential.
This requires additional information on how the stock reacts to catches. If, for example,
renewal within the stock is slow, hardly anything can be caught from it without depleting
it by an amount which almost equals the catch. If, on the otherhand, renewal is fast
(high natural mortality rates, good recruitment and fast individual growth) it will be
possible to catch a bigger proportion from the stock each year.

Stock-production models like the ones described above havetherefore been designed for
herring stocks. These models are then estimated in such a waythat is most consistent
with counts or catch per unit effort.

Biomass models have been used for many species, including prawns.
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6.3 Marine mammals

6.3.1 Details

The most important information on the size of the whale stockis obtained by sighting sur-
veys (counting). It can be assumed, that the total number is known for the year in which
the counting took place.

Elaborate statistical methods are then used to link the resulting counts to total abundance
for the stocks.

Stock-production models have been designed for whale stocks. Parameters of the models
are estimated in order to obtain the best possible fit to abundance measurements and other
historic data.

6.4 Redfish

6.4.1 Details

Redfish are notoriously difficult to assess due to ageing issues. As a result, simple models of
a production-type have been used for several redfish stocks.However,these are complica-
ted by their long life span. Thus, acoustic surveys for theSebastes mentella stock of red-
fish have recently begun in order to use stock-production models that mimic that used for
whales.

7 Models with internal age structure

7.1 Introduction
Internal age structure
Incorporate growth information
Link to any available data

• Length measurements
• Age data
• Survey indices

7.1.1 Details

The term "age-based dynamic production model"has been usedto encompass a fairly wide
range of models which have several common features. These models incorporate all the
positive features of all earlier models of single-species population dynamics. The follow-
ing section describes these models and illustrates how mostcurrent fisheries models form a
single class of models. Some of these do not explicitly modelthe production as a function
of the adult population and the term "statistical assessment model"is therefore sometimes
preferred.

These statistical models are flexible yet parsimonious in parameters and can be linked to
any available fisheries data but they do not require the existence of a particular data set.
They use an internal age structure in order to encapsulate recruitment variation. And, they
commonly incorporate growth information, at least in the form of length distributions.
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Typical data sets accounted for are

• Annual landings

• Survey or CPUE indices in numbers or weight

• Length measurements

• Age data

This section only considers models which do not take growth explicitly into account and
thus do not link directly to length measurements. If length measurements are used in these
particular methods, this is through some transformation. For example, a survey length
distribution is typically used to obtain an index of recruitment, even an index for 2-3 age
groups (through some form of cohort slicing).

7.2 Biomass or numbers

Choose whether population model is in biomass or numbers

7.2.1 Details

The choice of a numbers or biomass model is not trivial.

Note 7.1. A biomass-based model directly incorporates the growth of the individuals and
recruitment in biomass as well as survival into a single production component.

Note 7.2. A numbers-based model allows for a separation of the recruitment in numbers
and thus deals with natural mortality separately which tends to be poorly estimated.

Note 7.3. Intermediate models may include one or two true age groups and a single lumped
plus group.

7.2.2 Handout

The various dynamic models of fish populations are naturallylinked through the use of "the
plus group". First, the dynamic bulk biomass and numbers models (ignoring fishing):

Bt+1 = Bt + rBt (1−Bt/K)

and
Nt+1 = Nt + rNt (1−Nt/K)

are the same models, though one described the change in numbers and the other describes
the change in biomass. There is a difference in interpretation of course, since the production
term in the numbers model describes a change in weight which includes both recruitment
in numbers and the weight increase of individuals in the population.

Naturally one can rewrite the numbers model as consisting oftwo steps:

Rt = rNt (1−Nt/K)

Nt+1 = Nt +Rt

which makes the model more like a fisheries model with a recruitment term.
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Inserting a mortality on the adult population and using a Beverton-Holt formulation for the
recruitment term transforms this model into:

Rt =
αNt

1+Nt/K

Nt+1 = Nte
−Zt +Rt

This particular formulation assumes that the catches do notinclude the recruiting year-
class. Alternatively, one might assume that the catches arein part from the recruiting
year-class (applying a differentZ-value toR in the equation) or that recruitment enters the
fishery at the beginning of the year with:

Rt =
αNt

1+Nt/K

Nt+1 = (Nt +Rt)e−Zt

7.3 Forwards or backwards

Should computations be forwards or backwards in time?

