More on real-valued functions of two variables math221.1 0 Applied calculus of two variables

Gunnar Stefansson

November 12, 2015

Real functions of more than one variable

Figure: The function $\sin \left(x^{2}+y^{2}\right) /\left(x^{2}+y^{2}\right)$.
Typical:

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} f(x, y)=x^{2}+y^{2} \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R} g(x, y, z)=x y z
\end{aligned}
$$

Partial differentiation

In principle, just differentiate with respect to one variable at a time. Write

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x} \\
& \frac{\partial f(x, y)}{\partial y}
\end{aligned}
$$

To be differentiable, these partial derivatives need to satisfy criteria ...if the partial derivatives are continuous, then the function is differentiable.

The gradient

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then we define the gradient of f as the vector

$$
\nabla f(\mathbf{x})=\left[\begin{array}{r}
\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1}} \\
\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{n}}
\end{array}\right]
$$

Example: Consider the function $f(x, y)=x^{4}+x^{2}(1-2 y)+y^{2}-4 x+4$. The gradient of this function at a general point (x, y) is

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial f(x, y)}{\partial x_{1}} \\
\frac{\partial f(x, y)}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{r}
4 x^{3}+2 x(1-2 y)-4 \\
2 y-2 x^{2}
\end{array}\right]
$$

Hence e.g. at $(x, y)=(0,1)$ we can calculate the gradient at this particular point as

$$
\nabla f(\mathbf{x})=\left[\begin{array}{r}
-4 \\
2
\end{array}\right]
$$

and we can identify any potential maxima or minima as the points where $\nabla f=\mathbf{0}$, i.e. where both $0=\frac{\partial f}{2}=4 x^{3}+2 x(1-2 y)-4$ and $0=\frac{\partial f}{\partial x}=2 y-2 x^{2}$. For this to occ̄ur we need

Higher order derivatives

If the functions are differentiable in the coordinates then we can keep on differentiating to get mixed derivatives...
Example: For a function of only two variables we can compute

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)
$$

and

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

Example: Consider the function ...

The Hessian matrix

The Hessian matrix is the matrix of all combinations of second-order derivatives, for example:

$$
H=\left[\begin{array}{cc}
\frac{\partial^{2} f(x, y)}{\partial x^{2}} & \frac{\partial^{2} f(x, y)}{\partial y \partial x} \\
\frac{\partial^{2} f(x, y)}{\partial x \partial y} & \frac{\partial^{2} f(x, y)}{\partial y^{2}}
\end{array}\right]
$$

Example: Consider the function $f(x, y)=x^{4}+x^{2}(1-2 y)+y^{2}-4 x+4$. The gradient of this function at a general point (x, y) is

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial f(x, y)}{\partial x_{1}} \\
\frac{\partial f(x, y)}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{r}
4 x^{3}+2 x(1-2 y)-4 \\
2 y-2 x^{2}
\end{array}\right]
$$

Hence e.g. at $(x, y)=(0,1)$ we can calculate the gradient at this particular point as

$$
\nabla f(\mathbf{x})=\left[\begin{array}{r}
-4 \\
2
\end{array}\right]
$$

and the Hessian is

$$
\text { Gunnar Stefansson }\left[\begin{array}{cc}
\frac{\partial^{2} f(x, y)}{\partial x^{2}} & \frac{\partial^{2} f(x, y)}{\partial v \partial x}
\end{array}\right] \quad\left[\begin{array}{cc}
12 x^{2}+2(1-2 y) & -4 \bar{x}] \\
\text { Morember } 12,2015 & \text { on real-valued functions of two vari } \\
\hline
\end{array}\right.
$$

