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1 Numbers, arithmetic and basic algebra

1.1 Natural Numbers

The positive integers are called natural numbers.

These numbers can be added, multiplied together and so forth
Notation:N = {1,2,3,4,....}

Subtraction and division are not defined on these numbers.

An arbitrary element oN is most commonly denoted by j, n,or m, but any symbol
can be used.

1.1.1 Details

Definition 1.1. The set of positive integers is usually denoted Ny i.e. N =
{1,2,3,4,....} and is called the set afatural numbers. In some cases the numller
zero is included as a natural number, but here we will useyth@sl Ng to denote th

integers 0, 1, 2 and up.

Within this set of numbers it is possible to add and multiplynibers together. Arithmetic
operations are denoted byfor addition and (or x) for multiplication. A natural number
can also be raised to the power of a natural number, €.g- 3 3-3-3-3 or in general
mM"=m-m-...-m(ntimes).

When stating general properties of the natural numbers eedsto use symbols to indica-
te that the property holds for an arbitrary number. It is maiiggh to just write the property
for a few numbers. For example, to declare that one can me@ge numbers in a sum, it
is not enough to say 4 3 = 3+ 4 but one must explicitly state "the addition operator has
the property that any two natural numbearsm € N satisfyn+m= m+n".

An arbitrary element olN is most commonly denoted By j, n,or m, but any symbol,
a, b, c ..., can be used.

Several rules of arithmetic apply (some by definition, attean be derived) such as

ab = ba
a+b = b+a
a+bc = a+(bc)
a(b+c) = ab+ac
(a+b)+c = a+(b+c)
(abjc = a(bc)

Subtraction and division are not generally defined. In aolditve define one integan, to
the power of anothem, to meam multiplied by itselfmtimes:n™=n-n-....nm.
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Definition 1.2. The power is aroperator just like addition and multiplication, and |Is
defined to have higher priority than the other two.

1.1.2 Examples

Example 1.1. If we havex = 4 andy = 2 and want to evaluate
X +y*

then we replace the values of x and y in the expression, ardateat, taking care t
observe the correct order of operations:

421 2* —16+16=32

1.2 Starting with R

Download R from the R website: http://www.r-project.org/

Look at on-line information on R, and take the tutor-web Rotia: http://tutor-
web.net/stats/stats240.1

Simple R commands:
e Assignmentx < —2

e Arithmetic:2x54+4

1.2.1 Details

To assign values to a variable in R one can uggr «": however, these aldOT equivalent.
Using the equals sign is confusing and therefore not recamdetk

1.2.2 Examples

Example 1.2. Assigning values to a variable:

x<-2
y<-3
Z<—X+y

Example 1.3. Viewing assigned values:
Type the name,i.e. "z", to view the assigned value.
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1.3 The Integers

The set of positive and negative integers:
Z=A.,.,-2,-1,012 ... }

1.3.1 Details

Definition 1.3. The set of all integers is denoted Byi.e.

Z={..,-2-1012,....)}.

Note 1.1.Note that within this set it is possible to subtract as welbdd and multiply.
Within this set we cannot, however, in general, performsion.

When preforming multiple mathematical operations witlia same equation, i.e. 798-
3, there is a conventional order for which the operationstiheperformed.

Definition 1.4. The conventional order of operations for equations withtipld mat-
hematical operations is referred to asogerator precedence

1.3.2 Examples

Example 1.4. To compute 79- 8- 3 start by multiplying and then subtracting:
79—-8.3=79-24=55

Example 1.5. To compute 15- (244 36) we first note that the parentheses (brackLts)
imply a precedence; anything inside brackets should beiated first.
Thus, we first add 36 to 24 and then we subtract that from 15.

15 - (24+36) = 15- 60 = - 45

Note that the answer is a negative number.
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Example 1.6. Simple arithmetic in R is easily done at the command prompt.

79-8%3
[1] 55
15-(24+36)
[1] -45

1.4 Rational numbers

Rational numbers are fractions denoted p/q, where p and g are integers. We

simplify fractions if the numerator and denominator com@@mmon terms.

1.4.1 Details

Definition 1.5. Rational numbersare fractions denotegl/q, wherep andq are integers
The set of all rational numbers is usually denagd

Note 1.2.Note that every integer is a rational number (obtained bintalf = 1).

We can simplify fractions if the numerator and denominatortain common terms.

can

When the rationals are ordered on to a line there are poirgsing, i.e. there are "gaps”,

for example there is no rational numifq such that p/q)? = 2.

1.4.2 Examples

Example 1.7. §=55=3

The rational numbers can be put in order along a line as in gluedi

16



Example 1.8. As an elaborate example of a fraction, consider the evalnatithe quanl
tity

wIN
+
(6211 )8}

Wi
+
NI

Example 1.9. Evaluate
+

+
Solution: We can either start by calculating the numerator

wIN
(62118

Wi
NI

2 2
3 5

or the denominator

_|_

Wl
NI =

in the numerator have a common denominator. We can eitheittimdeast commo
denominator or multiply the fractions with each others demmator. Here they are t
same number, 15. So the first step is:

Here we choose to start with the numerator. The first step msake the two fractior:F
e

g 5_|_g 3—2;54_5—1_0_'_2
3 5 3.5 5.3 15 15

Now it is possible to add the two fractions which is the secstieg:

10+6 16
15 15
Now the same process has to be done on the denominator.
With the same method (LCM - least common multiple) we get:
1.2 1.3 2 3 5
32723 66 6
Then the total answer is:

116 6_96_96/3 32

g 155 75 75/3 25
We can see that in the last step of the equation, the factobéais simplified. To dI
this we use factoring. We break down the numbers into smialé®ors or multiple prim

numbers. Therefore we have:

96

75

3-32
3-25
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We can now remove "3", or the multiplier, as it is on both sidéthe fraction. So wé
have:

3_2

25
i 25 7 47
25 25 25

In step 1 above we used Cross-Multiplication.

Definition 1.6. Cross-Multiplication is when we multiple the numerator by t
reciprocal of the denominator.

e

So in this case we rewrite

16
15
5
6
or
16 5
15° 6
as
16 6
15 5
As you can see all we are doing is turning
5
6
upside down: and multiplying it with
16
15
This gives:
96
75

In some cases it is possible to dravg@uare root of a fractions = g, i.e. find a number
r € Q such thar? = s. The square root is denoted .

Example 1.10. Consider the expression

x24)+(%x¢75)

Ol R

(

To evaluate this expression, first consider separatelytb@arts on each side of the plus
symbol.
The first part is




and the second part is

1
<§ X V/25)
In addition, by definition of root, B
1.1
9 3

First part:

Second part:
(é X \/25) = % x5=1
Finally, add the first part and the second part:

1_6_|_1_1_9
3 3

Example 1.11. Consider the following fraction example, to be solved stegtep:

4 15
21 (a3)
2.

1
6 5
First we need to be aware of operator presedence, meanirigghae solve the bracket
then multiplication/division, then addition/subtractiand finally the main fraction.

U7

15 5
@31
After solving the bracket we can proceed with adding

4

2

to
5

12
as there is no other action left for the nominator of the maantfon. So:
4 n 5
2 12
When adding fractions together we first have to find a commaowinator, in this cas
12 would work as

D

2-6=12

So we multiply both the numerator and the denominator of fitzattion by 6 and thef
add the two numerators of the fractions together, keepiagéme denominator.

4,5 _46 5 24 5 29
212726 12" 1212 12
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Now we have the top half of the fraction solved. We then prdoeéh dividing the
two fractions of the bottom half. When dividing fractions wee the so called crogs
multiplication technique. This arithmetic trick is derdv&om the fact that if you divid]e
a fraction by its duplicate you get 1. If you multiple a fractiby its reciprocal (it
reverse) you also get 1. Like so:

1 1

-+=-=1

2 2
and 1 >

i —

21

These functions always provide the same result and therefercan turn the fractio
we are dividing by upside down and multiply it to the othercfran as that is usually
much easier.

-

We can therefore rewrite

2 1
675
as
25 10
61 6

We've now solved both halves of the original fraction and tteerefore proceed to solye
it, again with the cross multiplication technique as frawt are after all just divisions:

20 10_29 6 174
12° 6 12 10 120

Now
174

120
is a pretty bad looking fraction and we’d preferably like tmplify it.

To do this we use factoring.

Definition 1.7. Factoring essentially means to break a number done into it's smallest
factors or multipliable prime numbers.

In this case we get

2-3-29

2-3-20
These are the smallest prime numbers that can multiply hegehto 174 and 12
respectively.

=4

A way of doing this in your head is by first dividing both numb€i74,120) by two}
Which gives us:




and then dividing those numbers (87,60) by 3, since theyt tendivided by 2. Dividing
by 3 gives you
3-29 29
3.20 20
which is a lot nicer than
174
120
The reasoning behind this factoring simplification is tha& ean remove multipliers |f
they are on both sides of a fraction. This is because thetrekal fraction where thg
numerator and the denominator are the same is always 1. dike s
1
=1
1
or )
Z =1
2
or 3
|
3
The final answer therefore is
2+(3:3) _ 29
2.1
65 20
1.5 Therealline
Some obvious numbers are not fractions. . -
The set of numbers making up the real line is denoted
by the symbolR.
The
diagonal of a rectangle with unit side lengths\&,
Note thaty/2 ia not a fraction.
1.5.1 Details

Some obvious numbers, which commonly occur, are not frastidhese are in between
the rational numbers (fractions). Filling in the missingrs to obtain a continuum results
in the set of "real numbers".

Denoted byR the entire set of "real numbers"which corresponds to "glim'the "missing
piecesf the line.
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1.5.2 Examples

Example 1.12.1f Cis the circumference of a circle amis the diameter and we defilue
n= & thenttis not a fraction.

Example 1.13. One example of a non fraction is the number e (Euler's numbhbigh
can be defined by

Example 1.14.1f you have a right triangle with unit side length, what is teegth of its
hypotenuse and what class of numbers does it belong to?

An isosceles triangle is defined as having adjacent and dppsides of same lengt
connected by a 90angle. Unit side length of these, refers to a side length of

=)

1

As we have a 90angle, we can use Pythagoras’ theorem:

a4+ b%=c?

With
a= ad jacent

b = opposite
c = hypotenuse

So with
ab=1

> =12412
c=1+1
2=2

We take the square root to get

c=v2

Now that we answered the first part of the question, it neetis tdefined, which class @f

number
V2

22



belongs to.

V2

is an irrational number, and belongs thereby to the set bhwaabers

R

=

Real numbers can be imagined as points on an infinitely loregg livhich is also calle
the real line.

2 Data vectors

2.1 The plane

Pairs of numbers can be depicted as points on a plane.
The plane is normally denoted IR?.

2.1.1 Details

Pairs of numbers can be depicted as points on a plane.

Definition 2.1. A plane s a perfectly flat surface with no thickness and no end, it
extend forever in all directions. It has two-dimensionaglin and width. We need two

values to find a point on the plane.

Normally we talk about "the plane"as the collection of alirpaf numbers and denoted it

by
R? = {(x,y) :x,y € R}

, giving coordinates to each point.

2.1.2 Examples

Example 2.1. Plotting the point (2,4) in the x-y plane using R.

plot(2,4,x1lim=c(0,6) ,ylim=c(0,6) ,xlab="x",ylab="y", cex=2)
text(2,4,"(2,4)",pos=4,cex=2)

Additional points can be added using gh@ntsfunction:

points (3,5, cex = 0.5) ## a point at (3,5)

If you have 2 sets of coordinates on a plane you can calcuiatdistance between the 2

points and graph the line connecting the points
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Example 2.2. What is the distance between the 2 points (3,9) and (5,1)?
We will use the Pythagorean theorem:

d=/(x2—X1)2+ (y2—y1)2
We insert our values into the formula:

d=/(5—3)2+(1-9)2

When we combine inside the parenthesis we get:
d=/(22+(-8)2

Squaring both terms:

d=v4+64
Then we take the square root:
d= 68
The result:
d =8.2462

2.2 Simple plotsinR

Graphing functions in R

plot - plots a scatter plot (as a line plot)

points - adds points to a plot . w2

text - adds text to a plot - e

lines - adds lines to a plot

on a plane, drawn with R.

Points

2.2.1 Examples

Example 2.3. plot (2,3)
gives a single plot and
plot (2,3, x1lim=c(0,5), ylim=c(0,5))

gives a single plot but forces both axes to range from 0 to 5.
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Example 2.4. The following R commands can be used to generate a plot walptints:

plot(1,2,x1lim=c(0,5) ,ylim=c(0,5) ,xlab="x",ylab="y")
points(3,1)

text(1,2,"(1,2)",pos=4, cex=2)
text(3,1,"(3,1)",pos=4, cex=2)

Example 2.5. In this example, we plot 3 points. The first two points are bsiuding
vectors with a length of 2 as the x and y arguments of the plottfan. The third plo
was added with the points function. The second and thirdtpewere labeled using thle
text function and a line was drawn between them using the fmection.

Note 2.1.Note that if you are unsure of what format the arguments of dariRtion
needs to be, you can call a help file by typing "?"before thetion name (e.g. "?lines))

plot(c(2,3),c(3,4),xlim=c(2,6) ,ylim=c(1,5) ,xlab="x",ylab="y")
points(4,2)

text (3,4,"(3,4)",pos=4, cex=2)

text (4,2,"(4,2)",pos=4, cex=2)

lines(c(3,4), c(4,2))

2.3 Data

‘ Data are usually a sequence of numbers, typically callec¢re

2.3.1 Details

When we collect data these are one or more sequences of myntbdected into data
vectors. We commonly think of these data vectors as columagable.

2.3.2 Examples

Example 2.6. In R, if the command
x <- c(4,5,3,7)

is given, therx contains a vector of numbers.

Example 2.7. Create a function in R, give it a name "Myfunction"which takbe sun
of x,y.
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Myfunction<- function(x,y) {
sum(x,y)

}

If you input the vectors 1:3 and 4:7 into the function it wildlculate the sum df
x<-(1+2+3) andy<-(4+5+6+7) as follows

> Myfunction(1:3,4:7)
28

2.4 Indices for a data vector

‘ If data are in a vectax, then we use indice® refer to individual elements.

2.4.1 Details

If i is an integer thew; denotes th&th element ofx.
Note that although we do not distinguish (much) between swd-column vectors, usually
a vector is thought of as a column. If we need to specify the tfpvector, row or column,

then for vecto, the column vector would be referred toxasind the row vector as' (the
transposeof the original).

2.4.2 Examples

Example 2.8.If x= (4,5,3,7) thenx; =4 andxq = 7

Example 2.9. How to remove all indices below a certain value in R

x <- ¢(1,5,8,9,4,16,12,7,11)
X
[1] 15689 4 16 12 7 11

y <- x[x>10]
y
[1] 16 12 11

Example 2.10. Consider a function that takes to vectors
acR"beN"

as arguments with
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and
1 S b]_,...,bm S n

. The function returns the sum "
Zabi
i=1

Long version:
fN <- function(a,b)
result <- sum(a[b])
return(result)

Short version:
IfN <- function(a,b) sum(a[b])|

1)

2.5 Summation

We use the symbd to denote sums.
In R, the sum function adds numbers.

2.5.1 Examples

Example 2.11.If x= (4,5,3,7)
then

4
S Xi=X1+Xo+X3+Xs=4+5+3+7=19
i—1

and

4
> X =Xo+Xg+x4=5+3+7=15
i—2

Within R one can give the corresponding commands:

x<-c(4,5,3,7)
X

[1] 4 537
sum(x)

[1] 19
sum(x[2:4])
[1] 15

3 More on algebra

3.1 Some Squares

If a and b are real numbers, then

(a+b)? = a®+ 2ab+b?
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3.1.1 Details

If &, b are real numbers, then:
(a+b)?2 =a?+2ab+b?
This can be proven formally with the following argument:

(a+b)? = (a+b)(a+b)

(a+b)a+(a+b)b

= a’+ba+ba+b?
a2+ 2ab-+ b?

3.2 Pascal’s Triangle

Pascal’s triangle is a geometric arrangement of the binlarogfficients in a triangle

3.2.1 Details
n=0: 1
n=1: 1 1
n=2: 1 2 1

n=3: 1 3 3 1

To build Pascal’s triangle, start with "1"at the top, andtkentinue placing numbers below
it in a triangular pattern. Each number is just the two numsladyove it added together
(except for the edges, which are all "1").

3.2.2 Examples

Example 3.1. The following function in R gives you the Pascal’s triangbe h = 0 to
n=10.

fN <- function(n) formatC(n, width=2)
for (n in 0:10) {

cat (fN(n),":", fN(choose(n, k = -2:max(3, n+2))))
cat ("\n")

+

0: 0 01 0 O O

1: 0 0 1 1 0 O

2: 0 0 1 2 1 0 O

3: 0 0 1 3 3 1 0 O

4 : 0 0 1 4 6 4 1 0 O
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1010 5 1 0 O
1562015 6 1 0
21 35321 7 1
28 56 70 56 28 8 0

36 84 126 126 84 36 9 1 0 O

10 45 120 210 252 210 120 45 10 1 O O

0
0 0
1 0

O© 00 N O O
SO O O O O O
SO O O O O O
e e e

© 00 N O O

10 :

Changing the numbers in the lifer(n in 0:10) will give different portions of thé
triangle.

3.3 Factorials

We define the factorial of an integer n as
nNn=n-(n-1)-(n-2)-...-3-2-1

3.3.1 Detalils

Definition 3.1. We define the factorial of an integer n as

n=n-(n-1)-(n-2)---...-3-2-1.

3.3.2 Examples

Example 3.2. Suppose you have 6 applds, b, c,d, e, f} and you want to put each olwe
into a different apple baskefl,2,3,4,5,6}.

For the first basket you can choose from 6 apgdled,c,d,e, f}, and for the secor£
basket you have then 5 apples to choose from and so it godsefoest of the baskets,
so for the last one you only have 1 apple to choose from.

The end result would then be: 616-5-4-3-2-1= 720 possible allocations.

This could also be calculated in R with the factorial funatio

factorial (6)
[1] 720

3.4 Combinations

The number of different ways one can choose a subset ok$ipen a set oh elements
is determined using the following calculation:




3.4.1 Detalils

Definition 3.2. A combination is an un-ordered collection of distinct elements

Suppose we want to toss a coitimes. In each toss we obtain head (H) or tail (T) resulting
in a sequence of H,T,TH, ... T.

How many of these possible sequences contain exadtyls? There ar@ positions in
the sequence, we can choosef these in(?() ways and put our "Ts"in those positions. If
the probability of landing tails then each one of these sege® with exactly tails has
probability p*(1 — p)"* so the total probability of landing exactitails in n independent
tosses is

For convenience we define 0! to be 1.

3.4.2 Examples

Example 3.3. Consider tossing a coin four times.
(a) How many times will this experiment result in exactly ttags?

There are a total of 16 possible sequences of heads and-teriddur tosses. These cgn
simply all be written down to answer a question like this.

We get two tails in 6 of these tosses. We can explicitly witite ¢orresponding comp-
inations of two tails as follows

HHTT
HTHT
HTTH
THTH
TTHH
THHT

(b) How many times you will end up with 1 tail? The answer ismds and the outp@t
can be written as;

HHHT
HTHH
THHH
HHTH

The case of a single tail is easy: The single tail can come apyrone of four positiong.
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3.5 The binomial theorem

(a+b)"= zn: (2) Q">

x=0

3.5.1 Detalils

If a and b are real numbers and n is an integer then the expngssi-b)" can be expanded
as:

(a+b)"=a"+(})a b+ ()a 2" ...+ (", )ab T+ b"

(a+b)" =30 (Pab"

This can be seen by looking @+ b)" as a product of n parentheses and multiply these by
picking one item (a or b) from each. If we pickadrom x parentheses arxfrom (n—x),
then the product ig*b"*. We can choose theas in a total of(?() ways so the coefficient

of a*b" s (}).

3.5.2 Examples

Example 3.4. Since

it follows that

4 Discrete random variables and the binomial distributi-
on

4.1 Simple probabilities

4.1.1 Details

Of all the possible 3-digit stringii) of them havex heads. So the probability of landing
heads if3) p*(1— p)3*.

4.1.2 Examples

Example 4.1. Consider a biased coin which has probabiptgf landing heads up. If
toss this coin 3 independent times the possible outcomes are
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sequence probability Numberofheads
HHH p-p-p=p° 3
HHT PP(1-p)
HTH PP(1—p)
HTT p(1—p)?
THH P?(1-p)
THT p(1—p)?
TTH p(1—p)?
TTT (1-p)?

OFRPFPDNEFEDNDN

Example 4.2. It is also possible to aggregate these values into a table@sctibe onI)I
the number of heads obtained:

heads probability(x)

0 (1-p)?°
1 3p(1—p)?
2 3p?(1—-p)
3 p3

If we are only interested in the number of heads, then thie tdéscribes grobability
mass functionp, namely the probability(x) of every possible outcomeof the experi-
ment.

Example 4.3. Given that a year is 365 days and each day has the same pi‘t)beéll
being someone’s birthday. What's the probability of ati€ageople sharing a birthday
in a group of 25 people?

Now, calculating each of the possible outcomes could beceoeng tedious. That i$
calculating the odds that 2 people share a birthday, 3 pedpteople, etc. So instead
we try to find out the odds that no one in the group shares adaiytand subtract thoge
odds from 1 (100%).

First, let's look at the odds of only two people having distihirthdays.

365 364

365 365" 0.9973
Person one can be born on any day and the odds of having actibtithday are
therefore 1. The next person can be born on everyday but the fther person wds

born on, so 364 days.

Now let’'s say we add the 3rd person and calculate his/her ofddaving a distinct birt
hday.

365 364 363
365 365 365
This can also be rewritten as

=0.9918
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365-364- 363
365

And we can do this on and on for all the 25 people we are intedeist But that may
also become a bit tedious. So we use factorials instead.sBaith of doing

365-364-363..-341

365°
we do
=% — (0.4313
365

338...1
this from 1 we get

1-0.4313=0.5687
or roughly 57% odds of at least 2 people in a group of 25 shahagame birthday.