7.3.1 Details

The traditional VPA and cohort analyses project the populations backwards in time. This
has the benefit of VPA convergence, which provides stable estimates of historical numbers
in each age group.

A forward projection is in many ways a more natural approach.This starts with some initial
population either in numbers or biomass. The population is brought forward one year at a
time using a set of projection equations.

A forward projection is needed in order to incorporate a plusgroup.

7.4 Models of catches
Want to include errors in catches
Unlike many bulk biomass and VPA models
Can useFay = Fysa to reduce parameters

7.4.1 Details

The forward mechanism allows several parametrizations which are more natural than those
used in VPA. In particular it is very easy to restrict the number of parameters, e.g. by
assuming that fishing mortality is separable (Fay = Fysa) every year (not just the last).

7.5 The plus group

Traditional biomass model

By+1 = By + rBy(1−By/K)−Yy

Numbers model with true ages 1, . . . ,A:

NA+1,y+1 =
Ä

NA,y+NA+1,y
ä

e−ZA
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7.5.1 Details

A traditional biomass model has a simple aggregate measure of total biomass:

By+1 = By + rBy(1−By/K)−Yy

A model of population numbers with true ages 1, . . . ,A may use "age"A+ 1 as a “plus
group”. Each year this group gets reduced by mortality but a new age group enters the plus
group.

NA+1,y+1 =
Ä

NA,y+NA+1,y
ä

e−ZA

Examples of this approach include the case where there are very many true ages so the plus
group is negligible but also cases where there is only a single true age and the plus group
becomes very similar to the bulk biomass model.

Although this seems like a very appealing method, two immediate issues arise. Firstly, a
mean weight "at age"needs to be attached to the plus group. For a given year the plus group
has a certain age composition and therefore a mean weight canbe estimated. However, this
will change dynamically as can best be seen by considering a large cohort entering the plus
group. This cohort may dominate the plus group in numbers andindividuals in this cohort
will of course gain weight in time. Thus, the mean weight in the plus group changes with
time. A solution to this may be to use available data on the mean weight in the plus group,
if such data is available on an annual basis.

A second problem with the plus group is that an incorrect value of natural mortality may
cause a lot of non-existing fish to aggregate within the plus group.

7.6 Recruitment

Numbers model:
Recruitment is the number of individuals in an incoming year-class. Growth of older
individuals, natural mortality and weight of recruits is separate.
Typical model:R = αS/(1+S/K).

Production model:
Recruitment is the growth in biomass or surplus production.Incorporates growth of
individuals, natural mortality and recruiting year-classin weight.
Typical model:rB(1−B/K).

7.7 Initial population size

In a forward projection one needs to set an initial population size (all ages, in first year)
Can use equilibrium assumption⇒ only one parameter:

N0,a = N0,0e−M·a

(where we start the ages and years from 0 soNy,0 = Ry)
Can try to estimate all ages⇒ more parameters but also more potential to fit data for
initial year (if available).

26



7.7.1 Details

When using a model which projects forward in time some assumption needs to be used
for the initial population size. This applies to all ages in the first year, i.e. a single total
biomass in a bulk biomass model, but all true ages as well as the plus group in a numbers
model.

It is possible to use an equilibrium assumption to reduce thenumber of parameters required.
For example, in a numbers model an assumption of steady-state and no historical fishing
will mean that the numbers at age in the first year are given byNa,0 = Na−1,0e−Ma where
Ma is usually an assumed number and this reduced the first-year parameter set to only the
historical number of recruits.

Naturally one can also try to estimate the numbers at age for all ages in the first year. This
will require more parameters but the approach also has more potential to fit the data better
for the initial year (if such data is available, e.g. in the form of a length distribution with
distinct peaks).

