Maxima and minima of real-valued functions of two variables

 math221.1 0 Applied calculus of two variablesGunnar Stefansson

November 12, 2015

Unconstrained local optimization

Local extrema must satisfy

$$
\nabla f(x, y)=0
$$

(if the derivatives exist everywhere)

Classification of extrema

If $\nabla f\left(x_{0}, y_{0}\right)=0, H$ the Hessian with eigenvalues $\lambda_{1}>\lambda_{2}$.

- $\lambda_{1}>\lambda_{2}>0$: local minimum $\Leftarrow \operatorname{det}(H)>0, \operatorname{tr}(H)>0$
- $0>\lambda_{1}>\lambda_{2}$: local maximum $\Leftarrow \operatorname{det}(H)>0, \operatorname{tr}(H)<0$
- $\lambda_{1}>0>\lambda_{2}$: saddle point $\Leftarrow \operatorname{det}(H)<0$

Figure : The function

$$
f(x, y)=x^{2}-y^{2} .
$$

λ, is an eigenvalue a matrix A if there is a non-zero \mathbf{x}

Constrained optimization

To maximize $f(\mathbf{x})$ with respect to $g(\mathbf{x})=0$, where both are real-valued, set up the Lagrange function

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

and solve

$$
\frac{\partial L}{\partial x_{i}}=0, \quad i=1, \ldots, n
$$

along with $g(x)=0$.
This will (under certain regularity conditions) give the extrema of f with respect to $g=0$.
Example: Consider the optimization problem to minimize $f(x, y)=x^{2}+y^{2}$ subject to $g(x, y)=x+y-1=0$.
Here the Lagrangian is

$$
L(x, y, \lambda)=x^{2}+y^{2}+\lambda(x+y-1)
$$

and hence

$$
\begin{aligned}
& 0=\frac{\partial L}{\partial x}=2 x+\lambda \Rightarrow \lambda=-2 x \\
& 0=\frac{\partial L}{\partial L}=2 v+\lambda \Rightarrow \lambda=-2 v
\end{aligned}
$$

Classification of constrained extrema

Write $L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})$ and suppose \mathbf{x}^{*} is a potential extremum with $0=\nabla_{\mathbf{x}^{*}} L=\nabla f\left(\mathbf{x}^{*}\right)+\lambda^{*} \nabla g\left(\mathbf{x}^{*}\right)$ and $g\left(\mathbf{x}^{*}=0\right.$.
Further, define the Hessian of L, with respect to x as

$$
H=\nabla_{\mathbf{x}^{*}}^{2} L=\nabla^{2} f\left(\mathbf{x}^{*}\right)+\lambda^{*} \nabla^{2} g\left(\mathbf{x}^{*}\right)
$$

If eigenvalues of H are all positive, then \mathbf{x}^{*} is a local minimum.
Example: For $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=x+y-1$ we have $L(x, y, \lambda)=x^{2}+y^{2}+$ $\lambda(x+y-1), \nabla_{\mathrm{x}} L=(2 x+\lambda, 2 y+\lambda)^{\prime}$ and thus

$$
\nabla_{\mathrm{x}}^{2} L=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

which has both eigenvalues equal to two and therefore both positive.