Essentially the division of factorials here removes allthkies < 341, leaving 340, 33,

Now remember this is the probability that no one shares hdagt. So when we subtract

4.2 Random variables

conducted.

A random variable is a concept used to denote the outcome@f@ariment before it is

D

4.2.1 Examples

then talk about the probabilities of certain events suchbéaining two heads, i.eX = 2.
We write this as

In general:

wherex=0,1,.....,n

Example 4.4. Let X denote the number of heads in a coin tossing experiment. WL ca

4.2.2 Handout

Definition 4.1. A random variable, X, is a function defined on a sample space,
outcomes in the set of real numbers.

ith

It is simpler to think of a random variable as a symbol usedaoate the outcome of an

experiment before it is conducted.
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Note 4.1.Note that it isessentialto distinguish between upper case and lower case letters
when writing these probabilities - it makes no sense to viRjie= x|.

Note 4.2.Random variables are generally denoted by upper caseslstieh as<, Y and
So on.

Note 4.3.To see how a random variable is a function, it is useful to wrsthe actual
outcomes of two coin tosses. These outcomes can be defidtédHT, TH, TT}. Now
consider a random variab¥which describes the number of heads obtained. This random
variable attributed 2 to the outcorittH and 0 toT T, i.e. X is a function withX(HH) = 2,
X(HT)=X(TH)=1andX(TT)=0.

4.3 Simple surveys with replacement

137

If we randomly draw individuals (with replacement) and askiastion with two possibl¢
answers (positive or negative), then the number of posén@vers will come from a
binomial distribution.

4.3.1 Examples

Example 4.5. Suppose we are participating in a lottery. We pick a numlmenfa Iotteryl
bowl (a simple random sample). We can put the number asideg @an put it back int

the bowl. If we put the number back in the bowl, it may be sedchore than once; |f
we put it aside, it can be selected only one time.

Definition 4.2. When an element can be selected more than one time, we arérsafijp
with replacement

Definition 4.3. When an element can be selected only one time, we are sam\dtirl].
hout replacement

4.4 The binomial distribution

If we toss a biased coin independent times, each with probabilpyof landing heads
up, then the probability of obtainingheads is

(n> P (1-p)"

X

4.4.1 Examples
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Example 4.6. Suppose we toss a coin, with probabilpyof landing on heads times
obtaining a sequence of Hs (when it lands heads) and Ts (whands tails). Any
sequence,

HTH..HTHHH

which hasx heads ) andn— x tails (T), has the probability*(1— p)"*. There arg
exactly(?() such sequences, so the total probability of landihgads im tosses is

(n> PA-p"

X

Example 4.7. Let the probability that a certain football club wins a matEhequal tc
0.4.If the total number of matches played in the season i&/B@f is the probability that
the football club wins the match 10% of the time?

We first calculate the number of times a match was played amdbyanultiplying the
percentage of wins by the number of matches played.

10% of 30 times = 3 times

We can now proceed to calculate the probability that they wih the match giverl
that their probability of a winning is 0.4 if they play 3 timesa season. This can e
computed as follows:

(‘?) x (0.4)3 x (1—0.4)30-3

= 0.000265

This can be calculated in R using the code below:
dbinom(3,30,0.4)

[1] 0.0002659437

This is equal to the manual calculation using the binomiebtem.

Example 4.8. Suppose a youngster puts his shirt on by himself every daivedays
The probability that he puts it on the right way each timeis- 0.2. We letX be 1
random variable that describes the number of times the ygianguts his shirt on t

right way. The youngster can either put the shirt on the wronghe right way sc
X follows the binomial distribution with the parametgps= 0.2 (the probability of
successful trial) andh = 5 (number of trials). We can now calculate for example|the
probability that the youngster will put it on the right way fat least 4 days.
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Putting the shirt on the right way for at least 4 days meanisthigayoungster will eith

put it on the right way for either four or five days (at leastrfoumore days of five da
total). We thus have to calculate the probability that thangster will put his shirt o
the right way for 4 and 5 days separately and then we add itllegeWe can write thi
process as follows:

P(X > 4) = P(X = 4) +P(X = 5)

- (i) x0.2%x (1-0.2)> %+ <2> x0.2°x (1-0.2)°>°
=5x0.2"%x08'+1x0.2°x0.8°
=5x0.2*%x08+0.2°x1
=5x0.8x0.2*+0.2°
=4%x0.2°4+02°
— 4 x 0.0016+0.00032

= 0.00672
The probability that the youngster will put his shirt on tight way for at least four out
of five is thus 0,7%.

This is possible to calculate in R in a several ways, eitherguite command dbinom @r
pbinom. The command dbinom calculates

P(X =K)
and the command pbinom calculates
P(X <Kk)

wherek is the number of successful trials. fis the number of trials ang is the
probability of a successful trials then the commands ard bgenriting: dbinonk,n,p)
and pbinomk,n,p).

To calculate the probability that the youngster will put &irt on the right way for &
least four days of five we thus write the command:
dbinom(4,5,0.2) + dbinom(5,5,0.2)

which gives 0.00672.

This is the same as writing:
dbinom(c(4,5),5,0.2)

or
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dbinom(4:5,5,0.2)

which give two separate numbers: 0.00640 and 0.00032 wiaictbe added together
get 0.00672.

There is also a command to add them together for us:
sum(dbinom(c(4,5),5,0.2))

or

sum(dbinom(4:5,5,0.2))

They give the answer 0.00672.

The fourth way of calculating this in R is to use pbinom. Asidaefore pbinom calculaté
P(X <Kk)

wherek is the number of successful trials. Here we want to calculagrobability tha

the youngster will put his shirt on the right way in 4 or 5 tinfes5 total) so the numbdr

of successful trials is 4 or greater. That means we want tutake
P(X > 4)
which equals
1-P(X<3)
. We thus puk as 3 and the R command will be:
1 - pbinom(3,5,0.2)
which also gives 0.00672.

o

S

Example 4.9. In a certain degree program, the chance of passing an ex@omns
20%. What is the chance of passing at most 2 exams if the dttaless five exams?

Solution:

In this problem, we compute the chance of a student passibgr@ exams.This is given

by,
5) 50085 [2\aolnad . ()92 a3
p(X=0orlor2= 0 0.2°0.8° + 1 0.2'0.8" + 5 0.2°0.8

—1x0.2°0.8° 4+ 5x 0.210.8* + 10 x 0.2%0.8°
— 0.32768+ 0.4096-+ 0.2048
— 0.94208

In the R console, we can use the commansh(dbinom(c(0:2),5,0.2)), which also
gives
0.94208

The same answer is obtained with
dbinom(0,5,0.2)+dbinorm(1,5,0.2)+dbinom(2,5,0.2)
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and with
pbinom(2,5,0.2)

Example 4.10. Consider the probability of someone jumping off a cliff i8B5. Suppos
is the chance that exactly one of them will jump off the cliff?

Consider a scenario where one person jumps:

P (A =jump, B =refuse, C =refuse, D = refuse)

=P (A =jump) P (B =refuse) P (C =refuse) P (D = refuse)
— (0.35)(0.65)(0.65)(0.65) = (0.35)%(0.65)3 = 0.096

But there are three other scenarios( B, C, or D) in which omgmerson decides to jum
In each of these cases, the probability is again 0.096. Tibesscenarios exhaust all t
possible ways that exactly one of the four people jumps:

4-(0.35)1(0.65)% = 0.38.

as 0.384475.

we randomly selected four individuals to participate in ¢hi#f jumping activity. What

In the R console we can use the commadigiinom(1,4,0.35) which gives the answdr

\1-4

(-

4.5 General discrete probability distributions

A general discrete probability distribution can be deslitby a list of all possibl
outcomes and associated probabilities.

€

45.1 Details

A general discrete probability distribution is describgdive possible outcomes
X1,X2, . ..
and associated probabilities, denoteddypo, . .. or p(X1), p(X2), . .-
If a random variablé& has this distribution, then we can write
PIX'=x]=p(x) = pi
or in general
PIX =X = p(x)

where it is understood thgi(x) = 0 if X is not one of thesg.

4.5.2 Examples

38



Example 4.11.1f X is the number of head$1( before obtaining the first taill{) when
tossing an unbiased coin 4 independent times, then thelp@$sisic outcomes are:
Toss
Inbinary 1234 # beforeT

0000 HHHH 4
0001 HHHT 3
0010 HHTH 2
0011 HHTT 2
0100 HTHH 1
0101 HTHT 1
0110 HTTH 1
0111 HTTT 1
1000 THHH 0
1001 THHT 0
1010 THTH 0
1100 THTT 0
1101 TTHH 0
1110 TTTH 0
1111 TTTT 0

Since the coin is unbiased, each of these has the same ditybatboccurring. We car
now count sequences to find the number of possibilities oftacpéar number of head
H, before a tail in 4 coin tosses and thus obtain the correspgmuobabilities as:

Number of tosses before a heads Probability

: e
1 =7
) L

16— 8
3 15
4 1

=
o]

4.6 The expected value or population mean

The expected value is the sum of the possible outcomes, teeigtith the respective
probabilities (discrete variable). Think of this in termfsam urn full of marbles, each
labelled with number.

1%

4.6.1 Details

If the possible outcomes arg, xo... with probabilitiesps, po... then the expected value is

H=X1-P1+X2-P2+....

The fact that this is the only sensible definition of an exeéatalue follows from consi-
dering random draws from a finite population where therengpossibilities of obtaining
the valuex;. If we setn = 3" X andp; = n;/n then the expected value above is the simple
average of all the numbers in the original population.

In the case of theinomial distribution with n trials and success probabilipyit turns out
that
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H=n-p
If X is the corresponding random variable, we denote this qyantiE [X].

4.6.2 Examples

Example 4.12. If we toss a fair coin 10 independent times, we expect on gearp=
10-1 =5 heads.

Example 4.13. Toss a fair die and pay $60 if a six comes up and nothing otlseniihe
expected outcome is

5 1
—-$0+ - - $60= $10
6$+6$ $

Example 4.14.In Las Vegas, a particular sports bet has about a 30% changemhg.
If the bet wins, the bettor will win 15 dollars. If the bet I@gsahe bettor will lose 10
dollars. The expected return of placing one of these be&s¥-dollars.
Detailed calculation:

$15.0.3—-$10-0.7= —-$25

Example 4.15. Class starts at 8:00 and the last bus that will get you to cdassme
leaves at 7:30. The teacher has a policy that if you are latéats 6 of the 30 classds,
then she drops your final grade by 1/10 points. You know thybif set your alarm fo
7:15, you miss the 7:30 bus approximately every fourth tibug,if you set it for 7:10
you'll only miss the bus approximately every eighth timeydiu set it for 7:00, you'l
only miss the bus every one hundredth time.

=3

Part A: Assuming you try to go to class every time, can you ekfehave your gradg
dropped in the following scenarios?

1 - You set your alarm for 7:15 throughout the duration of tless.

2 - You set your alarm for 7:15 until you reach 5 missed clagbes switch to 7:10.
3 - You set your alarm for 7:15 until you reach 5 missed clagbes switch to 7:00.

Part B: What is your expected grade in the course, assumingvpold have had a 7/10
without the late penalty, and:

1 - You would never choose the first alarm-clock strategy amal would most Iikelyl‘
choose scenario 2 (let’s say 9/10 times), but there’s a sthatice you might choose the
3rd strategy (let's say 1/10 times).

2 - You would never choose the first alarm-clock strategy amal would most likel
choose scenario 3 (let’s say 9/10 times), but there’s a sthatice you might choose :I\e
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2nd strategy (let’s say 1/10 times).

Answers:
Al - Let’s call X our random variable, which we want to be thenber of times we mak
it to class on-time. With the alarm set to 7:15 we expect toeriato class on-time:

1 1
EX]=30x(1--)=22-
X] =30 (1-3) =22

You're grade would most likely be dropped.

A2 - First we need to see how many classes we go to before wk teadb-late-classe
threshhold:

E[X] :nx(l—%):n—S
E[X] = n((l—%) —-1)=-5
E[X] :n:_—?

1
E[X] = n= %):20

So, the night before our 21st class, you get worried and ahaltagm-clock strategies.
you set it at 7:15 for the rest of the course (10 classes), yibbevon time:

1
EX] =15+10x (1- 5) = 2:-;;3’1

You're grade would most likely be dropped.

A3: If you instead start setting the alarm clock for 7:00 foe trest of the course, y@u

will be on time; 1 1

You're grade would most likely NOT be dropped.

1%

S

If

Part B: This seems to contain errordn Part A, we calculated the mean of several
omial distributions that described the expected humberagtdhat you will arrive on

in-

time to class. Each distribution corresponded to a diffestarm-setting scenario. In this

part, we are describing a different binomial distributidindescribes your expected g

de. Therefore, the grade is the outcome n, weighted by theapility of you choosin

the particular alarm-clock setting procedure:
1-E[X]=0x6+09x6+0.1x7=6.1
1-E[X]=0x6+0.1x6+0.9x7=6.9

Note that the probabilities of these three choices (0 + 0.9 }rust equal 1, since the

are the only three choices defined.

"2
(9]
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4.7 The population variance

The (population) variance, for a discrete distribution, is

0? =E[(X —W?| = (x1 — W2p1+ (2 — )22+ ...
where it is understood that the random varialflehas this distribution angl is the
expected value.

In the case of the binomial distribution, it turns out that:
0% =np(1-p)

4.7.1 Details

Definition 4.4. If pis the expected value, then thiariance of a discrete distribution
is defined as

0% = (X1 — W?p1+ (X2 — W)?p2+ ...

If a random variableX has associated probabilitieg, = P[X = x|, then one can equi-
valently write

0> =V[X]=E |(X—p?].

4.7.2 Examples

Example 4.16. In the case of the binomial distribution, it turns out that:

o’ =np(l1—p).

5 Functions

5.1 Functions of a single variable

A function describes the relationship between varia
bles.

Examples:
f(x) =
y=2+3-x*
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5.1.1 Details

Functions are commonly used in statistical applicatiomslgscribe relationships.

Definition 5.1. A function describes the relationship between variables. A varigis
described as a function of a variabléy completely specifying how can be comput
for any given value ok.

An example could be the relationship between a dose levethaniesponse to the dose.
The relationship is commonly expressed by writing eithed) = x? ory = x2.
Usually names are given to functions, i.e. to the relatignghelf. For examplef might

be the function and (x) could be its value for a given numberTypically f (X) is a number
but f is the function, but the sloppy phrase "the functidm) = 2x+ 4"is also common.

5.1.2 Examples

Example 5.1. f(x) = x% or y = x? specifies that the computed valueysghould always
bex?, for any given value of.

5.2 FunctionsinR

A function can be defined in R using the "functi-
on"command

5.3 Ranges and plotsin R

Functions in R can commonly accept a range of values andetilkm a corresponding
vector with the outcome.

5.3.1 Examples

Example 5.2. f <- function(x) {return(x*12)}
x <- seq (-5,5,0,1)

y <- £f(x)

plot {(x,y) type= ’1°}
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5.4 Plotting functions

on horizontal axis. This plots Y against x.

In statistics, the function of interest is commonly cal-
led the response function. If we write Y=f(x), the
outcome Y is usually called the response variablg
and x is the explanatory variable. Function values
are plotted on vertical axis while x values are plotted

5.4.1 Examples

Y=2+3x

x<- seq(0:10)

g <- function(x){
+ yhat <- 2+3%x

+ return(yhat)

+ }

x<-seq(0,10,0.1)
y<- g(x)
plot (x,y,type="1", xlab="x",ylab="y")

Example 5.3. The following R commands can be used to generate a plot fatitum

5.5 Functions of several variables
5.5.1 Examples

Example 5.4.
z=2X+3y+4
V= t2+3x
W= t2+3b>|<x

(2)
3)
(4)

6 Polynomials

6.1 The general polynomial

The general polynomial:
P(X) = ag+ ayX+ apx? 4 ... + apx"
The simplestp(x) = a
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6.1.1 Details

Definition 6.1. A polynomial describes a specific function consisting of linear colnb-
inations of positive integer powers of the explanatory alale.

The general form of a polynomial is:
P(X) = @9+ agX+ apx? 4 ... + anx"
The simplest of these is the constant polynomia) = a.

6.2 The quadratic

The general form of the quadratic (parabola) is
p(x) = ax® + bx+c. o
The simplest quadratic is(x) = x°

Para-

bolas: Quadratic functions.

6.2.1 Details

The quadratic polynomial of the form(x) = ax? + bx+ ¢ describes a parabola when points
(x,y) with y = p(x) are plotted.

The simplest parabola ig(x) = x* (Fig. a) which is always non-negatiy#x) > 0 and
p(x) = 0 only whenx = 0.

Note 6.1.Note thatp(—x) = p(x) since(—x)? = x°.

If the coefficient at the highest power is negative, then tr@lpola is "upside down"(Fig.
b).

This is sometimes used to describe a response function.

6.3 The cubic

The general form of a cubic polynomial is:
p(x) = ax® +bx% +cx+d

X3 —20x2 — 30x— 4
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6.4 The Quartic

The general form of the quartic polynomialpéx) =
ax* + b3+ o 4 dx+e

The
general shape. Here we used the following equation
y=xX-x -7 +x+6

6.5 Solving the linear equation

If the value ofy is given and we know thatandy are on a specific line so that= a-+ bx,
then we can find the value af

6.5.1 Details

If a value ofy is given and we know that andy lie on a specific straight line so that
y = a+ bx, then we can find the value afby consideringy = a-+ bxas an equation to be
solved forx, sincey, a andb are all known.

The general solution is found through the following steps:
e Equation:y = a+ bx
e Subtracta from both sides

—y—a=bx
— bx=y—a

¢ Divide by b on both sides ib is not equal to 0.

- x=(y—a).

6.6 Roots of the quadratic equation

The general solution @@+ bx+c = 0 is given byx = ~2Evb—dac,

6.6.1 Details

Suppose we want to sohge? + bx+ ¢ = 0, wherea # 0.
The general solution is given by the formula

_ —b++vb?—4ac

N 2a ’
if b>—4ac> 0. On the other hand, 1 — 4ac < 0, the quadratic equation has no real
solution.
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6.6.2 Examples

Example 6.1. Solvex? —3x+2=0

a=1b=-3c=2
Inserting this into the formula for the roots gives:

Putting this into the context of the formulatian® + bx+c = 0, the constants are;

~(=3)+(-3?2-41)(2)

= 2(1)
. 3+.,9-8
- 2
. 3+v1
N 2
. — +1 3-1
22
. 4 2
2’2
x = 21

Example 6.2. Find the roots of the following polynomial

3+ 14x2 + 15

a variable for

X2

Let's use the letter
a

3a%+14a+15

We can use the quadratic equation to solve for the roots®pthliynomial if we substitut

We then plug the constants in to the quadratic equation.

_ —(19 £ 14 - (4)(3)(19

X =
(2)(3)
which simplifies to

—(14)4++/196— 180
6
which equals
42
3
and
-3

v
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Then, since we substituted a for

X2

we need to take the square root of these values to get theabibts polynomial.
So,

2
X172 =+ _1§

and
X34 = +V/3

7 Simple data analysis in R

7.1 Entering data; dataframes

Several methods exist to enter data into R:

1. Enter directly: x<-c(4,3,6,7,8)

2. Read in a single vector: x<-scan("flename")

3. Use: x<-read.table("file address")

7.1.1 Details

The most direct method will not work if there are a lot numb#énsrefore, the second met-
hod is to read in a single vector by x<-scan("filename"), Hlme- text string, either a full
path name or refers to a file in the working directory.

The scan() command returns a vector, but the read.table{inemd returns a dataframe,
which is a rectangular table of data whose columns have nafvedumn can be extracted
from a data frame, e.g., with x<- dat$a where"dat"is the nafrthke data frame and "a"is
the name of a column.

Note 7.1.Note that for read.table("file address"), "file addres&reto the location of the
file. Thus, it can be the URL or the complete file directory depeg on where the table is
stored.

7.1.2 Examples

Example 7.1. Below are three examples using R code to enter data
1. x<-c(4,3,6,7,8)
2. x<-scan("lecture 70.txt")

3. x<-read.table("http://notendur.hi.is/ gunnar/kdafedsm/data/set115.dat", hda-
der=T)
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7.2 Histograms

A histogram is a graphical display of tabulated frequ
encies, shown as bars. P
In R use the command: hist()

7.2.1 Examples

A histogram is a graphical display of tabulated frequenahswn as bars.

be simulated using

x <- rbinom(1000,100,1/6)

We would typically plot these using a histogram, e.g.
hist(x)

or

hist(x,nclass=50);l

Example 7.2. If we toss a fair die 100 times and record the number of sites) tve
can view that as the outcome of a random variablevhich is binomial withn = 100

Now this can be done e.g. 1000 times to obtain numbers,, x1000 Within R this car

7.3 Bar Charts

The bars in a bar chart usually correspond to frequ
encies in categories and are therefore kept apart.” .

.............

7.3.1 Details

A bar chart is similar to the histogram but is used for categbdata.
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7.4 Mean, standard error, standard deviations
7.4.1 Details

The most familiar measure of central tendency is the aritioneean.

Definition 7.1. An arithmetic mean is the sum of the values divided by the numl)er
values, typically expressed as:

Sl Yi

y= n

Definition 7.2. The sample varianceis a measure of the spread of a set of values lom
the mean value:

(% —X)

1

1
-~
n—1:

n
1=

The sample standard deviation is more commonly used as aumeafsthe spread of a set
of values from the mean value.

Definition 7.3. The standard deviation is the square root of the variance and may be
expressed as:

Definition 7.4. The standard error is a method used to indicate the reliability of Le
sample mean:

|2

SE=4/—

5 n

If a vector x in R contains an array of numbers then:
mean (x) returns the averagg,

sd (x) returns the standard deviatisn,

var (x) returns the variance?