7.8 Initializing an estimation procedure

7.8.1 Details

When a parametric statistical approach is used to fit a population dynamics model, the first
step is to input data and set the initial values of the parameters.

7.8.2 Examples

Example 7.1. Some R code for setting initial values in a statistical age-based population
model is given below. The data are for nephrops in Icelandic waters from 1980.

http://tutor-web.net/fish/fish5108statass/lecture50/aspminit.r

7.9 Projecting a stock in numbers forward in time

7.9.1 Details

When a stock in numbers is to be projected forwards in time from known parameters,
the formulas are usually the standard catch and stock equations, with provisions for the
recruiting year-class and the plus group as indicated previously.

7.9.2 Examples

Example 7.2. The following R code will project stock biomass forward in time.
This uses a stock-numbers model and assumes some true ages (at least one) with a
plus group. Note that this only assumes estimation of fishingmortality and recruit-
ment. The initial stock size is set to an equilibrium stock based on a constant recruitment.

The code can be downloaded from:
http://tutor-web.net/fish/fish5108statass/lecture60/aspm.r
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7.10 Evaluating a model fit

Usually an evaluation of a fit is coded as a function which returns a fit measure for a
given set of parameters.

7.10.1 Details

In order to fit a model a method is needed for comparing model output to data. Such a
method typically computes the sums of squares between each data set and the correspond-
ing fitted values. In particular, when a model is used for fishing mortality, the catches are
usually predicted and similarly, survey indices are typically predicted from proportionality
with the biomass.

7.10.2 Examples

Example 7.3. A typical fit-evaluation function in R takes a vector of parameters as
input. Each element (or group of elements) of the vector corresponds to a specific
population parameter (or group). In the following example,the first parameter is the
cathcability. This is followed by a vector of annual fishing mortalities and a vector of
annual recruitment values.

http://tutor-web.net/fish/fish5108statass/lecture60/ssefcn.r

7.11 A complete run

Need more data, e.g. on recruitment in order to
reduce the number of parameters compared to
number of data points.

Would prefer production to be linked to stock size.
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7.11.1 Details

A complete model-fitting run consists of first initializing the parameters, followed by functi-
on definitions, and finally calling the nonlinear minimizers.

7.11.2 Examples

Example 7.4. When fitting a model to the nephrops data and plotting the results the R
commands below can be used.

One normally first sets up a "run file", containing commands which can be run using a
single "source"command in R. This should automatically read in any other R command
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files, which read data, initialize variables, estimate the stock size and plot results.

http://tutor-web.net/fish/fish5108statass/lecture60/aspmrunplot.r

ReferencesISBN:
ISBN:
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8 Finicky details

8.1 The weighting factors

SSEY +SSEI

or weighted?

Logged data:
λ
∑

t
(ln(xt)− ln(x̂t))

2

where

λ =
1

V [ln(xt)]
=

1

σ2
ln(xt)

if possible...

8.1.1 Details

As indicated above, there may be several data sources. Notably, there will usually be
landings information and one or more survey indices. The corresponding sums of squares
are commonly added together to form a single objective function to be minimized. This is
only rarely acceptable and may lead to seriously incorrect results.

8.1.2 Handout

Consider the estimation of weighted factors (weights) to beassigned to sums of squares
which will be minimized in order to estimate parameters in a population dynamics model
for a fish species. Assume that all of the terms correspond to logged data. Each term is thus
of the form

λ
∑

t
(ln(xt)− ln(x̂t))

2

where thext ’s may be annual landings, indices, or any other data which can be predicted
from the model andλ is the weighted factor.

The "correct"weighted factor from a statistical viewpointis the inverse variance,

λ =
1

V [ln(xt)]
=

1

σ2
ln(xt)

and it should be noted that in the case of low variability, thestandard deviations of the
logged quantities are close to the coefficient of variation of the original numbers. Since the
latter are convenient to think of and the former are computationally convenient, the term
CV (x) is commonly used whenσln(xt) is meant.