We may also want to use several other related operations in R:

median(x), the median value in vector x

range (x), which list the rangemax (x) -\verbmin(x);

If the variablex contains discrete categorieable (x) returns counts of the frequency in
each category.
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7.5 Scatter plots and correlations

If we have paired explanatory and response datag\ie
are often interested in seeing if a relationship exists
between them. To do this, we first plot the data in‘a
scatter plot.

xxxxxxxxxx

=3

Figure: Scatter plot showing the length-weigh
relationship of fish species "X". Data source| :
Marine Resource Institution - Iceland.

7.5.1 Details

A first step in analyzing data is to prepare different plotse Type of variable will determ-
ine the type of plot. For example, when using a scatter ploh bloe explanatory and
response data should be continuous variables.

The equation for the Pearson correlation coefficient is:

ey = YL (X = X)(Yi —Y)
Y (=X (v — V)P
wherex andy are the sample means of the x- and y-values.
The correlation is always between -1 and 1.

7.5.2 Examples

The following R commands can be used to generate a scattdophectors x and y

Example 7.3. plot (x,y)

8 Indices and the apply commands in R

8.1 Giving names to elements

‘ We can name elements of vectors and data frames in R usingdhge’s"command.

8.1.1 Examples

Example 8.1. X<-c (41, 3, 73)
names (X)<-c("One", "Two", "Three")

View the results by simply typing "X"and the output of "X"is/gn as follows:

51



X
One Two Three
41 3 73

With this we can refer to the elements by name as well as latatising...
X[1]

One

X["Three']
Three
73

8.2 Regular matrix indices and naming

A matrix is a table of numbers. Typical matrix indexing: mgt[mat[1:2,] etc

A matrix can have row and column names Indexing with row andimma names;

mat["a","B"]

8.2.1 Detalils

Definition 8.1. A matrix is a (two-dimensional) table of numbers, indexed by row
column numbers.

-

Note 8.1.Note that a matrix can also have row and column names so thah#trix can

be indexed by its names rather than numbers.

8.2.2 Examples

Example 8.2. Consider a matrix with 2 rows and 3 columns. Consider extrgdirst
element (1,2), then all of line 2 and then columns 2-3 in andRisa:

mat<-matrix(1:6,ncol=3)
mat

[,11 [,21 [,3]

[1,] 135
[2,] 246
mat[1,2]
[1] 3

mat[2,]
[1] 2 4 6

mat[,2:3]
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[,11 [,2]
[1,]1 35
[2,]1 46

Next, consider the same matrix, but give names to the rowsaludnns. The rows will
get the names "a"and "b"and the columns will be named "A"atl"'C".
The entire R session could look like this:

mat<-matrix(1:6,ncol=3)
dimnames (mat)<-1list(c("a","b"),c("A","B","C"))
mat

N = >
Do W
o o Q

a
b
mat ["b" s C("B" s "C")]

B C
4 6

8.3 The apply command

The apply command...
apply(mat,2,sum) — applies the sum function within eachircol
apply(mat,1,mean) — computes the mean within each row

8.4 The tapply command

Commonly one has a data vector and another vector of the sargthlgiving categorie
for the measurements. In this case one often wants to cortipgiteean or variance (@

=

median etc) within each category. To do this we use the tagptymand in R.

8.4.1 Examples

Example 8.3. z<-c(5,7,2,9,3,4,8)
i<_C(llmll s Ilfll s llmll s Ilmll s llfll s Ilmll s llfll)

A. Find the sum within each group

tapply(z,i,sum)
fm
18 20

B.Find the sample sizes

tapply(z,i,length)
fm
3 4

C.Store outputs and use names
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n<-tapply(z,i,length)
n

fm

3 4

n[nmu]

m

4

8.5 Logical indexing

A logical vector consists of RUE (1) or FALSE(0) values. These can be used to ing
vectors or matrices.

lex

8.5.1 Examples

Example 84 i<_c(llmll llfll Ilmll llmll Ilfll llmll Ilfll)
z<-¢(5,7,2,9,3,4,8)

i=="p"
[1] TRUE FALSE TRUE TRUE FALSE TRUE FALSE

z[i=="m"]
[1] 529 4

z[c(T,F,T,T,F,T,F)]
[11 529 4

8.6 Lists, indexing lists

‘ A list is a collection of objects. Thus, data frames are lists

8.6.1 Examples

Example 8.5. x<-1ist (y=2,z=c(2,3) ,w=c("a","b","c"))

X[["Z"]]

[11 2 3

names (x)

[1] uyu ot A
X["W"]

$w

[1] uau "b" "C"
x$w

[1] Ilall llbll IICII
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9 Functions of functions and the exponential function

9.1 Exponential growth and decline

Exponential growth is typically expressed as:

y(t) = At

Exponential growth curve

9.1.1 Details

Definition 9.1. Exponential growthis the rate of population increase across time when
a population is devoid of limiting factors (i.e. competitjoresources, etc.) ard
experiences a constant growth rate.

Exponential growth is typically expressed as:
y(t) = A

where

A (sometimes denotd@)=initial population size
k= growth rate

t =number of time intervals

Note 9.1.Note that exponential growth occurs whiep- 0 and exponential decline occurs
whenk < 0.

9.2 The exponential function

An exponential function is a function with the forni(x) = b*

9.2.1 Detalils

For the exponential functiof(x) = b*, x is a positive integer and is a fixed positive real
number. The equation can be rewritten as:

f(x) =b*=b-b-b...b

When the exponential function is written &&x) = €* then, it has a growth rate at tinxe
equivalent to the value @ for the function ai.
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9.3 Properties of the exponential function

Recall that the methods of the basic arithmetic implies that

b — P

for any real numbera andb.

9.4 Functions of functions
9.4.1 Details

Consider two functionsf, andg, each defined for some set of real numbers. Wkesn be
solved in functionf usingY = f(x) wheng(Y) exists for all such resulting. If Y = f(x)
andg(Y) exist then we can computg f (x)) for anyx.

If
f(x) =x% and
g(y) = € then

2

(f(x) = €/t = &

If we call the resulting functiotn;

h(x) = g(f(x))
Thenh is commonly written as
h=gof

9.4.2 Examples

Example 9.1. If
g(x) = 3+ 2x and
f(x) = 5%

Then

o(f(x) =3+2f(x)
g(f(x)) =3+ 10x

f(9(x)) = 5(g(x))?
f(g(x)) = 5(3+ 2x)?
f(g(x)) = 45+ 60x+ 20x2

9.5 Storing and using R code

As R code gets more complex (more lines) it is usually storefiles. Functions are
typically stored in separate files.

9.5.1 Examples
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Example 9.2. Save the following file (test.r):
x=4

y=8

Cat(llx+yuisll , X+y, ||\n||)$

To read the file use:

source("test.r")

and the outcome of the equation is displayed in R

9.6 Storing and calling functions in R

‘ To save a function in a separate file use a command of the fametibn.r".

9.6.1 Examples

Example 9.3. f<-function(x) {
return (exp(sum(x)))

}
can be stored in a file function.r and subsequently read wsagource command.

10 Inverse functions and the logarithm

10.1 Inverse Function

If fisafunction, then the functiogis the inverse function of if

g(f(x)) = x

for all xin which f(x) can be calculated

10.1.1 Details

The inverse of a functiof is denoted byf 1, i.e.

f1(f(x)) =x

10.1.2 Examples

Example 10.1.1f f(x) = x? for x < 0 then the functiow, defined ag)(y) = Vyfory>0,
is not the inverse of sinceg(f(x)) = vx2 =[x = —xfor x < 0.
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10.2 When the inverse exists: The domain question

(x) =x*

Inverses do not always exist. For an inversef @d .
exist, f must be one-to-one, i.e. for eaxhf (x) must
be unique.

: The
function f(x) = x2 does not have an inverse singe
f(x)=1 has two possible solutions -1 and 1.

10.2.1 Examples

Example 10.2. f(x) = x? does not have an inverse sinige) = 1 has two possible soluf-
ons -1 and 1.

Note 10.1.Note that iff f is a function, then the functiogis the inverse function of, if
g(f(x)) = xfor all calculated values ofin f(x).

The inverse function of is denoted byf 2, i.e. f~1(f(x)) = x.

Example 10.3. What is the inverse functiorf,” %, of f if f(x) = 5+ 4x.
The simplest approach is to wriye= f(x) and solve foix:
With
f(x) =5+4x
we write
y=5+4x
which we can now rewrite as
y—5=4x
and this implies
y=5__
=
And there we have it, very simple:
-5
.I:—l f _ y
(100) =5~
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10.3 The base 10 logarithm

Whenx is a positive real number in= 10", y is referred to as the base 10 logarithm
x and is written as:

y = 10g;(X)
or
y = log(X)

10.3.1 Details
If log(x) = aand lody) = b, thenx = 107 andy = 1P, and

x-y=10-10° = 1¢*+P

so that
log(xy) =a+Db
10.3.2 Examples
Example 10.4.
log(100) = 2
log(1000 = 3
Example 10.5. If
log(2) ~ 0.3
then
100 =2

Note 10.2.Note that
210 — 1024~ 1000= 103

therefore
2~ 103/10

Sso
log(2) ~ 0.3
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10.4 The natural logarithm

A logarithm with e as a base is referred to as the
natural logarithm and is denotedlas:

y=In(x)
if
x=¢& =expy)
Note thatin is the inverse oéxp The

curve depicts the fuctiog = In(x) and shows that]
In is the inverse oexp Note that If1) = 0 and
wheny = 0 thene® = 1.

10.5 Properties of logarithm(s)

Logarithms transform multiplicative models into additivedels, i.e.

In(a-b) =Ina+Inb

10.5.1 Details

This implies that any statistical model, which is multiplitve becomes additive on a log
scale, e.qg.

y=a-wP.x°
Iny = (Ina) 4 In(W°) + In(x°)
Next, note that

In%) = In(x-x)
= Inx+Inx
2-Inx

and similarly I(x") = n-Inx for any integer n.
In general Ifx®) = c- Inx for any real number c (for x>0).
Thus the multiplicative model (from above)

y=a-w.-x°
becomes
y=(Ina)+b-Inw+c-Inx

which is a linear model with parameteilsaa), b andc.
In addition, the log-transform is often variance-stalmigz

10.6 The exponential function and the logarithm

The exponential function and the logarithms are inversesoh other

x=¢& & y=Inx
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10.6.1 Details
Note 10.3.Note the properties:

In(x-y) = In(x) +In(y)
and

. = P

10.6.2 Examples

Example 10.6. Solve the equation
10e¥/* 3= 24

for x.
First, get the 3 out of the way.

10eV/¥* =21
Then the 10.

el/X =21

Next, we can take the natural log of 2.1. Sirinas an inverse function oé this wouldj
resultin

1
éX: In(21>
This yields
x=1In(21)-3
which is
~2.23

11 Continuity and limits

11.1 The concept of continuity

A function is continuous if it has no jumps. Thus,
small changes in eacky, the input, correspond to"
small changes in the output(xo).

The
above figure is an example of linear growth. Thor
as Robert Malthus (1766-1834) warned about
dangers of uninhibited population growth.
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11.1.1 Details

A function is said to be discontinuous if it has jumps. Thedhion is continuous if it has
no jumps. Thus, for a continuous function, small changesaigy, the input, correspond
to small changes in the outputxo).

Note 11.1.Note that polynomials are continuous as are logarithmsp@sitive numbers).

11.2 Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete
random variable is discontinuous.

11.2.1 Details

Definition 11.1. If X is a random variable with a discrete probability distribntand the
probability mass function of
p(x) = PX=X]

then thecumulative distribution function , defined by
F(X)=P[X<Xx

is discontinuous, i.e. it jumps at points in which a posifwebability occurs.

Note 11.2.When drawing discontinuous functions it is common practceise a filled
circle at(x, f(x)) to clarify what the function value is at a poixbf discontinuity.

11.2.2 Examples

Example 11.1.1f a coin is tossed 3 independent times axdlenotes the number pf
heads, therX can only take on the values 0, 1, 2 and 3. The probability odiilzo|
exactlyx headsP(X = x), is p(x) = (})p"(1— p)"*. The probabilities are

o | 1/8 | 1/8
1 | 3/8 | 4/8
2 | 3/8 | 7/8
3 11/8 |1
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The cumulative distribution functiorf; (x) = P[X < x| = St<xp(t) has jumps and ik
therefore discontinuous.

Note 11.3.Notice on the above figure how the circles are filled in, the&lsoicles indica-
te where the function value is.

11.3 Notes on discontinuous function

uuuuuuuuuuuuuuuuuuu

A function is discontinuous for values or ranges of

the variable that do not vary continuously as the ﬁ
variable increases. In other words, breaks or jumps \

f(x) =1, wherex # 0

11.3.1 Details

A function can be discontinuous in a number of different wayst commonly, it may
jump at certain points or increase without bound in certéacgs.

Consider the functiorf, defined byf(x) = 1/x whenx # 0. Naturally, ¥x is not defined
for x=0. This function increases towardse asx goes to zero from the right but decreases
to —oo asx goes to zero from the left. Since the function does not haadme limit from
the right and the left, it can not be made continuous-at0 even if one tries to defing(0)

as some number.

11.4 Continuity of polynomials

uuuuuuuuuuuuuuuuuu

All polynomials, p(x) = ag+ax+apx® +... +anx", °
are continuous. 3

11.4.1 Details

It is easy to show that simple polynomials suchpés) = x, p(x) = a+bx, p(x) = ax® +
bx+ c are continuous functions.
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It is generally true that a polynomial of the form
p(X) = ag+arx+ax® + ... +anX"

is a continuous function.

11.5 Simple Limits

A "limit"is used to describe the value that a function
or sequence "approaches"as the input or index app-
roaches some value. Limits are used to define cont
inuity, derivatives and integrals.

f(x) =x*, forx>0

11.5.1 Details

the input or index approaches some value.

Definition 11.2. A limit describes the value that a function or sequence approashes a

Limits are essential to calculus (and mathematical aralysigeneral) and are used to

define continuity, derivatives and integrals.

Consider a function and a poigrg. If f(x) gets steadily closer to some numlseasx gets

closer to a numbexg, thenc is called the limit off (x) asx goes toxg and is written as:
c= Xll_r>r)1(0 f(x)

If c= f(xp) thenf is continuousat xo.

11.5.2 Examples

Example 11.2. A simple example of limits:

Evaluate the limit off (x) = =16 whenx — 4, or
jm X~ 16
x—4 X—4

Notice that in principle we can not simply stick in the value 4 since we would the
get 0/0 which is not defined. However we can look at the numeratottigntd factor it.
This gives us:

X —16 _ (x—4)(x+4)

X—4 X—4
and the result has the obvious limit of-4 = 8 asx — 4.

=X+4

=
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Example 11.3. Consider the function

wherex is a positive real number. Asincreasesy(X) decreases, approaching 0 but néver
getting there sincé = 0 has no solution. One can therefore say, “The limig©{), asx
approaches infinity, is 0,” and write

lim g(x) = 0.

X— 00

11.6 More on limits

Limits impose a certain range of values that may be
applied to the function. :

The

function f (X) = 4.

11.6.1 Examples

Example 11.4. The Beverton-Holt stock recruitment curve is given by:

. aS
1+

wherea,K > 0 are constants and S = biomass and R= recruitment.

The behavior of this curve as S increaSes « is

. S
lim 3 = akK.
S—w ] 4 e

This is seen by rewriting the formula as follows:

) ) a
lim s = lim 71 = oK.
S—oo ]_—|-K S—>oo§-|-K

Example 11.5. A popular model for proportions is:

1

) = 1+eX
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As x increasese * decreases which implies that the term & * decreases and herke
Tlefx increases, from which it follows thdtis an increasing function.

Notice thatf (0) = 3 and further,

lim f(x)=1.

X— 00

This is seen from considering the components:
Sincee X = é and the exponential function goes to infinity»as> «, e * goes to 0 and
hencef (x) goes to 1.

Through a similar analysis one finds that

lim f(x)=0,

X——00

since, ax — oo, first —x — o and second * — .

Example 11.6. Evaluate the limit of

as
X—0

im VX+4-2
x—0 X

Since the square root is present we cannot just direct sutestine O ax. This will give
usg, which is an indeterminate form. We must perform some akyéibst. The way tq
get rid of the radical is to multiply the numerator by the caygte.

VX+4—-2 X+442
X VX+4+2

(VX+4)?+2(vVx+4) - 2(Vx+4) -4
X(VX+4+2)

The numerator reduces xpand thexs will cancel out leaving us with

This gives us

1
VX+44-2

At this point we can direct substitute O ferwhich will give us

1
VOF+4+2

Therefore,
im VX+4-2 B 1
Xx—0 X 4
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11.7 One-sided limits

f(x) may tend towards different numbers depending
on whethex — Xp:

from the right & — Xo.1)

or from the left & — xo_).

11.7.1 Details

Sometimes a function is such thitx) tends to different numbers depending on whether
X — Xp from the right & — Xo.) or from the left ¢ — Xp_).

If
lim f(x)= f(xo)

X—=Xo+

then we say that is continuous from the right ab.

12 Sequences and series

12.1 Sequences

A sequencss a string of indexed numbess, ay, as, .... We denote this sequence with
(an)n>1.

12.1.1 Details

In a sequence the same number can appear several timesedifplaces.

12.1.2 Examples

Example 12.1. ()51 is the sequence $,3.7.....

Example 12.2. (n)n>1 is the sequence 2,3,4,5, . . ..

Example 12.3. (2"n)>1 is the sequence, 8,24,64, . . ..
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12.2 Convergent sequences

A sequence, is said toconvergeto the number b if for everg > 0 we can find an
N € N such thata, —b| < € for all n > N. We denote this with lim,. a, = b ora, — b,
asn — o,

12.2.1 Details

A sequence, is said toconvergeto the number b if for everg > 0 we can find alN € N
such thata, —b| < € for all n > N. We denote this with lif,. a, = b ora, — b, asn — .
If x is @ number then,

(14+2)"— e asn— o

12.2.2 Examples

Example 12.4.The sequence%)nzoo converges to 0 as — o

Example 12.5.If x is a number then,
(1+2)"—e‘asn— oo

12.3 Infinite sums (series)

We are interested in, whether infinite sums of sequencesedefined.

12.3.1 Details

Consider a sequence of numbéie,) .
Now define another sequen(®)n—«», where

n
S1=) &
k=1
If (Sh)n—e IS CONVergent t& = limy_,« Sy, then we write

S=) an

n=1

12.3.2 Examples

Example 12.6. If

then

68



Note also that
X = XOC x4 X)) =X XM

We have
Si =14+ XEXe 4. XD
XS = X+ X2 4 o XXM
S"IVXS"I — 1_Xn+l
i.e.
sh(1—x) =1—x"1
and we have
1_Xn+1
M=

if x# 1. If 0 < x < 1 thenx™? — 0 asn — o and we obtairs, — 115 05 X" = .

12.4 The exponential function and the Poisson distribution

The exponential function can be written as a series (infsuta):

00

eX:ZH~

n=0
The Poisson distribution is defined by the probabilities

X

p(X) :e"‘))\(—I forx=0,1, 2, ...

12.4.1 Details

The exponential function can be written as a series (infsuta):
(Y] Xn
n=0

Knowing this we can see why the Poisson probabilities

add to one:

Zp(x):);)exg: AN —e e =1

X=0

12.5 Relation to expected values

The expected value for the Poisson is given by

00 00 X
Sxp = Yoxerh
x=0 x=0 X

= A
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12.5.1 Details

The expected value for the Poisson is given by

00 X
Yoxpx) = Y xe? N
x=0 X

13 Slopes of lines and curves

13.1 The slope of a line

Linear functions produce straight-line graphs. In
general, a straight line follows the following equati:
on:

y=a+bx
wherea andb are fixed numbers.

The line on the graph is the set of points: /
{

{(xy):xyeR,y=a+bx}.

13.1.1 Details

The slope of a straight line represents the change iry tt@ordinate corresponding to a
unit change in the& coordinate.
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13.2 Segment slopes

Let's assume we have a more general function
y=f(x).

To find the slope of a line segment, considexk-2 .
coordinatesxp andxz, and look at the slope between

(X0, f(x0)) and(x1, f(X1)). \\

—

13.2.1 Detalils

Consider two points(xp,Yo) and(xy,y1). The slope of the straight line that goes through

these points is
Y1—Yo
X1 —Xo
Thus, the slope of a line segment passing throught the pEt$(xo)) and (xq, f(x1)),
for some functionf, is
fx1) — f(x0)

X1 —Xo
If we let x; = Xg + h then the slope of the segment is

f(xo+h) — f(xo)
: .

13.3 The slope ofy = x?

Consider the task of computing the slope of the
functiony = x? at a given point.

13.3.1 Examples

Consider the functiogy = f(x) = x2.

In order to find the slope at a given poing), we look at

f(xo+h) — f(x0)

for small values oh.
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For this particular functionf (x) = x2, and hence
f(xo+h) = (xo+h)? = x% + 2hxy + h?.
The slope of a line segment is therefore given by

fo+h) —f(xo)  2hx+h?
h T h

As we makeh steadily smaller, the segment slop&g 2 h, tends towards>®. It follows
that the slopey’, of the curveat a general point xs given byy' = 2x.

=2Xp+h.

13.4 The tangent to a curve

A tangentto a curve is a line that intersects the curve

at exactly one point. The slope of a tangent for the

functiony = f(x) at the point(xo, f (Xo)) is w
h—0 h

13.4.1 Details

To find the slope of the tangent to a curve at a point, we lookestope of a line segment
between the points, f(xg)) and(xo+ h, f(xo+ h)), which is

f(xo+h) — f(xo)
h

and then we takh to be closer and closer to 0. Thus the slope is

h—0 h

when this limit exists.

13.4.2 Examples

Example 13.1. We wish to find tangent line for the functidi{x) = x at the point(1, 1).
First we need to find the slope of this tangent, it is given as
(14+h)?—1? 2h+1?

HTO h - HTO h L@o(ZJF h)=2.

Then, since we know the tangent goes through the gairt) the line isy = 2x— 1.
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13.5 The slope of a general curve

13.5.1 Details

Imagine a nonlinear function whose graph is a curve destiiyehe equation,
y = f(x).

Here we want to find the slope of a line tangent to the curve peaiic point(Xo).
The slope of the line segment is given by the equaﬁ%ﬁr‘gfﬂ.

Reducingh towards zero, gives the slope of this curve if it exists.

14 Derivatives

14.1 The derivative as a limit

The derivative of the functior at the pointx is defined as

im f(x+h)— f(x)
h—0 h

if this limit exists.

14.1.1 Details

Definition 14.1. The derivative of the function f at the point x is defined as

im £ — £(x)
h—0 h

if this limit exists.

When we writey = f(x), we commonly use the notaticgéi or f/(x) for this limit.
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14.2 The derivative of f (x) = a+ bx

If f(x) =a+bxthenf(x+h)=a-+b(x+h)=a-+
bx+ bhand thus

jim XN =T, B
h—0 h h—0 h
14.2.1 Details

If f(x)=a+bxthenf(x+h)=a+b(x+h)=a+bx+bhand thus

jim 1 XN ) bh
h—0 h h—0 h

Thusf’(x) = b.

14.3 The derivative of f (x) = x"

If f(x) =x", thenf’(x) = nx*~1.

14.3.1 Details

Let f(x) = X", wheren is a positive integer. To calculafé we use the binomial theorem in
the third step:

f(x+h)—f(x) (x+h)"=x"

Thus, we obtairf’(x) = nx*~L,

14.4 The derivative of In and exp

If

f(x) =€
then

f'(x) = &
If

g(x) =In(x)

then .

g(x) = X




14.4.1 Details

The derivatives of the exponential function is the expoméfiunction itself i.e.

if

f(x)=¢€
then
f'(x) = &
The derivatives of the natural logarithm (), is )—1( i.e. if
9(x) = In(x)
then 1
g(x) = X

14.5 The derivative of a sum and linear combination

If f andg are functions then the derivative 6+ g is given byf’ +¢'.

14.5.1 Details

Similarly, the derivative of a linear combination is thedar combination of the derivatives.
If f andg are functions an#(x) = af(x) + bg(x) thenk'(x) = af’(x) + bg (x).

14.5.2 Examples

Example 14.1.1f f(x) = 2+ 3xandg(x) +x°
then we know that
f/(x) = 3, g(x) = 3x% and if we write

h(x) = f(X) +9(x) = 2+ 3x+x°

then
h (x) = 3+ 3%

14.6 The derivative of a polynomial

lynomial.

The derivative of a polynomial is the sum of the derivativéshe terms of the po

14.6.1 Details

If

p(X) = ag+ a1X+ ... + apx"
then
P (X) = a1 + 2a,x+ 3agx? 4 4agx® + ... + nax("-

14.6.2 Examples
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Example 14.2.If

p(x) = 2x* +x°

then

p(x) =29 L ¢ _ 5. 43 32 — 834 3x2

14.7 The derivative of a product

If

then

14.7.1 Details

Consider two functionsf andg and their producth:

14.7.2 Examples

Example 14.3. Suppose the functioh is given by
f(X) = x& +x2Inx.
Then the derivative can be computed step by step as

dx de¢ dx?
f(x) = — — 2
(X) dXe?‘+de+ ix nXx-+ X

= & (1+x)+2xInx+x

1
— 14X €+2X-Inx+x2.

dinx
dx

14.8 Derivatives of composite functions

If f andg are functions anti = f o g so that

h(x) = f(g(x)) then

14.8.1 Examples
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Example 14.4. For fixedx consider:

f(p) = In(p*(1-—p)")
= Inp*+In(1—p)"*
= XInp+(n—x)In(1—p)

Example 14.5. f(b) = (y— bx)? (y, x fixed)

f'(b) = 2(y—bx(-x)
= —2X(y—bx)
(—2xy) +(2)b

15 Applications of differentiation

15.1 Tracking the sign of the derivative

If f is a function, then the sign of its derivativ€/, indicates whethef is increasing
(f’ > 0), decreasingf( < 0), or zero.f’ can be zero at points whefehas a maximum
minimum, or a saddle point.

15.1.1 Details

If f is a function, then the sign of its derivativé), indicates whethef is increasing
(f’ > 0), decreasingf( < 0), or zero. f’ can be zero at points wheifehas a maximum,
minimum, or a saddle point.

0 andf’(x) < 0 for x > xg thenf has a maximum atg

If /(x) > 0 forx < Xo, )= (X)

) =0 andf’(x) > 0 for x > Xo then f has a minimum atg
)= (%)

)= (

(¥) F(
If f/(x) <O forx< xo, f'(
(x) f/( 0 andf’(x) > 0 for x < xo then f has a saddle point &
(X) ( 0 andf’(x) < 0 for x < xp thenf has a saddle point &g

If f/(x) > 0 forx < Xo,

Xo
Xo
Xo
If f/(x) < 0forx< xg, f'(Xg
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15.1.2 Examples

Example 15.1.If f is a function such that its derivative is given by
f'(%) = (x—1)(x—2)(x— 3)(x— 4),

then applying the above criteria for maxima and minima, weetkatf has maxima at §
and 3 andf has minima at 2 and 4.

15.2 Describing extrema usingf”

%o With f/(xg) = 0 corresponds to a maximumfif'(xg) < 0O
Xo with f/(xg) = 0 corresponds to a minimum ff’(xg) > 0

15.2.1 Detalils

If f'(x0) = 0 corresponds to a maximum, then the derivative is decrgasid the second
derivative can not be positive, (i.€.”(xp) < 0). In particular, if the second derivative is
strictly negative, {”(xo) < 0), then we are assured that the point is indeed a maximum, and
not a saddle point.

If f/(x0) =0 corresponds to a minimum, then the derivative is incrgpaimd the second
derivative can not be negative, (i.€/(xp) > 0).

If the second derivative is zero, then the point may be a sapdint, as happens with
f(x) =x3 atx=0.

15.3 The likelihood function

If pis the probability mass function (p.m.f.):

~—+

then the joint probability of obtaining a sequence of outesnifrom independen
sampling is

P(x1) - P(X2) - P(X3) - .. P(Xn)
Suppose each probability includes some parantgtiis is written,

Pe(X1),--- Pa(Xn)

If the experiment givesy,Xo..., X, we can write the probability as a function of the
parameters:

Lx(0) = pg(X1),--- Pe(Xn)-
This is thelikelihood function.
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15.3.1 Details

Definition 15.1. Recall that theorobability mass function (p.m.f) is a function giving
the probability of outcomes of an experiment.

We typically denote the p.m.f. by so p(x) gives the probability of a given outcome,of
an experiment. The p.m.f. commonly depends on some parariéeften write,
p(x) = P[X =X].

If we take a sample of independent measurements, fspthen the joint probability of a
given set of numbers is,

P(x1) - P(X2) - P(X3) - .. P(Xn)
Suppose each probability includes the same pararfieteen this is typically written,

Po(X1); - - - Pe(Xn)

Now consider the set of outcomeg x,. .., x, from the experiment. We can now take the
probability of this outcome as a function of the parameters.

Definition 15.2. Ly(8) = pp(X1),- - - Po(Xn)
This is thelikelihood function and we often seek to maximize it to estimate the unknpwn
parameters.

15.3.2 Examples

Example 15.2. Suppose we toss a biased caimdependent times and obtain x heLs,
we know the probability of obtaining x heads is,

n\ x _ A\N—X
<Qpﬂ P)
The parameter of interest sand the likelihood function is,

n
X

um:()wu—m”x

If pis unknown we sometimes wish to maximize this function wébkpect tgo in order,
to estimate thérue probability p.

15.4 Plotting the likelihood

‘ missing slide — want to give a numeric example and plot
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15.4.1 Examples

missing example — want to give a numeric example andlplot

15.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.f.pg, then the valu® which gives the maximum
of L:

L(8) = max(Lo)

is the maximum likelihood estimator (MLE) &f

15.5.1 Details

Definition 15.3. If L is a likelihood function for a p.m.fpg, then the valué which gives
the maximum of L: A
L(B) = max(Le)

is themaximum likelihood estimator of 6

15.5.2 Examples

Example 15.3.1f x is the number of heads from independent tosses of a coin, Le
likelihood function is:

n
X

Lx(p) = ( )px(l— P

Maximizing this is equivalent to maximizing the logarithrhtbe likelihood, since logat
rithmic functions are increasing. The log-likelihood canvritten as:

In(L(p)) =In (2) +xIn(p) + (n—=x)In(1— p).

To find possible maxima , we need to differentiate this formrahd set the derivative o
zero

oz$:o+%+%:(—1)
TN (O Lt
0=p(1 p>p p(1 p)l_p

0= (1-p)x—p(h—x)

0= X— px— pn+ pXx=Xx—pn
So,

O=x—pn
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is the extreme and so we can write

o
I
S X

for the MLE

15.6 Least squares estimation

Least squares: Estimate the paramebdrg minimizing
n

(vi —i(8))?

[y

15.6.1 Details

Suppose we have a model linking data to parameters. In demer@e predicting; asg;

(6).

In this case it makes sense to estimate param@teysminimizing

" (- 0i(8))2
=1

15.6.2 Examples

Example 15.4.0One may predict numbers;, as a meany, plus error. Consider t}‘}e
simple modek; = pu+ €;, wherep is an unknown parameter (constant) an the erro
in measurement when obtaining tfih observationsy, i =1,...,n.

A natural method to estimate the parameter is to minimizesthmared deviations

min

T

n
1=

(x—?.
1

It is not hard to see that thethat minimizes this is the mean:

L=X

Example 15.5. One also commonly predicts daya, - - - ,y, with values on a straigllt
line, i.e. witha + Bx;, wherexa, ..., X, are fixed numbers.

This leads to theegression problem of finding parameter valuesﬁf(amdﬁ which gives
the best fitting straight line in relation to least squares:

min3_ (v - (o -+ Bx)’
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Example 15.6. As a general exercise in finding the extreme of a functiors lebk at
the functionf (8) = X" (%0 — 3)2 wherex; are some constants. We wish to find th
that minimizes this sum. We simply differenti&¢o obtainf’(6) = > ;2(x0—3)x1 =
25N x28 25", 3x. Thus,

n n
f(8) =203 "% —23"3x =0
i=1 i=1

0= 2t 3% .
Zinzlxiz

| &

16 Integrals and probability density functions

16.1 Area under a curve

The area under a curve between x=a and x=b (for|a

positive function) is called the integral of the functi- B
on.
Exampie 1,2and 3
16.1.1 Details

Definition 16.1. The area under a curve between x=a and x=b (for a positiveitum)
is called thantegral of the function and is denotedfff f(x)dxwhen it exists.

16.2 The antiderivative

Given a functionf, if there is another functioR such thaf’ = f, we say thaf is the
antiderivativeof f. For a functionf the antiderivative is denoted Qyfdx.

Note that ifF is one antiderivative of andC is a constant, the® = F +C is also an
?ntiderivative. It is therefore customary to always in@utle constant, e.g/ xdx=

3x%+C.

16.2.1 Examples

Example 16.1. The antiderivative ok to a power raises the powefx"dx = -L-x"1 +
C.
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Example 16.2. [ edx=€*+C.

Example 16.3. [ fdx= In(x) +C.

Example 16.4. f2xe?‘2dx: e’ +C.

16.3 The fundamental theorem of calculus
If F'(x) = f(x) for x € [a,b], then 2 f (x)dx= F (b) — F(a)

16.3.1 Detail

It is not too hard to see that the area under the graph of aye&inction f on the interval
[a,b] must be equal to the difference of the values of its anti@ikie ata andb. This also
holds for functions which take on negative values and is &lyrstated below.

Definition 16.2. Fundamental theorem of calculusif F is the antiderivative of, i.e.
F’ = f for x € [a,b], then P f (x)dx= F (b) — F(a).
This difference is often written a& fdx or [F (x)]2.

16.3.2 Examples

Example 16.5. The area under the graphxdfbetween 0 and 3 i x"dx= |- X3 =

n+1
1 gn+l_ 1 gl 3l
n+i n+1 — n+l

Example 16.6. The area under the graph ef between 3 and 4 iy €‘dx = (€3
et

Example 16.7. The area under the graph éfbetween 1 and is [ 2dx = [In(x)]?
In(a) —In(1) =In(a).
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16.4 Density functions

The probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.).

16.4.1 Details

Definition 16.3. If X is a random variable such that
b
Pla<X <b)= / £ (x)dx,
a
for some functionf which satisfies (x) > 0 for all x and
/ f(x)dx=1

thenf is said to be grobability density function (p.d.f.) for X.

Definition 16.4. The function

F(x) = / £(t)dt

—00

is thecumulative distribution function (c.d.f.).

16.4.2 Examples

Example 16.8. Consider a random variab¥from the uniform distribution, denoted lly
X ~U(0,1). This distribution has density

1 ifo<x<1
f<X>:{O ew.

The cumulative distribution function is given by

X 0 ifx<O
mxgﬂz/fmmz x if0<x<1
A 1
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Example 16.9. SupposeX ~ P(A), where X may denote the number of events per

now the waiting time, T, between events, or simply until thetfevent. Consider t
eventT >t for some number t>0. IK ~ p(A) denotes the number of events per
time, then lefX; denote the number of events during the time period for O gjinduThen
it is natural to assume

X ~ P(At) and it follows thafl >t if and only if X; = 0 and we obtaif®[T >t] = P[X =
0] = e M. It follows that the c.d.f. of Tigr(t) =P[T <t]=1—-P[T >t]=1—e Mfor
t> 0.

The p.d.f. of T is therefordr (t) = Ff(t) = $Fr(t) = $(1-e M =0—eMx (-A) =
AeMfort > 0andfr(t) =0 fort =0.

The resulting density
f(t)=

describes the exponential distribution.
This distribution has the expected value

Ae M for t>0
0 for t<O

(o]

E[T] = /tf(t)dt:/t)\e—“dt.
0

—00

the stuff below is all messed up...
We setu = At anddu = Adt to obtain

17 1 7
/ue‘”du: —/ue‘”du: - :/1-e‘“du
)\o A 0

time. The p.m.f. of Xis described ly(x) = P[X =X] = e*)‘i‘(—!X forx=0,1,2,.... Conside’:Ie
nit

Linit

16.5 Probabilities in R: The normal distribution

R has functions to compute values of probability densitycfioms (p.d.f.) and cumulati
ve distribution functions (c.m.d.) for most common distitions.

16.5.1 Details

The p.d.f. for the normal distribution is

)=——e 2
p(t) 58

The c.d.f. for the normal distribution is
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16.5.2 Examples

Example 16.10.dnorm() gives the value of the normal p.d.f.

Example 16.11. pnorm() gives the value of the normal c.d.f.

16.6 Some rules of integration

16.6.1 Examples

Example 16.12.Using integration by parts we obtain

— e — [5e tax= S - [ Exdx= Seinx) - S
/In(x)xdx_ X In(x) X de_ X In(x) /ZXdX_ X In(x) 25

Example 16.13.Considerf12 2xe®dx By settingx = g(t) = v/t we obtain

2 5 B 4 1 B 4 4
/12xe?‘ olx_/1 2\/fe‘2—\/fdt_/l ddt—=e*—e

16.6.2 Handout

The two most common "tricks"applied in integration are aggnation by parts and b) in-
tegration by substitution.

a) Integration by parts

(fg)'=f'g+fd
by integrating both sides of the equation we obtain:

fg:/f’gdx+/fg’dx<:>/fg’dx: fg—/f’gdx
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b) Integration by substitution

Consider the definite integrgﬁf f(x)dx and letg be a one-to-one differential function
the interval(c,d) to (a,b). Then

b d
| f0gdx= [ (gly)gv)dy

c

17 Principles of programming

17.1 Modularity

for

(named modules) that can be composed into a larger applicati

Any programming project should be split into logical modpleces of code which ar
combined into a complete program.

Modularity involves designing a system that is divided iat@et of functional units

D

17.1.1 Details

Typically input, initialization, analysis, and output corands are grouped into separate

parts.

17.1.2 Examples

Example 17.1. Input

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/
set115.dat", header=T)
cols<- c("le", "osl")

Analysis

Mn<-mean(dat[, cols[1]])
Output

print (Mn)

17.2 Modularity and functions

‘ In many cases groups of commands can be collected togetbex fanction.

17.2.1 Details

Typically a project has several such functions.

17.2.2 Examples
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Example 17.2. Suppose you want to plot the weight vs. length for severasids in

http://hi.is/“gunnar/kennsla/alsm/data
A function can then be set up with the file number as an argument

plotwtle<-function (fnum){

fname<-paste (
"http://hi.is/“gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")
cat ("The URL B", fname,"\n")

dat<-read.table(fname,header=T)
ttl<-paste("Data, from file number", fnum)
plot(dat$le,dat$osl,main=tt1)

+

Now call this with
plotwtle (105)

17.3 Modularity and files

‘ It is advisable to split larger projects into several mamddefiles.

17.3.1 Details

Once a project reaches more than five lines of code, it shaailstdred in one or more
separate files. In order to combine these files a single “sdwammand file can be crea-
ted.

Typically function definitions are stored in separate fisgsspne may have several separate
files like:

"Input.r"
"function.r"
"analysis.r"
output.r"
While developing the analysis, the data would only be reaskavith

source(“input.r”)

The goal of this practice is to end up with a set of files whiagh@mpletely self-contained,
SO one can start with an empty R session and give only the cocsiike:

source (“input.r”)
source (“functions.r”)
source (“analysis.r’)

Furthermore, this ensures repeatability.
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17.3.2 Examples

Example 17.3. For a given project “input”, “functions” “analysis” and “tput” files carl
be created as below.
input.r

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/
set115.dat", header=T)

functions.r

plotwtle<-function (fnum) {
fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",
fnum,".dat",sep="")
cat ("The URL,is",fname,"\n")
dat<-read.table(fname,header=T)
ttl<-paste("My_data set_was",fnum)
plot(dat$le,dat$osl,main=ttl,xlab="Length(cm)",ylab="Live weight,,(
g)'"
+

output.r

source("functions.r")

for(i in 101:150){
fnam<-paste("plot",i,".pdf",sep="")
pdf (fnam)
plotwtle (i)
dev.off ()

}

These files can be executed with source commands as below:
source (“input.r’)
source (“functions.r”)

source (“output.r”)

17.4 Structuring an R project
17.4.1 Details

We already covered how to split code into different funcsi@md linking them together
with the help of one executable file that is "sourcing"theso$h However, when you und-
ertake a larger project, there will be a lot of different daal files and it is very advisable

to have a consistent structure throughout the project.

A common project layout is to allocate all project files intéo&er, something along the

lines of;

/project
/data
/src
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/doc
/figs (or /out)

Such a structure is quite normal in programming languagels as C, Matlab, and R.
Purpose of the different folders:

/data: Contains all important data to the project, which wiluuse. This folder should be
read-only! No function is allowed to write anything intosHolder.

Isrc: (abbreviation for "source(-code)") Here you will staall the functions that you
programmed. You can decide to store the executable funbioa as well or, alternati-
vely, have that one in the root project folder.

/doc: Contains further documentation material about yawjegt. This could be, for
example, readme files for other people who use your functionghe paper you wrote
about the project, or the latex files while you're writing.

[figs or /out: Here your functions are allowed to write and perduce the different results,
like graphs, figures or anything else.

Finally, a large programming project should at some stagspb&into packages and stored
on dedicated servers such as github or CRAN.

17.4.2 Examples

Example 17.4. Consider first the issue of maintaining the code itself. tasmmon forII
R beginners to only work interactively within the commaimklinterface. However,
is essential that the code be kept in one or more files.

For large projects these will be several different files heatith its own purpose. To ruh
a complete analysis one would typically set up one file to tutha tasks by reading ip
data through analyses to outputs.

For example, a file named "run.r"could contain the sequehceramands:

source("setup.r")
source("analysis.r")

source("plot.r")

17.5 Loops, for

‘ If a piece of code is to be run repeatedly, the for-loop is rallyrused.

17.5.1 Detalils

If a piece of code is to be run repeatedly, the for-loop is rallyrused. The R code form
is:
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for(index in sequence){
commands

}

17.5.2 Examples

Example 17.5. To add numbers we can use

tot <- 100

for(i in 1:100){
tot <- tot + i

}

cat ("the,sum is.", tot, "\n")

Example 17.6. Define the plot function

plotwtle <- AS BEFORE
To plot several of these we can use a sequence:

plotwtle (101)
plotwtle (102)

oraloop

for (i in 101:150){
fname<- paste("plot", i, ".pdf", sep="")
pdf (fname)
plotwtle (i)
dev.off ()
}

17.6 The if and ifelse commands

The "if'statement is used to conditionally execute stata&se
The "ifelse"statement conditionally replaces elements stfucture.

17.6.1 Examples

Example 17.7. If we want to compute* for x-values in the range 0 through 5, we ¢
use
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xlist<-seq(0,5,0.01)
y<-NULL
for(x in xlist){
if (x==0){
y<-c(y,1)
Yelsed{
y<-c(y,x**x)
}
+

Example 17.8.x<-seq(0,5,0.01)
y<-ifelse(x==0,1,x"x)

Example 17.9.dat<-read.table ("file")
dat<-ifelse (dat==0,0.01,dat)

Example 17.10.x<-ifelse (is.na(x),0,x)

17.7 Indenting

Code should be properly indented!

17.7.1 Details

fFunctions, for-loops, and if-statements should alwaysdented.

17.8 Comments

All code should contain informative comments. Commentssaparated out from cod
using the pound symbol (#).

17.8.1 Examples
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Example 17.11. #####HHHHHHH
HAAHHSETUP DATA####
HIHHHHBRHHH AR R

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length
y<-log(dat$wt) #log-transformation of weight

HAHHHBHIHH B AR
#HH#HTHE ANALY SISH##H#
W T T R

18 The Central Limit Theorem and related topics

18.1 The Central Limit Theorem

If measurements are obtained independently and
come from a process with finite variance, then the
distribution of their mean tends towards a Gaussian
(normal) distribution as the sample size increases.:

The

standard normal density

18.1.1 Details

Theorem 18.1 TheCentral Limit Theorem states that iK1, Xo, ... are independent arjd
identically distributed random variables with meamnd (finite) variance?, then th
distribution ofX, := 14X tends towards a normal distribution.