In the case of the landings data, these are sometimes known quite precisely in which case
it would be natural to assume e.g.CV (Y ) = 0.1, reflecting a belief that 95% of the annual
catch estimates are within 20% (two standard deviations) oftheir true value1.

1One notes that this approach tacitly assumes a symmetry in the errors

30



In the case of an abundance index, e.g. a CPUE index,Ut is intended to reflect adult bi-
omass, one could set up a simple time series model to estimatethe uncertainty in the index
or one could fit a polynomial in time and use the residuals for the variance estimation (cf
IWC work, IWC 19xx).

In either case one must keep in mind that the resulting variance estimate only estimates the
variance in the data set itself. It does not include the variance with regard to the model
uncertainty which may be much higher. These approaches do, however, give fairly objecti-
ve guidelines on the choice of weights.

Traditional text books on statistics only skim over the choice of weights and there is a rea-
son for this: A fundamental assumption in statistical models is that the model is correct!
When this assumption holds the parameter estimates are unbiased regardless of the choice
of weights. Unfortunately this assumption rarely holds forany model and although it is
often "approximately correct", it is commonly seriously violated in fisheries.

If there are model errors, then the model will typically not be able to fit all data sets simulta-
neously. In this case the choice of a high weight on one data set will “drive the model” to
fit that data set and give poor fits to other sets. It is therefore imperative that several choices
of weights be investigated in order to evaluate the level of inconsistency observed.

8.2 Caveats

Typically too many unknowns!

8.2.1 Details

Although the annual fishing mortality is typically quite well determined by the annual
yields, few other parameters are well defined. In particular, attempting to determine annual
recruitment in the presence of a single total abundance index is doomed to be dubious.

8.3 Adding a production term

8.3.1 Details

It makes little sense to talk of a production model unless there is a production term. In an
age-structured model the production term is normally in theform of a stock-recruitment
relationship.

8.4 Smoothing

Add penalty terms? ∑
(Ft+1−Ft)

2

or ∑Ä

Rt+1− R̂t
ä2

etc

8.4.1 Details

Inserting time-series-like components as sums of squares will smooth the time series of
fishing mortalities and/or recruitments. This will usuallyresult in more stable estimates.
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The exact way in which this is done is somewhat important.

The method used here has been criticized.

8.5 A typical run

Example of a complete run

8.5.1 Examples

Example 8.1. A collection of R routines for conducting a simple age-structured assess-
ment with a production component is given below.

First, consider the initialization phase.
http://tutor-web.net/fish/fish5108statass/lecture70/aspminit.r

Next, a function to project the stock forward one year is needed.
http://tutor-web.net/fish/fish5108statass/lecture70/aspm.r
http://tutor-web.net/fish/fish5108statass/lecture70/aspmrun.r
http://tutor-web.net/fish/fish5108statass/lecture70/ssefcn.r

These methods can be improved quite a bit. To get more preciseestimates one needs
more data, however!

9 Some case studies

9.1 Stochastic simulations

Simulate a population with errors in data

9.1.1 Examples

Example 9.1. Example R code for the assessment:

32



init.r
http://tutor-web.net/fish/fish5108statass/lecture80/init.r

predict.r
http://tutor-web.net/fish/fish5108statass/lecture80/predict.r

simpop.r
http://tutor-web.net/fish/fish5108statass/lecture80/simpop.r

ssefcn.r
http://tutor-web.net/fish/fish5108statass/lecture80/ssefcn.r

statass.r
http://tutor-web.net/fish/fish5108statass/lecture80/ssefcn.r

9.2 Cod in Icelandic waters

9.2.1 Details
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Consider a simple example based on cod in Icelandic waters.

Data: Total landings and indices based on a groundfish surveyby extracting "ages"1 and 2
from the scaled length distributions as well as the plus group (all in numbers).

Note that the landings are almost entirely of ages 3+ so the approximate age indices are
pre-recruitment indices.
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