It follows that for a large enough sample sizghe distribution random variabh, can be

approximated by(, a?/n).
The standard normal distribution is given by the p.d.f.

02) = et

forze R.

The standard normal distribution has an expected valuerof ze
M= /zq)(z)dz: 0
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and a variance of

o? = [(z-W*(2)dz=1
If a random variabl&Z has the standard normal (or Gaussian) distribution, wee\drit-
n(0,1).
If we define a new random variablé, by writingY = 6Z 4+, thenY has an expected value
of Y, a variance ob? and a density (p.d.f.) given by the formula:

1 —(y-w?

This is general normal (or Gaussian) density, with mgand variance?.

The Central Limit Theorem states that if you take the mearweéal independent random
variables, the distribution of that mean will look more andrelike a Gaussian distribution
(if the variance of the original random variables is finite).

More precisely, the cumulative distribution function of

Xq —
a/y/n

converges tep, then(0,1) cumulative distribution function.

18.1.2 Examples

Example 18.1. If we collect measurements on waiting times, these areaMpiassumetI
to come from an exponential distribution with density
f(t)=Ae™ fort>0

The Central Limit Theorem states that the mean of severél s@dting times will tend
to have a normal distribution.

Example 18.2. We are often interested in computing

X~ lo

S

n
which comes from a t-distribution (see below), if theare independent outcomes frgm
a normal distribution.

However, ifnis large ands? is finite thenw values will look as though they came fron§ a
normal distribution. This is in part a consequence of thet@éhimit Theorem, but algll
of the fact thas will become close t@ asn increases.

W =

18.2 Properties of the binomial and Poisson distributions

The binomial distribution is really a sum of 0 and 1 valuesufas of failures = 0 and
successes =1). So, a simple, single binomial outcome wilespond to coming from
normal distribution if the count is large enough.

192
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18.2.1 Details

Consider the binomial probabilities:

w00 = ()1 p

for x=0,1,2,3,---,n wheren is a hon-negative integer. Suppoges a small positive
number, specifically consider a sequence of decregswajues, specified witp, = % and
consider the behavior of the probabilityms+ . We obtain:

n\ nx n! M M
<X>pn(l_pn) = 7X!(n—x!)(ﬁ) <1—ﬁ) (5)
Con(n=1)(n—2)--(n—x+1) 2 A"
- X! (1—AY<1_5) ©
nn—(n—2)---(n—x+1) N A"
_ 2 T (--3) @

(n—=1)(n=2)---(n—x+1)
nX

Note 18.1.Notice that” — 1 asn — . Also notice that1— %)X —1

asn — o, Also

and it follows that

—A\X
[N\ nx €N
lim <X> pn(l_ pn) - X! y X = 07 17 27 ,N

n—o0

and hence the binomial probabilities may be approximatéil tive corresponding Poisson.

18.2.2 Examples

Example 18.3. The mean of a binomial (n,p) variable is= n- p and the variance Is
o? =np(1—p).

The R commandibinon(g,n, p) calculates the probability of successes im trials
assuming that the probability of a succesgis each trial (binomial distribution), and ti§e
R commandpbinoniqg, n, p) calculates the probability of obtainirggor fewer successgs
in n trials.
The normal approximation of this distribution can be catedl with)
pnorm g, mu,sigma which becomespnorm(g,n * p,sqrt(n* p(1 — p)). Three nu;
merical examples (note that pbinom and pnorm give similarasfor large n):

pbinom(3,10,0.2)

[1] 0.8791261

pnorm(3,10%0.2,sqrt (10*%0.2%(1-0.2)))
[1] 0.7854023
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pbinom(3,20,0.2)

[1] 0.4114489

pnorm(3,20%0.2,sqrt (20%0.2%(1-0.2)))
[1] 0.2880751

pbinom(30,200,0.2)

[1] 0.04302156

pnorm(30,200%0.2,sqrt (200%0.2*%(1-0.2)))
[1] 0.03854994

Example 18.4. We are often interested in computing= 5’7—\/‘% which has a t-distributio

if the x; are independent outcomes from a normal distributionn i large ando? is
finite, this will look as if it comes from a normal distributio

—4

The numerical examples below demonstrate how the t-digtob approaches the normjal
distribution.

qnorm(0.7)

[1] 0.5244005

#Thts ts the wvalue which gives the cumulative probadbility of p=0.7
for a n~(0,1)

qt(0.7,2)

[1] 0.6172134

#The value, which gives the cumulative probabilety of p=0.7 with n=2
for the t-distribution.

qt(0.7,5)

[1] 0.5594296

qt(0.7,10)

[1] 0.541528

qt(0.7,20)

[1] 0.5328628

qt(0.7,100)
[1] 0.5260763
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18.3 Monte Carlo simulation

If we know an underlying process we can simulate
data from the process and evaluate the dlStI’IbUtI@I’l
of any quantity based on such data. 2

A
simulated set ot-values based on data from g
exponential distribution.

18.3.1 Examples

Example 18.5. Suppose our measurements come from an exponential dtinritmndl
we want to compute

_X—H
NG

but we want to know the distribution of those whers the true mean.

For instancen = 5 andp = 1, we can simulate (repeatedby),...,xs and compute @
t-value for each. The following R commands can be used far thi

library (MASS)

n<-5

mu<-1

lambda<-1

tvec<-NULL

for(sim in 1:10000){
x<-rexp(n,lambda)
xbar<-mean (x)
s<-sd (x)
t<-(xbar-mu)/(s/sqrt(n))
tvec<-c(tvec,t)

#then do. ..
truehist (tvec) #truehist gives a better histogram

sort (tvec) [9750]
sort (tvec) [250]
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19 Miscellanea

19.1 Simple probabilities in R

R has functions to compute probabilities based on most camdistributions.

If X is a random variable with a known distribution, then R candglly compute values
of the cumulative distribution function or:

F(x) =P[X <X

19.1.1 Examples

Example 19.1.If X ~ b(n, p) has binomial distribution, i.e.

PX=x) = (2) pP(1—p)" %,

then cumulative probabilities can be computed vgthinom e.g.
pbinom(5,10,0.5)

gives
P[X <5] =0.623
where 1
X~b(n=10,p= E).
This can also be computed by hand. Here we hax€10, p = 1/2 and the probabilit
P[X < 5] is obtained by adding up the individual probabiliti€X = 0] + P[X = 1] +
PIX =2]+P[X=3]+PX=4]+P[X =5

5 X1 10—x

10\ 1*1

P[X§5]:Z< )—— :
o\X /)22

This becomes

10 1011&0 10 1111&1 10 1211(%2 10 1311(%3 10 14 10-4 10 1511&
PX <5] = == -z -z -z g | ==
X <9] (O)ZZ <1>22 <1>22 <3>22 (4)2'2 (5)22
or

10\ 119 /10\121° /10\110 /10\21° /10\11° /10\210 110
P[X < 5] — b Z Z Z — — =— [W+10+454 ...
[ _5] (O)Z +(1)2 +(1)2 +<3>2 +<4>2 +<5>2 2 [+ O0+45+ ]
Furthermore,
pbinom(10,10,0.5)
[11 1
and

pbinom(0,10,0.5)
[1] 0.0009765625
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It is sometimes of interest to compulX = x| in this case, and this is given by t
dbinomfunction, e.g.

dbinom(1,10,0.5)
[1] 0.009765625

10
Or 1622

Example 19.2. Suppose&X has a uniform distribution between 0 and 1, Xe~ U (0,1).
Then thepunif function will return probabilities of the form

X X

PMgﬂ:/fmeAfmm

—00

wheref(t) =1if0 <t <1andf(t) =0. For example:

punif (0.75)
[1] 0.75

To obtainP[a < X < b], we usepunif twice, e.g.

punif (0.75) -punif (0.25)
[1] 0.5

19.2 Computing normal probabilities in R

To compute probabilitieX ~ n(p, 6?) is usually transformed, since we know that

X —p
Z="""-(01
£~

The probabilities can then be computed for eithesr Z with the pnormfunction in R.

19.2.1 Details
SupposeX has a normal distribution with mearand variance
X ~n(y,0%)
then to compute probabilitie¥; is usually transformed, since we know that
X—u

z=""Ft (01
—E~ 0

and the probabilities can be computed for eitkesr Z with the pnormfunction.

19.2.2 Examples
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Example 19.3.If Z ~ n(0,1) then we can e.g. obtalZ < 1.96] with
pnorm(1.96)
[11 0.9750021

pnorm(0)
[1] 0.5

pnorm(1.96) -pnorm(1.96)
[1]1 0

pnorm(1.96) -pnorm(-1.96)
[1] 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 19.4.If X ~ n(42,3?) then we can compute probabilites either by transforrlwing

PX <X =P~ <

(e) (e)
—pz<H
(6)

X—U X_ﬁ

- . . Xiu . .
ang callingpnormwith the computed value= ==, or call pnormwith x and specifyu
ando.

To computeP[X < 48], either sez = (48— 42)/3 = 2 and obtain

pnorm(2)
[1] 0.9772499

or specifypando

pnorm(42,42,3)
[1] 0.5

19.3 Introduction to hypothesis testing
19.3.1 Details

If we have a random sampie, ..., X, from a normal distribution, then we consider them
to be outcomes of independent random varialfles. . , X, whereX; ~ n(p, 62). Typically,
pando? are unknown but assume for now tlegtis known.

Consider the hypothesis:

Ho:H=HMo VS.H1 U > o
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wherey is a specified number.

Under the assumption of independence, the sample mean

U

X = Xi

Sl

i=1

is also an observation from a normal distribution, with mgant a smaller variance.Specifically,
X is the outcome of

R L
X==-3"%
ni=1
and
2
o
X Nn(“??)

so the standard deviation of X % so the appropriate error measure ¥das fraco,/n,
wheno is unknown.

If Ho is true, then

7= X—Ho
~a/yn
is an observation from am~ n(0, 1) distribution, i.e. an outcome of
z- X"t
a/yvn

whereZ ~ n(0,1) whenHg is correct. It follows that e.gP[|Z| > 1.96] = 0.05 and if we
observeZ| > 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is a quantile of the normal disttion and we can obtain
other quantiles with th@normfunction, e.g.pnorm(0.975) gives 1.96.

20 Multivariate probability distributions

20.1 Joint probability distribution

If

X1, ..., Xy are discrete random variables with
P[X1 = X1, X2 = X2,...,Xn = Xn| = p(Xg,-.-,%n), Wherexy,...,x, are numbers, then
the functionp is the joint probability mass function (p.m.f.) for the ramd variables|
X1, Xn

For continuous random variabl¥s,...,Y,, a functionf is called the joint probability
density function if,

PIYCcA = [[...[f(y1,...Yn)dy1dyz---dyn.

20.1.1 Details
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Definition 20.1. If Xj,...,X, are discrete random variables wi[X; = x3,Xo =
X2,..., Xn = Xn] = p(X1,...,%n) wherex; ...Xx, are numbers, then the functignis the
joint probability mass function (p.m.f.) for the random variableX;, ..., X,.

Definition 20.2. For continuous random variabl&s,...,Y,, a functionf is called the
joint probability density function if,

P[YEA]://.../f(yl,...yn)dyldy2-~-dyn.

A

Note 20.1.Note that if Xy, ..., X, are independent and identically distributed, each with
p.m.f. p, thenp(xg, X2, ..., Xn) =q(X1)q(X2) ...q(Xn), 1.6, P[Xg = X1, X0 =X2,..., Xn =Xp| =
P[X1 = x1]P[X2 = x| ... P[Xn = Xn].

Note 20.2.Note also that ifA is a set of possible outcoméa C R"), then we have

PXeA= > p(X-..,%).

(X1,..-:Xn) EA

20.1.2 Examples

Example 20.1. An urn contains blue and red marbles, which are either lighteavy.
Let X denote the color and the weight of a marble, chosen at random

XlY L H TT
B 5 6 11

R 7 2 9
TT 12 8 20
We haveP[X = “b*)Y ="1*] = 2.,

20

The joint p.m.f. is:

XY L H TT

B 5 6 1
A

%8 280 20
TT 55 25 1
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20.2 The random sample

A set of random variableX,..., X, is a random
sample if they are independent and identically
distributed (i.i.d.).

A set of numbersxy,...,x, are called a random
sample if they can be viewed as an outcome of such
random variables.

20.2.1 Details

Samples from populations can be obtained in a number of widgsever, to draw valid
conclusions about populations, the samples need to obteamelomly.

Definition 20.3. In random sampling, each item or element of the population hag an
equal and independent chance of being selected.

A set of random variable%; ... X, is arandom sample if they are independent and identically
distributed (i.i.d.).

Definition 20.4. If a set of numbers; ...Xx, can be viewed as an outcome of randbm
variables, these are calledandom sample

20.2.2 Examples

Example 20.2.1f Xg,..., Xy ~U(0,1), i.i.d., i.e. X3 and X, are independent and e%h
have a uniform distribution between 0 and 1. Then they hawiadgensity which is th
product of the densities of; andX.

Given the data in the above figure andifx, € R

1 ifO<x;,x<1

f(x1,%2) = f1(xa) f2(x2) = { 0 elsewhere
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Example 20.3. Toss two dice independently, and I¥{,X> denote the two (future
outcomes.

Then

ifl<x,x<6

1
P[X1=x1,X2 = x| = { 38 elsewhere

is the joint p.m.f.

20.3 The sum of discrete random variables
20.3.1 Details

SupposeX andY are discrete random values with a probability mass fungtiobhet Z =
X+Y. Then

PZ=2) = > pxy)

{(xy):xty=2z}

20.3.2 Examples

Example 20.4. X,Y = outcomes

(,11 [,21 [,3] [,4]1 [,5] [,6]
7
8
9
10

11
12

~N o Ok WN
0 ~NO Ok W
© 00 N O O
S O 00N O O,
O O 00 N O

[1,]
[2,]
[3,]
[4,]
[5,]
(6,]

[

6 1
PX+Y=7]= %6
Because there are a total of 36 equally likely outcomes aratirs six times this means
thatPX +Y =7] = £.
Also

3 1
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20.4 The sum of two continuous random variables

If X and Y are continuous random variables with jo-
int p.d.f. f andZ=X+Y, then we can find the
density ofZ by calculating the cumulative distributi- | -
on function.

20.4.1 Details

If Xand Y are c.r.v. with joint p.d.f.f andZ = X +Y, then we can find the density gfby
first finding the cumulative distribution function

PlZ<Z =P[X+Y <Z= //{(xy):x+y<z} f(x,y)dxdy

20.4.2 Examples

Example 20.5.1f X and Y ~ U(0,1), independent and= X +Y then
0 for z<O0

z for O0<z<1

2
1 for z>2

1—@ for 1<z<?2

the density of z becomes
z for 0<z<1
9(z2)=¢ 2—2z for 1<z<2

0 for elsewhere

PZ<Z=

Example 20.6. To approximate the distribution &= X +Y whereX,Y ~U(0,1) i.i.d.,
we can use Monte Carlo simulation. So, generate 10.000, g&tshem up in a matrik
and compute the sum.

20.5 Means and variances of linear combinations of indepermht random
variables

If X andY are random variables aradb € R, then

E[aX +bY] = aE[X] + bE[Y].
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20.5.1 Details

If X andY are random variables, then

EX+Y]=E[X]+E[Y]

i.e. the expected value of the sum is just the sum of the egge@lues. The same applies
to a finite sum, and more generally

E[iam] = iaaE[Xa]
i=1 i=1

whenX;, ..., X, are random variables ard, ..., a, are numbers (if the expectations exist).
If the random variables are independent, then the variasoeadd

VX +Y] = V[X] +V]Y]

and
V[iaam _ ia-sz

20.5.2 Examples

Example 20.7.X,Y ~U(0,1), i.i.d. then

1 1 1 1
x-ldx+/0 x-1dx= [2X2]3+ [5x¥)5 = 1.

E[X +Y] = E[X] + E[Y] :/ : >

0

Example 20.8.Let X,Y ~ N(0,1). ThenE[X?2+Y?3 =1+1=2.
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20.6 Means and variances of linear combinations of measuresnts

If Xq,....,X, andys, ...,y are numbers, and we set

Z =X t+Yi

where a>0, then

and

20.6.1 Examples

Example 20.9. We set:

a<-3
x<-c(1:5)
y<-c(6:10)

Then:

z<-xty
w<-ax*x
n<-length(x)

Thenzis:

(sum(x)+sum(y))/n
[1] 11
mean (z)
[11 11

andw becomes:

a*mean (x)
[1]1 9
mean (w)
[11 9

ands, equals:

sum( (w-mean(w))~2))/(n-1)

[1] 22.5

sum( (a*x - a*mean(x))~2)/(n-1)
[1] 22.5
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a~2xvar (x)
[1] 22.5

andsy equals:

a*sd(x)

[1] 4.743416
sd (w)

[1] 4.743416

20.7 The joint density of independent normal random variabés

If Z1,Z, ~ n(0,1) are independent then they each have density

1 X2
OxX) = ——€ Z,xeR

and the joint density is the produttz;, z,) = @(z1)@(z) or
Z 2

1.2
777,

f(z1,22) = e

(v2m?

20.7.1 Details

If X ~ n(,0%) andY ~ n(Wp,0%) are independent, then their densities are

)2
fx (X) ! e <2°%1)
X prm—
\/2T[O'1
and
1 —(y-1p)?
f — e 202
Y(y) \/E[O‘Z
and the joint density becomes
(x—up)? (1)
210102
NOw, SUppPOSy, ..., %n ~ N(W, 0?) are i.i.d., then
(6 —p?
R
f(x) = g i-1 9O
(2m2on

is the multivariate normal density in the case of i.i.d. ables.

20.8 More general multivariate probability density functions
20.8.1 Examples
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Example 20.10.Suppose X and Y have the joint density

2 0<y<x<1

0 otherwise

First notice thatfy fg, f(x,y)dxdy= fi_o /iy o2dydx= fy2xdx=1, sof is indeed
density function.

Now, to find the density oKX we first find the c.d.f. oK, first note that folm < 0 we have
P[X <a] =0 butifa> 0, we obtain

f(X,y) =

a rX
Fx(a) = P[X < a] = / 2dydx= [x2]3 = a2
Xo /y=0
The density oiX is therefore
2x 0<x<1
fi (x) = 9EX) - .
x(X) = Tax 0 otherwise

20.8.2 Handout

If

f:R" >R

is such that

PX €A = o[ (X1, Xn)dXg - - Xy
andf(x) >0forallxe R"

thenf is thejoint densityof

X1

X=|
Xn

If we have the joint density of some multidimensional randeamableX = (Xy,...,Xn)
given in this manner, then we can find the individual dengityctions of theX’s by in-
tegrating the other variables.

21 Some distributions related to the normal

21.1 The normal and sums of normals

The sum of independent normally distributed random vaesid also normally distrit
buted.

21.1.1 Details

The sum of independent normally distributed random vagisld also normally distribu-
ted. More specifically, iX; ~ n(pg, 6%2) andX, ~ n(lp, 03) are independent theXy + Xo ~
n(y, 62) sincep = E [Xg + Xo] = 1 + Wz and

02 =V [Xg + Xo] with 6% = 0% + 03

if X1 andX; are independent.
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is normal ifXy, ..., X, are normal and independent.

21.1.2 Examples

Example 21.1. Simulating and plotting a single normal distributioh~ n(0, 1)

library (MASS) # for truehist
par (mfcol=c(2,2))
y<-rnorm(1000) # generating 1000 n(0,1)
mn<-mean (y)
vr<-var (y)
truehist (y,ymax=0.5) # plot the histogram
xvec<-seq(-4,4,0.01) # generate the z-azis
yvec<-dnorm(xvec) # theoretical n(0,1) density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("Simulation and theory n(0,1)\n",
"mean=",round(mn,2),
"and, variance=",round(vr,2))
title(ttl)

Example 21.2. Sum of two normal distributions.

Y1 ~ n(2,22)

and
Yz ~ n(3,3?)

y1<-rnorm(10000,2,2) # n(2,2°2)
y2<-rnorm(10000,3,3) # n(3, 3°2)
y<-yl+y2
truehist (y)
xvec<-seq(-10,20,0.01)
# check
mn<-mean (y)
vr<-var (y)
cat ("The mean,is",mn,"\n")
cat ("The, variance is,",vr,"\n")
cat("The_standard, deviation is",sd(y),"\n")
yvec<-dnorm(xvec,mean=5,sd=sqrt (13)) # n() density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("The_ sum 0f n(2,2°2) and n(3,3°2)\n",
"mean=",round(mn,?2),
"and, variance=",round(vr,2))
title(ttl)
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Example 21.3. Sum of nine normal distributions, all withh= 42 ando? = 22

ymat<-matrix (rnorm(10000%9,42,2) ,ncol=9)
y<-apply(ymat,1,mean)
truehist (y)
# check
mn<-mean (y)
vr<-var (y)
cat ("The mean,is" ,mn,"\n")
cat ("The, variance is,",vr,"\n")
cat("The_standard, deviation is",sd(y),"\n")
# plot the theoretical curve
xvec<-seq(39,45,0.01)
yvec<-dnorm(xvec,mean=5,sd=sqrt(13)) # n() density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("The sum of nine n(42°2),\n",
"mean=",round(mn,2),
"and, variance=",round(vr,2))
title(ttl)

21.2 The Chi-square distribution

If X ~n (0,1),thenY = X? has a distribution which °
is called the Chi - square distributio?) on one
degree of freedom. This can be written as:

Y ~ X2

21.2.1 Details

Definition 21.1. If Xy, Xo, ..., Xy are i.i.d.N(0, 1) then the distribution of
Y = X2+ X2+ ...+ X2 has aChi square (x?)distribution .
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21.3 Sum of Chi square Distributions

LetY; ande be independent variables. Y{ = )(\2,l
andY; = x\, , s T
then the sum of these two variables also follows a
chi-squaredy?)distribution

2
Yl +Y2 = XV1+V2

21.3.1 Details
Note 21.1.Recall that if

are i.i.d., then

21.4 Sum of squared deviation

If Xq,---,%n ~ n(W,0?) i.i.d, then

- 2
> (T5H) ~

i=1

but we are often interested in

1 2 —
> (%= X)*~ Xf1-
n—lg :

21.4.1 Details

Consider a random sample of Gaussian random variablesgi,e.- , Xn ~ n(y, ¢?) i.i.d.
Such a collection of random variables have properties wbahbe used in a number of

ways.
X — 1\ 2
Z( = ) ~ X3,

i=1

but we are often interested in

‘ -
H

n
Z ~ X%—l-

Note 21.2.A degree of freedom is lost because of subtracting the esiméathe mean as
opposed to the true mean.
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The correct notation is:
1 = population mean

X = sample mean (a random variable)
X = sample mean (a number)

21.5 The t-distribution

If U ~n(0,1) andW ~ x2 are independent, then the random variable

U
ﬁ
\Y
has a distribution which we call the t-distribution eregrees of freedom denotéd~
ty.

T=

21.5.1 Details

Definition 21.2. If U ~ n(0,1) andW ~ x?2 are independent, then the random varialle
U

ﬁ

\Y

has a distribution which we call thiedistribution on v degrees of freedom, denot
T (N tv.

T:=

D
o

It turns out that ifXy, ..., X, ~ n(W, 0°) and we set

- 1A,
i=1
and
1 M 5
S—\/—l_ngm—m
then _
X

AT
s/n
This follows fromX andy=I"_, (X, — X)2 being independent a% ~n(0,1), 3 (x.;# ~

2
anl'
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22 Estimation, estimates and estimators

22.1 Ordinary least squares for a single mean

If pis unknown and;,..., X, are data, we can estimaidy finding
n
min>_ (% —W?
i=1
In this case the resulting estimate is simply

H=X
and can easily be derived by setting the derivative to zero.

22.1.1 Examples

Example 22.1. Consider the numbers, ..., Xs to be
13,7,4,16 and 9

We can ploty(x — 1)? vs. pand find the minimum.

22.2 Maximum likelihood estimation

-

If (Y1,...,Yn)" is a random vector from a densify where® is an unknown paramete
andy is a vector of observations then we define likelihood function to be

22.2.1 Examples

Example 22.2.1f, x1,...,Xn, are assumed to be observations of independent raludom
variables with a normal distributions and meanuadind variance o062, then the join
density is

f(x) - f(X2) ... F(Xn)

1 (xq-w? 1 _a-w?
= > e 22 . . .. > e 272
v/ 210 v/ 2TI0
1 7<Xi*l1)2
:I_Ini e 202
=1 /210
- (Zﬂ)::/.?on eﬁﬁzgll(xiiu)z

and if we assume? is known then the likelihood function is

1 — oy Do (i)
LM = g S
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Maximizing this is done by maximizing the log, i.e. findingethfor which:

d
—InL(p) =0
ap"-H =0,
which again results in the estimate
p=x

22.2.2 Detall

Definition 22.1. If (Y1,...,Yy)" is a random vector from a densitiy where 8 is an
unknown parameter, anglis a vector of observations then we define tikelihood
function to be

22.3 Ordinary least squares

1%

Consider the regression problem where we fit a Iinef/°1//

through (x;,y;) pairs withx,...,x, fixed numbers)v
but wherey; is measured with error.

Regression line through data pairs.

22.3.1 Details

The ordinary least squares (OLS) estimates of the parasttand3 in the modely; =
o + Bx; + & are obtained by minimizing the sum of squares

> (% — (o +Bxi))?
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22.4 Random variables and outcomes
22.4.1 Detalils

Recall thatXy, ..., X, are random varibles (reflecting the population distribntendx,, . . . , Xy
are numerical outcomes of these distributions. We use ugser letters to denote random
variables and lower case letters to denote outcome or data.

22.4.2 Examples

\1%4

Example 22.3. Let the mean of a population be zero and the- 4. Then draw thre
samples from this population with size, n, either 4, 16 or e sample meaK will
have a distribution with mean zero and standard deviatioﬁﬁoﬁlhere n=4, 16 or 64.

22.5 Estimators and estimates

In OLS regression, note that the valuesaaindb

a=y—Dbx : M

b 2 (X =Xy )

YLy (% —X)?
are outcomes of random variables e.dn is the
outcome of
n 2 v ARV R . .
5 S =X —Y)
Z{‘Zl(xi —)_()2 Shows an example of the distribution of the
estimator3

the estimator which has some distribution.

22.5.1 Details

The following R commands can be used to generate a distitédr the estimatofS

library (MASS)
nsim <- 1000 # replicates
betahat <- NULL
for (i in 1:nsim){
n <- 20
x <- seq(l:n) # Fized z wvector
y <- 2 + 0.4*x + rnorm(n, 0, 1)
xbar <- mean(x)
ybar <- mean(y)
b <- sum((x-xbar)*(y-ybar))/sum((x-xbar)~2)
a <- ybar - b* xbar
betahat <- c(betahat, b)
}
truehist (betahat)
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23 Test of hypothesis, P values and related concepts

23.1 The principle of the hypothesis test

The principle is to formulate a hypothesis and an alterealtiypothesisHg and Ha
respectively, and then select a statistic with a given ibistion whenHg is true and
select a rejection region which has a specified probalisijywhenHg is true.

The rejection region is chosen to refléty, i.e to ensure a high probability of rejection
whenHg is true.

23.1.1 Examples

Example 23.1. Suppose we want to evaluate whether a coin is biased. We aara[]
experiment for this. Suppose we toss the coin 5 times andt¢bamumber of head§.
We can test the following hypothesis simply.

Ho: p= 3 whereHg is the null hypothesis
Ha p > % whereHjg is an alternative hypothesis
andp is probability of having a head.

We rejectHp if we get all heads. (Assuming the only interest is in a tewgidowards
larger probabilities). So the probability of rejecting tindl hypothesiHy is:
P[rejectHo]= P [ all heads in 5 trialsk p°

If Ho is true, then P [rejedtlg] = 3

Need to choose 5 trials to ensufe= 4 < 55 < 0.05

i.e. The probability of incorrectly rejectingg is less tharm = 0.05

Example 23.2. Flip a coin to test
Ho:P=2vsHa:P# 3

Reject, if no heads or all heads are obtained in 6 trials, e/tes error rate is
P [rejectHp when true] = P [all heads or all tails]

= P[all heads] + P [all tails]

- 1,1 1_ 1

A variation of this test is called the sign test, which is usetest hypothesis of the forr
Ho: true median = 0 using a count of the number of positive values

—4
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23.2 The one sided z test for normal mean

Consider testing

Ho: M= Ho
VS

Ha: > Mo

Where dat; .. . x, are collected as independent observation$of . X, ~ n(y, 02) and
o2 is known. IfHg is true, then

2
_ o
~ N —_—
(Ho. —)
So,
z=""% o)
Vn
It follows that,
P[Z >z« =qa
Where
Zx = Zl_a
So if the data(; . . . Xy are such that,
2= 4
Vn

ThenHy is rejected.

23.2.1 Examples

Example 23.3. Consider the following data set:47, 42, 41, 45, 46.
Suppose we want to test the following hypothesis

Ho:u=42
VS
Ha:pu> 42
o =2isgiven
The mean of the given data set can be calculated as
X=44.2
we can calculate by using following equation
_X—W 44242

z2=—5 5
NG

G
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2.2

zx = 1.645

Here
Z> zx
SoHp is rejected witho = 0.05

23.3 The two-sided z test for a normal mean

_X—to
=57

Z.

~n(0,1)

23.3.1 Details

Consider testindHo : 1 = Mo versusH; : U # o based on observation frobg, ..., X ~
n(y, 02) i.i.d. wherea? is known. IfHg is true, then

X—Ho
Z = ~ 1
G N0
and
PllzZ > Z]=a
with

=7

We rejectHy if || > z". If |z] > z" is not true, then we "Cannot reject thig".

23.3.2 Examples

Example 23.4.In R, you may generate values to calculate zha@lue. The commarlj
that is generally used igjuantile
To illustrate:

z<-rnorm(1000,0,1)

quantile(z,c(0.025,0.975))
2.5% 97.5%

-1.995806 2.009849

So, thez value for a two-sided normal mean|is1.99|.

23.4 The one-sided t-test for a single normal mean

Recall that ifXy, ..., Xn ~ N(i, 02) i.i.d. then

X—H ‘
Svn "
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23.4.1 Detalils
Recall that ifXg, ..., Xy ~ N(i,02) i.i.d. then

X—u

S/vn T
To test the hypothesldg : 1= o VSH1 : L > [ first note that ifHg is true, then
X —Ho
Ty
SO
P[T >tx]=a

tx=th-11-«a

Hence, we rejecHp if the dataxy, ..., X, results in a a value df:= é/_% such that t>t*,
otherwiseHg can not be rejected.

23.4.2 Examples

Example 23.5. Suppose the following data set (12,19,17,23,15,27) conuepiendentl
from a normal distribution and we need to tekt: L= o VSH; : 4> o. Here we have
n=6,X= 1883 s=5.46,p = 18 so we obtain

_ Xt _
t_$¢ﬁ_0w

SOoHp cannot be rejected.

In R, t* is found using gt(n-1,0.95) but the entire hypotlsesan be tested using

t.test(x,alternative="greater" ,mu=<$\mu_0$>)

23.5 Comparing means from normal populations

Suppose data are gathered independently from two normalgtagms resulting in
X1,....,%Xn @Ndy1, ...Ym

23.5.1 Details
We know that if

X1,y Xn~ n(ul, O')
Y1, o0y Ym~ N2, 0)
are all independent then
0% o2

X—Y ~ lp, — 4 —
N(p1 — Mo, = m)
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Further,

n 2
(X —X) 2
Zl o2 ~Xh1
1=
and . ( _)2
Yi—Y 2
Z; g2 ~ Xin-1
J:
S0 ay) V)2
S (i = X)2+ 32 (Y =Y) 5
g2 ~ Xn+m—2
and it follows that _
X=Y — (W1 — o)
1 1 ~ tn-|—m—2
(7+)

where

S Sl (X —=X)2 4+ (Y —Y)?
n+m-—2
consider testinddp : u = 2 VS H1 = muw. > Wp. Hence, ifHg is true then the observed

value _
t=—

_|_
comes from a t-test with4 m— 2 df and we rejecHo if |t| > t*. Here,

S_ \/Zi(xi—>32+21(yj—ﬂz
N n+m—2

Sl
3l

andt* =thym-21-q

23.6 Comparing means from large samples <OI.B.M.>

If X1, ....Xp andYs, .....Ymy, are all independent (with finite variance) with expecteldea
of Wy and, respectively, and variances of,ando? respectively, then

X=Y — (o —M2) .

(“1 “2) Nn(o, 1)
%, %
n m

if the sample sizes are large enough.

This is the central limit theorem.

23.6.1 Details

Another theorem (Slutzky) stakes that replacifganda3 with S andS3 will result in the
same (limiting) distribution.

It follows that for large samples we can test
Ho: i =2 Vs Ha:a > W2
by computing

and rejecHp if z> z1_4.
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23.7 The P-value

The p-value of a test is an evaluation of the probability dagling results which are a
extreme as those observed in the context of the hypothesis.

23.7.1 Examples

Example 23.6. Consider a dataset and the following hypotheses

Ho:u=42
VS.
Ha:pu> 42
and suppose we obtain
z=23

We rejectHg since
2.3> 1.645+ 75,95

The p-value is
P[Z>23=1—d(2.3)

obtained in R using

1-pnorm(2.3)
[1] 0.01072411

If this had been a two tailed test, then
P=P[|Z|>23

=P[Z< -23]|+P[Z> 23]
=2-P[Z>23]

23.8 The concept of significance
23.8.1 Details

Two sample means are statisticadignificantlydif ferentif their null hypothesis|f; =
H2)can bere jected In this case, one can make the following statements:

e The population means are different.
e The sample means are significantly different.
o g # o
e Xis significantly different frony.
But one does not say:
e The sample means are different.

e The population means are different with probability 0.95.
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Similarly, if the hypothesi$lg : 41 = o can not be rejected, we can say:
e There is no significant difference between the sample means.
e We can not reject the equality of population means.
e We can not rule out...
But we can not say:
e The sample means are equal.
e The population means are equal.

e The population means are equal with probability 0.95.

24 Power and sample sizes

24.1 The power of a test

Suppose we have a method to test a null hypothesis againsteamative hypothesis.
The test would be "controlled"at some leweli.e. P[re ject Hy] < a wheneveHy is true.

On the other hand, whet is false one wantB|re ject Hy| to be as high as possible.

If the parameter to be testedsand 8y is a value withinHy and 6, is in Hy then we
wantPy,[re ject Hy] < a andPs,[re ject Hy] as large as possible.

For a genera we write
B(6) = Py[reject Hy)

for the power of the test

24.1.1 Details

Do not use the phrase "accept".

24.2 The power of tests for proportions

24.2.1 Examples
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Example 24.1. Suppose 7 students are involved in an experiment which ipdsad oII
7 trails and each trial consists of rolling a dice 9 times.

Experiment 1: A student records a O if they toss an even nunibdr6), and
records a 1 if they toss an odd number (1,3,5). After tossimgdice 9 times anlj
recording a 0 or 1 the student tabulates the number of 1s. prbsess is repeated]6
more times.

Data and outcomes: x = number of successes in n trigl§ & Thus, x = num
ber of odd numbers

Question: Test whethgy = Ploddnumbelr= 3 that is
Ho:p=3vs.Ha:p# 3

Solution: Now, x is an outcome of ~ Bin(n, p). We know from the CLT that
X—np -

——— ~N(0,1)
np(1—p)
write po = 3 S0 if Ho : p= po is true then
7. X0 | N(0, 1)
Npo(1—po)

SO we rejecH if the observed value
X—Npo

vNpo(1— po)

is such thatz| > 2 g

Outcomes from 21 trials
7 4 4

346
5 3 4
55 3
6 4 5
4 3 5
36 7

1

,_1-93 :7—41.5:14—9:§<1.96
9.1.1 35 3 3
2°2

So we do not reject the null hypothesis!

Note 24.1.Note that we can rewrite the test statistics slightly

Note 24.2.Note that we reject i#%2 > 1.96i.e. if x> 9+3-1.96~9+6= 15

x> 7.5 [forx=8 or 9] or X < 9—3-1.96,x < 1.5 [for x=0 or 1].
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Example 24.2. Suppose 7 students are involved in an experiment which ipdeed 01I
7 trails and each trial consists of rolling a dice 9 times.

Experiment 2: The procedure is the same as in experiment hpluthe student recor
Oforalor2andalfora3,4,5,0r6.

Data and outcomes:
X = number of successes in n trials’# ; Thus, x = number of 'b’s

olution: Outcomes from 21 experiments
4 3

o 00O~ Ul
H 00 01w N

S
5
8
5
7
7
5
2

57
This time our test iddo : p= % vsHa : p= 3. Note that we rejectl if 5% > 1,96
[for x=9] or if 5% < —1,96 [for x=0,1,2,3].

We rejectHp in 3 out of 21 trials.

Example 24.3. Suppose 7 students are involved in an experiment which ipdeed oiI
7 trails and each trial consists of rolling a dice 9 times.

Experiment 3: Same as experiment 1 except O is recorded §8,4,5 and a 1 i§

recorded for 6.

Data and outcomes:
X = number of successes in n trials’2 ; Thus, x = number of '1’s

Solution: Outcomes from 21 experiments

012

1 21

1 4 2

111

131

11 2

020

With the same kind of calculations as above, we find that wectéhe null hypothesis
Ho: p= % in 14 out of 21 trials.
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24.3 The Power of the one sided z test for the mean

The one sided z-test for the megp) is based on a random sample wh¢
X1... % ~ n(Y,c?) are independent araf is known.

The power of the test for an arbitramcan be computed as:

B(u):1—¢(“°;“+zl_a>
NG

24.3.1 Details

The one sided z-test for the medén) is based on a random sample whéte .. X, ~
n(u, 02) are independent araf is known.

If the hypotheses are:
Ho: L= Mo VS
Ha: > o

Then we know that, iHg is true

Given dataxy, . .. Xn, the z-value is

We rejectHg if z> 2z 4
The level of this test is

X

Pu[Rejecth] = Pyl —ilJo > 714

B

=Plz>z7_4]=0

sinceZ ~ n(0, 1) whenyy is the true value.

The power of the test for an arbitramcan be computed as follows.

B(W) = Pulrejecthb)
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We obtain

24.3.2 Examples

Example 24.4. Suppose we know = 2 and we will take a sample from(u, 02)

against a one-tailed alternative when the true mean is lactua= 4 when the samp
size isn = 25.

We can set this up in R with:

alpha<-0.05

n<-25

sigma<-2

mu0<-3

mu<-4
zcrit<-qnorm(1l-alpha)

Sticking the formula into R gives

1-pnorm((mu0-mu) / (sigma/sqrt (n))+zcrit)
[1] 0.803765

samples are to be simulated (Nsim). Then, generate all sétb@mples, arrange them
a matrix and compute the mean of each sample. The z-valuebfcdhese Nsim tes
are then computed and a check is made whether it exceedstita @oint (1) or not (0)

Nsim<-10000

m<-matrix (rnorm(Nsim*n,mu,sigma),ncol=n)
mn<-apply(m,1,mean)
z<-(mn-mu0) / (sigma/sqrt(n))
i<-ifelse(z>zcrit,1,0)

sum(i/Nsim)

[1] 0.8081

intending to test the hypothesis= 3 at levela = 0.05. We want to know the poer
I

Onthe other hand, one can also use a simple simulation agprbast, decide how marly

in
S
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24.4 The non central t - distribution

Recall that ifZ ~ n(0,1) andU ~ X2, are independent then
Z

—— ~t
U V

Vv

and it follows for a random sampl . .. X, ~ n(y, 62) independent; that

_ X—p
X;u = Tn—z Ntnfl
v XX

24.4.1 Details
On the other hand, W ~ n(A,1) andU ~ X2 are independent, theHVU has a non central

t-distribution withv degrees of freedom and non centrality paramAterhis distribution
arises, ifXy... Xy ~ n(y, 02) independent and we want to consider the distribution of:

X

_ —H | H-Ho H=—Ho
g + [¢] Z + ]
X-W_ % Vi _ Vi
S S N /U
Vvn Vi v
Wherep # pp which is a non central t with non centrality parameters
A— U—GUO
Vn

with n— 1 df. Herev=n— 1d f sinceZ ~ n(0,1) andU ~ X2_; in this equation

24.5 The power of t-test for a normal mean
24.5.1 Details

ConsiderX, ..., Xn ~ n(y,¢?) i.i.d. wherea? is unknown and we want to telly : 1 = o
VS. Ha : 1> Ho. We know that
_X—p
T = TR
and we will rejectHg if the computed value
to— X—Ho
~s/yn

is such that
t>t =th 11 q-

The power of this test is:

B(p) = Pyfreject Hy] = Pu[)_(s/_—\/ug > t*]

= Py[X— o >t*-s/y/n|
X—H o Ho—H

= PU[W >t +W]
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Which is the probability that &_ 1_4-variable exceetr + £ s/f

24.6 Power and sample size for the one-sided z-test for a slaghormal
mean

Suppose we want to teBly : L= o VS Ha : 1> Ho. We will rejectHg if the observed
value o

I

~o/yn

is such thaz > z;_4.

24.6.1 Details

Suppose we want to telly : 1= po VS Hg : 1> Ho. So based 0iXy, ..., Xp ~ n(l, 62) i.i.d.
with a2 known we will rejectHy if the observed value

_X—to
~o/yn
is such thaz > z;_4. The power is given by:
H—Ho
=1- _
B = 1= (- 2+ 21-0)

and describes the probability of rejectirlg whenp is the correct value of the parameter.
Suppose we want to rejekky with a prespecified probabilit§;, whenyy; is the true value
of W For this, we need to select the sample size so that

B(k1) > Ba

i.e. find n which satisfies
M1 —

Ll m

Ho | Z1q) > P

24.6.2 Examples

Example 24.5. mu0<-10
sigma<-2

mul<-11

n<-50

d<- (mu1-mu0)

power.t.test(n=n,delta=d,sd=sigma,sig.level=0.05,type="one.sample",
alternative="one.sided",strict

= TRUE)

One-sample t test power calculation

= 50
delta =1
sd = 2
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sig.level = 0.05
power = 0.9672067
alternative = one.sided

24.7 Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test ingle mean (on
sample), this can easily be done in R with tharer .t .test command.

D

24.7.1 Details
A=W -

24.7.2 Examples

Example 24.6. For a one sided power analysis we wish to test the followirphiyeses

For a one sample test:
Ho:U=HoVS.Ha: > o

For a two sample test:
Ho:M1 =M VS.Ha 1 > o2

In R, thepower.t.test command is useful to calculate how many samples one 1
to obtain a certain power of a test, but also to calculate tveep when we have a givé
number of samples.

eeds
n

Example 24.7. How many samples do | need to get a power of .9?

power.t.test(power = .95, delta=1.5,sd=2, type="one.sample",
alternative = "one.sided")

One-sample t test power calculation

n = 20.67702
delta = 1.5
sd = 2
sig.level = 0.05
power = 0.95

alternative = one.sided
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We would thus need a sample size of n = 31.15@2 samples to obtain a power of @.
for our analysis.

Example 24.8. With a sample size of n = 45, what will the power of my test be?

power.t.test(n=45,delta=1.5,sd=2,sig.level=0.05,type="one.sample",
alternative="one.sided")

One-sample t test power calculation

n = 45
delta = 1.5
sd = 2

sig.level = 0.05
power = 0.9995287
alternative = one.sided

This is done the same way for two samples only by changing ttenative toj
"two.sample”. For two sided power analysis, one only neeadhiinge the alternative
"two.sided".

Example 24.9.1f one is interested in doing a power analysis for an ANOVA tdss is
done in a fairly similar way.

With a given sample size of n=20:
power.anova.test(groups=4, n=20, between.var=1, within.var=3)

Balanced one-way analysis of variance power calculation

groups = 4

n =20

between.var = 1

within.var = 3
sig.level = 0.05

power = 0.9679022
To calculate the sample size needed to obtain a power of 6r30tést:
power.anova.test (groups=4, between.var=1, within.var=3, power=.9)
Balanced one-way analysis of variance power calculation

groups = 4

o

n = 15.18834
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between.var =
within.var
sig.level
power =

1
3
0.05
0.9

24.8 The power of the 2-sided t-test

‘ A power analysis on a two-sided t-test can be done in R usmpadivert.testcommand.

24.8.1 Details

For a one sample test:
Ho:H=HoVs.Ha:l+# Ho

The powett.testcommand is useful to provide information for determining thinim-
um sample size one needs to obtain a certain power of a test:

power.t.test(n= ,delta= ,sd= ,sig.level= ,power= ,type=c("two.sample"
,"one.sample","paired") ,alternative=c("two.sided"))

where:

n=sample size

d=effect size

sd=standard deviation

sig.level=significance level

power= normally 0.8, 0.9 or 0.95

type= two sample, one sample or paired (the type selecteshdemn the research)
alternative= either one sided or two sided

24.8.2 Examples

Example 24.10.How many samples do | need in my research to obtain a poweB@JO.

power.t.test(delta=1.5,sd=2,sig.level=0.05,power=0.8,type=c("two.
sample") ,alternative=c("two.sided"))

Two-sample t test power calculation

n = 28.89962
delta = 1.5
sd = 2
sig.level = 0.05
power = 0.8

alternative = two.sided

So, one needs 29 samples (n=29) to obtain a power level 0bOtBi§ analysis.
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24.9 The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computedi@ass:

B(Hluz) = Py,

Z+A St
U/(n+m—2) 1-a,n+m-2
and the power of a two sample, two-sided t-test is give by:

B _p Z+A St
(Makp) = Mhake 0/(ntm—2) 1—a,ntm—2

whereA = L\/ﬁ andU is the SSE.

oy/2+1

Z+A
+PI11L12 [

Sl

24.9.1 Details

Two Sample, One-sided t-Test:
Suppose data are gathered independently from two normalgiams resulting in
Xl, .. .,Xn ~ n(ul, 0'2)

Yl7 oo 7Ym ~ n(“27 02)
where all data are independent then

2 2
— (0) (0)
XY ~n(ps— po, — +—

(B — e, — + )

The null hypothesis in question i, : iy = [ versus alternativel, : g > po. If Hog is true
then the observed value -y
t= 2=
/1,1
S n -+ m

comes from a t-distribution with+ m— 2 degrees of freedom and we rejét if |t| >
tffa.n+m72

The power of the test can be computed as follows:

B(uluz) Pllﬂlz [rejECt H)]
X-Y
= PFuw T 1 >q—a,n+m—2
_+_
L2V T m
'7—\7—(u1—uz)_|_ (H1—1p)
o/bd  ofbk .
Pulug S/O' > tlfa,n+m72
7+ (1—1p)
o\/ata .
PUlUZ

Z+A .
PUl H2

>t _
U/(n+m—2) 1-a,n+m-2
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whereA = (\/% andU is the SSE of the samples which is divided by the appropriate
_+_

degrees of freedom to givex@ distribution.

This is the probability that a non-centtaVariable exceeds'.

Two Sample, Two-sided t-Test:

In this case the null hypothesis is defineds 1 = [ versus alternativel, : Py # po.

The power of the test can be computed as follows:

B(ulug) = Puw reject Hy]

- Plll H2

*
> tla7n+m2]

Y
= | H1H2 > q—a n+m—2]
S /1 1 )
I ﬁ + =

X-Y
+PH1H2 1 1 tl a,n+m-2
ntm
“Y-(u—to) | (i)
/i /i
= Pup >t>1k—a.n+m—2
S/y/(n+m-2) ’
—Y (4 )+ (M—o)
0\/%+% 0\/%+% .
+PH1H2 S/ (n+m 2) _tl—a,n+m—2
Z+A
= P >t _
el O/ (ntm—2) ~ oM 2]
Z+A .
+PU1U2 U/(n+m—2) < _tl—a,n+m—2

whereA = (¥ andU is the SSE of the samples which is divided by the appropriate
o/t

degrees of freedom to givexg distribution.

Note 24.3.Note that the power of a test can be obtained usingtheert.testfunction in
R.

24.10 Sample sizes for two-sample one and two-sided t-tests

‘ The sample size should always satisfy the desired power.
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24.10.1 Details

Suppose we want to reject the with a pre-specified probabilitg; whenp; andp, are
true values of.. For this, we need to select the sample sizndm so thatB ) > Ba
i.e. findn andmwhich satisfies

P Z+A -
Ha Mo U /(I’H— m— 2) 1-a,n+m-2

for a two sample, one-sided t-test.

Similarly for a two sample, two-sided t-test we need to firmhdm that satisfies

Z+A *
Pate | 57 (remg) ~ -anem-2

Z+A *
+ Plllllz { U/(ntm-2) < _tl—a,n+m—2

24.11 A case study in power

Want to compute power in analysis of covariance:
yij = M+BX|J +€ij7 |: 1727 J = 17""]7
wheregjj ~ n(0,02) are i.i.d.?

This can be done by simulation and can easily be expandeti¢o cases.

24.11.1 Handout

Example 24.11.1f you want to compute a power analysis in analysis of covenga
yij = M+BX|J +€ij7 |: 1727 J = 17""]7
wheregjj ~ n(0,02) are i.i.d. then use simulation.

To do this one needs to first define the task in more detail,gaath what exactly i
known and what the assumptions are.

Note 24.4.Note that there are only two groups, with intercepts and . The
"power"will refer to the power of a test fquu = [, i.e. we want to test whether the
group means are equal, correcting for the effect of the nantis variablex.

In principle, thex-values will be either fixed a priori or they may be a randont pathe
experiment. Here we will assume that tkwalues are randomly selected in the rapge
20-30 (could e.g. be the ages of patients).

Since this is in the planning stage of the experiment, welzdse a choice of the samgle
size within each group. For convenience, the sample siztaken to be the same jn
each group,] so the total number of measurements willibe- 2J. We also need tp
decide at which levels gfy and, the power is to be computed (but it is really only a
function of the differencaj; — ).

The following pieces of R code can be saved into a file, "angower"and then commarid
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source ("ancovapow.r")

can be used to run the whole thing.

The beginning of the command sequence merely consists aheos and definitions ¢
parameter values. These need to be changed for each cassakgpa

#

# ancovapow.r - power computations for analysis of covarariance

# - one factor, two levels mu0, mul

# - one covartate z, 0 stores possible wvalues from which a random
set ©s chosen

#

# first set values of parameters
#

alpha<-0.05

sigma<-7.5 # the common standard deviation

x0<-20:30 # the set of z wvalues

delta<-10 # the difference in the means

mu0<-0 # the first mean

mul<-muO+delta # the second mean

slope<-2.5 # the slope in the ancova

J<-10 # the common sample size per factor level

n<-2xJ # the total sample size

Nsim<- 40000 # the number of simulations for power computations

Rather than head straight for the ancova, start with a singaglge, namely ignoring thie

covariate X) and merely doing a regular two-sample, two-tailed t-t&dtis should bé
reasonably similar to the ancova power computations anyway

#

# Next do the power computations just for a regular two-sided, two-
sample t-test

# and use simulation

#

Yi<-matrix (rnorm(J*Nsim,mu0,sigma) ,ncol=J) # Simulate Nsim samples
of size J, ea n(mul,sigma~2)

Y2<-matrix (rnorm(J*Nsim,mul,sigma) ,ncol=J) # Simulate Nsim samples
of size J, ea n(mu2,sigma~2)

ylmn<-apply(Y1,1,mean) # compute all the simulated yIl-means

y2mn<-apply(Y2,1,mean) # compute all the simulated y2-means

syl<-apply(Y1,1,sd) # compute all the stimulated yl-std.devs

sy2<-apply(Y2,1,sd) # compute all the simulated y2-std.devs

s<-sqrt (((J-1)*sy1~2+(J-1)*sy2~2)/(n-2)) # compute all the pooled
std.devs

t<-(ylmn-y2mn) /(s*sqrt(1/J+1/J)) # compute all the Nsim t-statistics

i<-ifelse(abs(t)>qt(1-alpha/2,n-2),1,0) # for ea t, compute I=reject
, 0=do not reject

powsim2<-sum(i)/Nsim # the simulated power

cat("The_ simulated power is, " ,powsim2,"\n")

The above gave the simulated power. In R there is a functido the same computatio

S

and it is worth while to verify the code (and approach) by éfeg whether these giv|e
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the same thing:

#

# Then compute the exact power for the t-test

#

pow2<-power.t.test (delta=delta,sd=sigma,sig.level=alpha,n=J ,type=c(
"two.sample") ,alternative=c("two.sided"))

cat ("The_exact power:\n")

print (pow2)

Finally, start setting up the code to do the ancova simulatidlote that for this we negd
to generate the x-values. In this example it is assumedhbat-alues are not under the
control of the experimenter but arrive randomly, in the mafrgm 20 to 30 (could e.qg. lL
the age of participants in an experiment).

#

# Finally compute the power in the ancova - note we already have
simulated Y1, Y2-values but have not added the z-part yet

#

x1<-matrix(sample (x0,Nsim*J,replace=T) ,ncol=J) # simulate z-values
for yi

x2<-matrix(sample (x0,Nsim*J,replace=T) ,ncol=J) # simulate z-values
for y2

Y1<-Yil+slopex*xl

Y2<-Y2+slope*x2

fulldat<-cbind(Y1,Y2,x1,x2) # a row now contains all yl, then all y2
, then all x1, then all xz2; Nsim rows

Rather than try to write code to do an ancova, it is naturakmthe R function Im to d
this. The “trick” below is to extract the P-value from the smary command. By definiI

J

a “wrapper” function which takes a single line as an argumeentill subsequently b
possible to use the “apply” function to extract the P-valugisg a one-line R comma

ancova.pval<-function(onerow){ # eztract the ancova p-value for diff

in means

J<-length(onerow) /4

n<-2%J

y<-onerow[l:n] # get the y-data from the row

x<-onerow[(n+1) : (2*n)] # get the z-data from the row

grps<-factor(c(rep(1,J),rep(2,J))) # define the groups

sm<-summary (Im(y~x+grps)) # fit the ancova model

pval<-sm$coefficients[3,4] # extract ezactly the right thing from
the summary command-the P-value for HO:mul=mu2

return(pval)

}

Everything has now been defined so it is possible to compluteeaP-values in a single
command line:

pvec<-apply(fulldat,1,ancova.pval)

i2<-ifelse(pvec<alpha,1,0) # for ea test, compute 1=reject, 0=do not
reject

ancovapow<-sum(i2)/Nsim # the simulated power

cat ("The simulated ancova power is " ,ancovapow,'"\n")
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When run, this script returns:

The simulated power is 0.803025
The exact power:

Two-sample t test power calculation

n = 10
delta = 10
sd = 7.5

sig.level = 0.05
power = 0.8049123
alternative = two.sided

NOTE: n is number in *each* group

The simulated ancova power is 0.775175

It is seen that when thevalues are not included in any way (in particul@s= 0), the

power is 80.5%. However, this is not the correct model in fiesent situation. Using the

above value op and taking this into account, the power is actually a bit loare77.5%

25 Vectors and Matrix Operations

25.1 Numbers, vectors, matrices

Recall that the set of real numbersRsand that a vectory € R" is just an n-tuple of
numbers.

Similarly, annxmmatrix is just a table of numbers, with n rows and m columnswac
can write

Amn c Rmn
Note that a vector is normally considered equivalentmo<al matrix i.e. we view thesg

14

C

as column vectors.

25.1.1 Examples

Example 25.1.In R, a vector can be generated with:

X<- 3:6
X
[1] 3456

A matrix can be generated in R as follows,

matrix (X)

[,1]

>

(1,1 3
[2,]1 4
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Note 25.1.We note that R distinguishes between vector and matrices.

25.2 Elementary Operations

We can define multiplication of a real numbeand a vector = (vq,...,vy) by k-v=
(kvi, ..., kv,). The sum of two vectors iR", v= (vi,...,vy) andu= (uy,...,u,) as the

matrix and the sum of two matrices (of the same sizes) sityilar

vectorv+u = (v1+Ug,...,Vnh+ Uy). We can define multiplication of a number ang

l a

25.2.1 Examples

Example 25.2.A <- matrix(c(1,2,3,4), nr=2, nc=2)

A
[,11 [,2]
[1,]1 13
[2,]1 2 4
B <- matrix(c(1,0,2,1), nr=2, nc=2)
B
[,11 [,2]
(1,1 12
[2,]1] 01
A+B
[,11 [,2]
[1,]1 25
[2,]1 2 5

25.3 The tranpose of a matrix

In R, matrices may be constructed using the "matrix"funrcéind the transpose 6§ A/,
may be obtained in R by using the "t"function:

A<-matrix(1:6, nrow=3)

t(A)

25.3.1 Details

If Alis annx mmatrix with element;; in row i and columnj, thenA’ or AT is themx n
matrix with elementyj in row j and column.

25.3.2 Examples
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Example 25.3. Consider a vector in R

x<-1:4
X
[11 12 3 4
t(x)
[,11 [,2]1 [,3] [,4]
[1,] 1 234
matrix(x)
[,1]
(1,1 1
[2,]1 2
[3,1 3
(4,1 4
t(matrix(x))
[,11 [,2]1 [,3] [,4]
[1,] 1 234

Note 25.2.Note that the first solution gives axin matrix and the second solution givies
anx 1 matrix.

25.4 Matrix multiplication

Matrices A and B can be multiplied together if A is
ann x p matrix and B is arp x mmatrix. The general
element; j of n x m; C = ABis found by pairing the L
ithrow of C with thejth column of B, and computing ™ ‘
the sum of products of the paired terms.

25.4.1 Details

Matrices A and B can be multiplied together if A i:i& p matrix and B is go x mmatrix.
Given the general elemegy of nxmmatrix, C = ABis found by pairing thé'h row of C
with the j'h column of B, and computing the sum of products of the pairetdse

25.4.2 Examples

Example 25.4. Matrices in R

A<-matrix(c(1,3,5,2,4,6),3,2)
A

[,11 [,2]
[1,1 12
2,1 34
[3,]1 56
B<-matrix(1,1,2,3)2,2)

B<-matrix(c(1,1,2,3),2,2)
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25.5 More on matrix multiplication

Let A B, andC bemxn, nx |, andl x p matrices, respectively. Then we have
(AB)C =A(BC).

In general, matrix multiplication is not commutative, ti@AB # BA.

We also have
(AB) =B'A.

In particular,(Av)’(Av) = VA'Av, whenv is an x 1 column vector.
More obvious are the rules

1. A+ (B+C)=(A+B)+C

2. k(A+B)=kA+kB

3. A(B+C)=AB+AC,

wherek € R and when the dimensions of the matrices fit.

25.6 Linear equations

25.6.1 Details

Detail:

General linear equations can be written in the féxr= b.

25.6.2 Examples

Example 25.5. The set of equations

2X+3y=4
X+y=2

can be written in matrix formulation as

X

3 1|y

{23

-2
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i.e. Ax= b for an appropriate choice of &f x andb

25.7 The unit matrix

Then x n matrix

10 0
_]0 1 0
0 . 0

0 0 1

is the identity matrix. This is because if a matAxs n x nthenAl = A andlA = A

25.8 The inverse of a matrix

If Ais annx n matrix andB is a matrix such that

BA=AB=I
ThenB is said to be the inverse @&f written

B=A1

Note that ifA is ann x n matrix for which an inverse exists, then the equatfon= b
can be solved and the solutiordis= A~ 1b.

25.8.1 Examples

Example 25.6. If matrix Ais:

2 3

31
thenA1lis:

=13

31
4 2
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26 Some notes on matrices and linear operators

26.1 The matrix as a linear operator

Let A be anm x n matrix, the function

Ta:R" — R Ta(x) = AX,
is linear, that is

Ta(ax+by) = aTa(x) +bTa(y)

if x,y € R"anda,b c R.

26.1.1 Examples

Example 26.1.1f A= [1 2] thenTa(x) = X+ 2y wherex = (;) € R?

_ 01 _ly

Example 26.2. If A= L 9 thenTA(§)- ¢
02 3 X 2y+37
Example 26.3.If A= L 01 thenTa )Z/ = x+z}

2X— 3y

Example 26.4. If T(;) = < Xty > thenT (x) = Axif we set A = B _13}

26.2 Inner products and norms

Assumingx andy are vectors, then we define their inner product by

XY =X1y1 +Xo¥Y2+ -+ - + XnYn

X1 Y1
wherex= | : | andy=

Xn Yn
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26.2.1 Details
If X, y € R" are arbitrary (column) vectors, then we define their innedpct by

XY = X1y1+X2Y2+ - -+ XnYn

X1 Y1
wherex= | : | andy=
Xn Yn
Note 26.1.Note that we can also viewandy asn x 1 matrices and we see thaty = Xy.

Definition 26.1. The normal length of a vector is defined Jpj|> = x-x. It may also b
expressed ax|| = /%6 +X5 + - -+ X2.

It is easy to see that for vectoasb andc we have(a+b)-c=a-c+b-canda-b=Db-a.

26.2.2 Examples

Two vectorsx andy are said to be orthogonabif y =0

Example 26.5.1f x = (i) andy = (i) then
X-y=3-2+4-1=10,
and

IIX||? = 3%+ 4% = 25,

SO

Xl =5

26.3 Orthogonal vectors

Two vectorsx andy are said to be orthogonabif y = 0 denotedk L y

26.3.1 Details

Definition 26.2. Two vectorsx andy are said to berthogonal if x-y = 0 denoted L y

If a,b € R"then
la+b||?=a-a+2a-b+b-b

SO
la-+b]* = ||al® +|b||* + 2ab.
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Note 26.2.Note that ifa L b then|ja+b||? = ||a]|*>+ ||b]|?, which is Pythagoras’ theorem
in n dimensions.

26.4 Linear combinations of i.i.d. random variables

Supposey, ...., X are i.i.d. random variables and have mean..., g, and variances?
then the expected value ¥fof the linear combination is

Y=> aX

and ifay, ....,an are real constants then the mean is:

by = > al
and the variance is:

o’ =) &o

26.4.1 Examples

Example 26.6. Consider two i.i.d. random variable¥;,Y> and a specific Iinezlr
combination of the twayV = Y; + 3Y.

We first obtain
EW] =E[Y1+3Ys] =E[Y1] + 3E[Ys] =2+3.2=2+6=8.
Similarly, we can first use independence to obtain
VW] =V[Y1 +3Yz] = V[Y1] +V[3Yy]
and then (recall that [aY] = a?V[Y))
VY] +V[3Ys] = V[Y1] + 3V [Yo] = 12432 = 1(4) + 9(4) = 40
Normally, we just write this up in a simple sequence

VW] =V[Y1+3Ys] =V[Y1] + 3V [Yo] = 12+ 3% = 1(4) + 9(4) = 40

26.5 Covariance between linear combinations of i.i.d randm varia-

bles
Supposérs,...,Y, are i.i.d., each with meap and variances? anda,b € R". Writing
Y1
Y = : |, consider the linear combinati@y andb'’Y.
Yh
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26.5.1 Details

The covarience between random varialeandW is defined by

CovU,W) =E[(U — pu)(W — )]

where
Hu = E[U],lw = E[W]
Now, letU = @Y = Y Yia andW = b'Y = Y Yib;, whereYs, ..., Y, are i.i.d. with mean
and variance?, then we get
Co\(U,W) = E[(aY — Za,)(b'Y — by

=E[(ZaY; — Zajp) (Zb;Y; — Zbjp)]

and after some tedious (but basic) calculations we obtain

CoWU,W) =c%a-b

26.5.2 Examples

Example 26.7.1f Y1 andY» are i.i.d., then

CoUYa +Y2,Y1 — Y) = Com((1, 1) < % ),(1,—1) ( 2 ))

:(1,1)< _11 )02
=0

and in generalCov\@Y,bY) =0if albandyi,...,Y, are independent.

26.6 Random vectors

Y =(Y1,...,Yy) is arandom vector i¥y, ..., Y, are random variables.

26.6.1 Details

Definition 26.3. If EY, = 1 then we typically write
M1
EV)=( : |=H

n
If CouY,Y;) = aij andV[Yi] = gj = a2, then we define the matrix

Z = (0ij)

containing the variances and covariances. We call thisixniée covariance matrix of
Y, typically denoted/[Y] =~ orCo\Y]| =Z.
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26.6.2 Examples

Example 26.8.1f Y,,...,Yaareii.d.EY. =, VY, =02, a,be R"andU =aY,W =Y,

U
and T= W}
then
_ | Zau
ET= {Zbip}
< o[Za? Zab
VI=s=0 {Zai b b2

Example 26.9.1f Y is a random vector with megmand variance-covariance matiix
then

E[@Y]=au

and

V[@dY]=4dza

26.7 Transforming random vectors

Suppose

Y1
v=1| :
Yh

is a random vector witkY = pandVY = X where the variance-covariance matrix

> = o4l

26.7.1 Details

Note that ifYs, ..., Ys are independent with common variargethen

- 2 -
07 012 013 ... Oin

021 O'% O23 ... O2p

> = | 031 O32 O'% ... O3n
2
L Onl 0]’]2 0n3 On |
(02 0 0 |

0 05 . O
03
0 . . 0
0 0 of |
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1 0 ... ... 07
o1 . 0 :
=a?| : - 1 = ol
O . . 0
L O 0 1]
If Ais anmx n matrix, then
EJAY] = Au
and
V[AY] = ASA

27 Ranks and determinants

27.1 The rank of a matrix

The rank of anmnxp matrix, A, is the largest number of columns Af which are not
linearly dependent (i.e. the number of linearly indepemndetumns).

27.1.1 Details

Vectorsas, ay, . .., an are said to be linearly dependent if the constant. ., k, exists and
are not all zero, such that

kiar +koao+ ...+ knan =0
Note that if such constants exist, then we can write one oathas a linear combination
of the rest, e.g. ik; # 0 then

a=C=——ar—...— —
1 1 ke 2 klan
It can be shown that the rank éfis the same as the rank Afi.e. the maximum number

of linearly independent rows &.
Note 27.1.Note that if rank(A) = p, then the columns are linearly independent.

27.1.2 Examples

Example 27.1.If

the rank ofA = 2, since

if and only if
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so the columns are linearly independent.

Example 27.2.If

101

A=|011

000
the rank ofA = 2.
Example 27.3. If

111

A=|1010

010

the rank ofA = 2, since

(3)(3) ()

(and hence the rank can not be more than 2) but

(i)(

if and only if k; = ko = 0 (and hence the rank must be at least 2).

27.2 The determinant

Recall that for a 2x2 matrix,

a b
A= c d
the inverse oA is

2 3
-1_ _1
A “ad-bc |3 1

27.2.1 Details

Definition 27.1. The numbernd — bcis called thedeterminantof the 2x2 matrixA.
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Definition 27.2. Now supposeA is annxn matrix. An elementary product from the
matrix is a product oh terms based on taking exactly one term from each column o
x. Each such term can be written in the foaay, - azj, - agj; - - - .- anj, wherejy,..., jnisa
permutation of the integers 2,...,n. Each permutatioo of the integers 12,...,n can
be performed by repeatedly interchanging two numbers.

The determinant of A, det(A) dA| is the sum of all signed elementary products.

27.2.2 Examples

A

a1 a

Example 27.4. A= 11 %12

dp1 a2
then
|A‘ = ad11a2 — aj2ay1.

ail a2 a3
Example 27.5.A= |ap1 ax> a3

a1 az2 ass

= ajjazrass This is the identity permutation and has positive sign
—ajjaz3azz This is the permutation that only interchanges 2 and 3
—azoaziasz Only one interchange

+ajoaz3a31 Two interchanges

+ai3azi1a32 Two interchanges

—aj3aprazy Three interchanges

Example 27.6. A= {1

Al =1

10

1
0
0

Example 27.7.A=

A|=1-2.3=6
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Definition 27.3. A signed elementary productis an elementary product with a positie
sign if the number of interchanges in the permutation is dtgmegative otherwise.



1 00
Example 27.8.A= |0 2 O]

0 30
|A|=0

100
Example 27.9.A= |0 O 2]

0 30
|A| = -6

2 1
Example27.10.A:{2 1}
|A|=0

1 01
Example 27.11.A= |0 1 1]

112
|A|=0

27.3 Ranks, inverses and determinants

The following statements are true for arx n matrix A:

e rank(A) =n
e det(A)#0

e A has an inverse

27.3.1 Details

Suppos& is ann x n matrix. Then the following are truths:
e rank(A)=n
e det(A) #0

e Ahas an inverse
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28 Multivariate calculus

28.1 Vector functions of several variables

A vector-valued function of several variables is a function
f:RM - RN

i.e. a function oim dimensional vectors, which returnglimensional vectors.

28.1.1 Examples

Example 28.1. A real valued function of many variabled:: R3 — R, f(X1,X2,X3) =
2X1 + 3Xo + 4Xs.

X1
Note 28.1.Note thatf is linear andf (x) = Axwherex = <X2> andA=[2 3 4.
X3

Example 28.2. Let

f:R%2 5 R?
where:
o X1 t+X
f(Xl,Xg) = ( X1 — Xo )

Note 28.2.Note thatf (x) = Ax, whereA = H _11} :

Example 28.3. Let

f:RS S R?
be defined by
X1+ X2
i X1 —X3
o= "5
X1+ X2+ X3
Note 28.3.Note that:
f(X) = AX
where
11 O
1 0 -1
A=lo 1 -1
11 1
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Example 28.4. These multi-dimensional functions do not have to be linarexample
the functionf : R? — R?
X1 X2
f(x) =
=455

is obviously not linear.

28.2 The gradient

Suppose the real valued functién R™ — R is differentiable in each coordinate. Then
the gradient off, denotedf is given by

Of() = (55, ... .5).

01 ) 0%

28.2.1 Details

Definition 28.1. Suppose the real valued functidn R™ — R is differentiable in eacl\
coordinate. Then thgradient of f, denotedf is given by

Of(X) = (3, - o),

0xq? ) 0xq

where each patrtial derivativ% is computed by differentiating f with respect to tijat
variable, regarding the others as fixed.

28.2.2 Examples

Example 28.5.

of of
f(X) = X2+ Y2 +2xy, ™ :2x+2y,6—y = 2y+2x,0f = (2x+2y, 2y+2X)

Example 28.6.
f(x) =x1—x;0f = (1, —1)

28.3 The Jacobian

Now consider a functiorf : R™ — R". Write f; for theit" coordinate off, so we can
write f(x) = (f1(x), f2(x),..., fn(x)), wherex € R™. If each coordinate functioff; is
differentiable in each variable we can form thecobian matriof f:

Ofq

Ofn
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28.3.1 Details

Now consider a functiori : R™ — R". Write f; for theit" coordinate off, so we can write
f(x) = (f1(x), f2(x),..., fn(x)), wherex € R™. If each coordinate functiof) is differentia-
ble in each variable we can form tlacobian matriof f:

Of1
Ofn
of;

In this matrix, the element in thiéh row andjth column ISgy.-

28.3.2 Examples

Example 28.7. For the function

X2 +y fl(x7 y)
f(X, y) = Xy = fz(X, y) s
X f3(X7 y)
the Jacobhian matrix of is the matrix

(fy 2X 2y
J=|0f| =y Xx]|.
Ofs 1 O

28.4 Univariate integration by substitution

If fis a continuous function arglis strictly increasing and differentiable then,

[ to0ax= [ f(aw)g et
g

(@) a

28.4.1 Details

If fis a continuous function anglis strictly increasing and differentiable then,

fo, 100ax= [ at)g et

It follows that if X is a continuous random variable with densityandY = h(X) is a
function of X that has the inversg= h=1, soX = g(Y) , then the density of is given by,

This is a consequence of

P[Y <b] =P[g(Y) < g(b)] =P[X < g(b)] = / f(x)dx= / f(a(y))d (y)dy.
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28.5 Multivariate integration by substitution

Suppos¢ is a continuous functiofi : R" — R andg: R" — R" is a one-to-one function
with continuous partial derivatives. ThenldfC R" is a subset,

| fxdx= [ (gy))l3ldy
g(u) u
wherel is the Jacobian matrix and |J| is the absolute value of itsradenant.

o9 0 ... 9%

dyr oy n Hox
=+ =+ =] ]

dgn 09 ag

6_y: a_y; a_y: Ugn

28.5.1 Details

Supposef is a continuous functiori : R" — R andg : R" — R" is a one-to-one function
with continuous partial derivatives. TherldfC R" is a subset,

.., fo9ex= [ (@)laldy

wherel is the Jacobian determinant and |J| is its absolute value.

991 O .. 0;

Oy Y 0o
J=[|: + . =]
0gn 0% ... OGn 0

) OYn Gn

Similar calculations as in 4.5 give us thakfis a continuous multivariate random variable,
X = (Xg,...,X%y) with density f andY = h(X), where_his 1-1 with inverseg = h~%. So,
X =g(Y), then the density of Ys given by;

fv(y) = f(a(y))J|

28.5.2 Examples

Example 28.8.1f Y = AX where A is an n x n matrix with det(A) # 0 andl
X = (Xy,...,X%)" are i.i.d. random variables, then we have the following ltesu

The joint density ofX; - - - X, is the product of the individual (marginal) densities,

fx(x) = f(x) f(x2) -~ F(xn)
The matrix of partial derivatives correspondsgg)wherex =g(Y), i.e. these are the
derivatives of the transformatioX = g(Y) = A"Y, or X = BY whereB=A"1.

But if X = BY, then

Xi = biryr +bigy2 + - - - bijyj - - - binyn

So,g—;‘: — byj and thus,
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odx 1 1
=|—|=|B|=|A""| = —
1= l5gy = BI= A= 13

The density of Yis therefore;

fr(y) = fx(9(y) 9l = fx(A"ly) = |A™

29 The multivariate normal distribution and related topics

29.1 Transformations of random variables

Recall that ifX is a vector of continuous random variables with a joint plolitg density
function and ifY = h(X) such thath is a 1-1 function and continuously differentiahle
with inverseg soX = g(Y), then the density of is given by

fy(y) = f(9(y))|J]

29.1.1 Details

J is the Jacobian determinant@fIn particular ifY = AX then
fr(y) = f(A Ty)ldet(A™ )]

if Ahas an inverse.

29.2 The multivariate normal distribution

29.2.1 Details
Z
Consider i.i.d. random variableg;,...,Z, ~ (0,1), written Z = : and letY =
Zn
AZ+ pwhereAis an invertiblenxnmatrix andp € R" is a vector, s& = A~1(Y — ).

Then the p.d.f. of is given by

fy(y) = fz(A"Hy—p)|det(A™H)]

But the joint p.d.f. ofZ is the product of the p.d.f.'s dfy,...,Zn, SO fz(2) = f(z1) - f(2) -
.- T(zn) where

=
SRV

——e
V21T

and hence

n 1 i
fz(2) = il;[l ﬁe
— (i)ne*% X:P:lzi2

V21
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since

The joint p.d.f. ofY is therefore

fy(y) = fz(AH(y— 1)) [det(A™)]

NIl

L odaty-wyaty-w_ L
(2m)2 det(A)]

We can writedet(AA) = det(A)? so|det(A)| = \/det(AA) and if we writeZ = AA, then

e

det(A)| = |52
Also, note that

A y-w) A y-W) =@y-wWAYAy—p=y-pzty-p

We can now write

f(y) = — = e bWzt
— (2m2]z)2
This is the density of the multivariate normal distribution
Note that
EY] =n

VY] =V[AZ = AV[ZIA = AIA =%
Notation:Y ~ n(y, Z)

29.3 Univariate normal transforms

The general univariate normal distribution with density

1 _-w?
fY<y): \/Z'[O’e 20

is a special case of the multivariate version.

29.3.1 Details
Further, ifZ ~ n(0, 1), then clearlyX = aZ+ p~ n(y, 0%) whereo? = a2

29.4 Transforms to lower dimensions

If Y ~n(wZ) is a random vector of length andA is anm x n matrix of rankm < n,
thenAY ~ n(Ay AZA').
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29.4.1 Details

If Y ~n(p, ) is a random vector of lengthhandA is anm x n matrix of rankm < n, then
AY ~ n(Ap, AZA').

To prove this, set up aftn —m) x n matrix, B, so that then x n matrix, C, formed from
combining the rows oA andB is of full rankn. Then it is easy to derive the density@Y

which also factors nicely into a product, only one of whiclmizensAY, which gives the
density forAY.

29.5 The OLS estimator

SupposeY ~ n(XB),0?l). The ordinary least squares estimator, whennthep matrix
is of full rank, p, wherep < n, is:

B=(X'X)"IXY
The random variable which describes the process givingdteeahd estimate is:
b= (X'X)"IX'Y

It follows that R
B~n(B,o*(XX) ™)

29.5.1 Details

Suppose’ ~ n(XB,a?l). The ordinary least squares estimator, whemthep maitrix is of
full rank, p, is: A
B=(X'X)"IX'Y.

The equation below is the random variable which describeptbcess giving the data and
estimate:
b= (X'X)"IXY
If B= (X'X)~1X’, then we know that
BY ~ n(BXB,B(c?)B)

Note that

BXB= (X'X)"IX'XB=p
and

B(0?1)B = o(X'X) " IX/[(X'X)~IX")’
= a2(X'X)IX/X(X'X) 71
— 02(x/x)—1

It follows that )
B~ n(B,0*(X'X)™)
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30 Independence, expectations and the moment generat-
ing function

30.1 Independent random variables

Recall that two event#\ andB, are independent if,

P[ANB] = P[A]P[B]
Since the conditional probability & givenB is defined by:
P[ANB]
P[B]
We see that A and B are independent if and only if

PIAIB] =

P[A|B] = P[A](whenHB]| > 0)

Two continuous random variables,andY, are similarly independent if,

P[X € AY € B] = P[X € AIP]Y € B]

30.1.1 Details

Two continuous random variables,andY, are similarly independent if,

PX € AY € B =P[X € AIP]Y € B]
Now suppos& has p.d.f.fx and Y has p.d.ffy. Then,

PIX € A :/Afx(x)dx

PIY € B = [ fy(y)dy

SoX andY are independent if:
PXe€,YeB|= /Afx(x)dx/B fy(y)dy
= [ xGO( [ fry)dy)ax

= [ 100 v (y)dydx

But, if f is the joint density oK andY then we know that

PX e AY € B]

/A /B £(x,y)dydx

HenceX andY are independent if and only if we can write the joint dengityhie form of,

f(xy) = fx(X) fy(y)
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30.2 Independence and expected values

If X andY are independent random variables tE&XY] = E[X]E[Y].

Further, if X and Y are independent random variables thé&ig(X)h(Y)] =
E[g(X)]E[h(Y)] is true ifg andh are functions in which expectations exist.

30.2.1 Details

If X andY are random variables with a joint distribution functibfx, y), then it is true that
for h: R? — R we have

E[h(X,Y)] ://h(x,y)f(x,y)dxdy

for thoseh such that the integral on the right exists.

SupposeX andY are independent continuous r.v., then

Fxy) = (9 fr (y)
Thus,
E[XY] ://xyf(x,y)dxdy

://xyfx(x)fY(Y)dXdy
::/x&umx/ywwmy
— E[X]E[Y]

Note 30.1.Note that if X andY are independent theB[h(X)g(Y)] = E[h(X)]E[g(Y)] is
true whenever the functiosandy have expected values.

30.2.2 Examples

Example 30.1. SupposeX,Y € U (0,2) are i.i.d then,

ifO<x<2

1
- 2
fx(x) { 0 otherwise

and similarly forfy.

Next, note that,

1 jfo<xy<?2

Fxy) = fx(¥) fr(y) = { 4o otherwise

Also note thatf (x,y) > 0 for all (x,y) € R? and

//f(x,y)dxdy: /02/02 %dxdy: %.4: 1

E[XY] :/_aa /_aaxyf(x,y)dxdy

It follows that,
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2 2 1
y:()(/)(:()xyzrdx)dy

2 l l

2.1 1
22
y(2

y=04

y2 y= / 5y y———yzly

1
E.O)dy

But )
E[X] = E[Y] /Oxzdx 1
y_
So
E[XY] = E[X|E]Y]
30.3

Independence and the covariance

=0.

If X andY are independent th&DoV(X,Y)

In fact, if X andY are independent thelov(h(X),g(Y))
expected values exist.

= 0 for any functions in which

30.4 The moment generating function

If X is a random variable we define the moment generating fungtloent exists as
M(t) := E(eX).

30.4.1 Examples

Example 30.2.1f X ~ b(n, p) thenM(t

- 3@ =3¢ (p-apr

30.5 Moments and the moment generating function

If Mx (t) is the moment generating function (mgf)X)fthenM( )

X (0) =E[X".

30.5.1 Details

Observe thaM(t) = E[eX] = E[l—i—X—l—%—l—% +...]sincee® =1+a+ 3—2,—1—3—?—1—
If the random variable!™*| has a finite expected value then we can switch the sum and the
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expected valued to obtain:
2 (tX)" * E[(tX)N

D S By o

n=0
This implies that thet" derivative ofM(t) in t = 0 is exactlyE [X"]

30.6 The moment generating function of a sum of random variales

Mx.y(t) = Mx(t) - My (t) if X andY are independent.

30.6.1 Details

Let X andY be independent random vaiables, then

Mxv (1) = E[€Y] = E[e"'e"!] = E[[E[e"] = Mx (t)Mv )

30.7 Uniqueness of the moment generating function

Moment generating functions (m.g.f.) uniquely determine probability distribution
function for random variables. Thus, if two random variaidt@ve the same m.g.f, the
they must also have the same distribution.

2N

31 The gamma distribution

31.1 The gamma distribution

If a random variabl& has the density

xa—1eT
= Tl

wherex > 0 for some constants, 3 > 0, thenX is said to have a gamma distribution

31.1.1 Details

The functionl” is basically chosen so thatintegrates to one, i.e.

a) :/0 9 letdt

It is not too hard to see thatn) = (n—1)!if ne N. Also,l(a+1) =al (a) forall a > 0.

31.2 The mean, variance and mgf of the gamma distribution

Suppos&X ~ G(a,B) i.e. X has density

xa—Lg—x/B

0= "Faype

Then,




31.2.1 Details

The expected value of can be computed as follows:

EX) = [ xf(xdx

B xd—1lg— X/B
= e @

(X—l—l Ba+1 x(a+1)— x/B
B / Mo+1 BGH
_ ( )B(Hl

(o)

SsoE[X] = ap.

Next, the m.g.f.is given by

E[dX] — /Oetxa(l‘iﬁjsd

_ / KO~ 1ghx— X/de

(pa e X/®
F(G)(ﬁ’

if we choosep so that;(;‘ =tx—x/Bi.e. % =t—1 7€ 0=—173

dx

\_/\_/\_/

M(t) =

orM(t) = (1—pt)~%. It follows that

BB then we have

M'(t) = (~a)(1— Bt) " H(~B) = aB(1 - B)

soM’(0) = ap. Further,

M’(t) = aB(—a—1)(1—Bt)"**(—p)
= ap?(a+1)(1—pt)~%2

E[X? = M"(0)
= ap¥(a+1)
= a’p*4ap?

Hence,
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E[X]2—E[X]?
= o?B?+ap’— (ap)?
= QBZ

=
X
|

31.3 Special cases of the gamma distribution: The exponeatiand
chi-squared distributions

Consider the gamma density,

For parametera, 3 > 0.

If a =1then

1 —x
f(x) =-efP x>0

B

and this is the density of exponential distribution.

x:lg7
f=2 €% vo0
T

Consider next the case= 3 andf = 2 wherev is an integer, so the density becomes

Dy

This is the density of a chi-squared random variable widegrees of freedom.

31.3.1 Details

Considera = 3 and = 2 wherev is an integer, so the density becomes,

y_1.=X
X27 ez
v,X>0

"=z

This is the density of a chi - squared random variable witdegrees of freedom.
This is easy to see by starting with~ n(0, 1) and definingV = Z? so that the c.d.f. is:

Hw) = PW <w] =P[Z* < W
=Pl-vW=Z< VW
=1-P[|Z] > VW]
=1-2p[Z < —vW]
:1—2/szg%dn:1—zm¢W)
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The p.d.f. ofw s therefore,

h(w) = H'(w)
=0 20/(/i0) swi !
but
2
_ M &= d xe3 e~
qw‘/aznd“ﬂ) dx A 2n ' an
So
e¥ 1 1
_ 8% 1At
hw] = -2 o 5 W
wz ~le=
_ 2
h{w| = o ,W>0
We see that we must have= f with v=1. We have also showh(3 )2% =20, i.e
I (3) =+/M. Hence we have shown tfyé distribution on 1 df to b&S(a = ¥, B = 2) when
v=1.

31.4 The sum of gamma variables

In the general case X; ... X, ~ G(a,B) are i.i.d. thenX; + Xo+... Xy ~ G(na, B).

In particular, ifXy, Xp, ..., X, ~ X2 i.i.d. then:Y_; X ~ x2.

31.4.1 Details
If X andY are i.i.d.G(a,3), then

1
Mx (t) = My (t) = A—pe
and
Mx v (t) = Mx (t)My(t) = ﬁ
So

X+Y ~ G(2a,B)

In the general case DKl Xn ~ G(a,pB) are i.i.d. thenX1+X2+...Xn ~ G(na,B). In
particular, ifXy, Xo, ..., Xy ~ x iid., theny" ;X ~ xv
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32 Notes and examples: The linear model

32.1 Simple linear regression in R

v

To test the effect of one variable on another, simpl¢
linear regression may be applied. The fitted model
may be expressed ags= o + X, where a is a
constantf is the estimated coefficient, axds the
explanatory variable.

speed

Example taken from R of a fitted model using
linear regression.

32.1.1 Details

Below is the linear regression output using the R’s dataat'' Notice that the output
from the model may be divided into two main categories:

1. output that assesses the model as a whole, and

2. output that relates to the estimated coefficients for thdeh

Call:
Im(formula = dist

speed, data = cars)

Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 **x

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12

Notice that there are four different sets of outl(, Residuals, Coefficients, aResults)
for both the constard and the estimated coefficieftspeed variable.

The estimated coefficients describe the change in the deperdriable when there is a
single unit increase in the explanatory variable given évatything else is held constant.

The standard error is a measure of accuracy and is used twweirtee confidence interval.
Confidence intervals provide a range of values for whichaher set level of confidence
that the true population mean will be within the given ranger example, if the Cl is set
at 95% percent then the probability of observing a valueidathe given Cl range is less
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than 0.05.

The p-value is represented as a percentage. Specificalg;¥alue indicates the percenta-
ge of time, given that your null hypothesis is true, that yauld find an outcome at least
as extreme as the observed value. If your calculated p-v&€2 then 2

In the overall model assessment the R-squared is the egdlaariance over the total vari-
ance. Generally, a high&®® is better but data with very little variance makes it easy to
achieve a higheR?, which is why the adjusteR? is presented.

Lastly, the F-statistic is given. Since the t-Statistic & appropriate to compare two
or more coefficients, the F-statistic must be applied. Thacbaethodology is that it
compares a restricted model where the coefficients havedwstda a certain fixed level to
a model which is unrestricted. The most common is the sumwdregl residuals F-test.

32.2 Multiple linear regression

Multiple linear regression attempts to model the relatmpsetween two or mor¢
explanatory variables and a response variable by fittingeah equation to observed
data. Formally, the model for multiple linear regressionjeg n observations, is
yi =0+ Ixil+ 2xi2+...pxip+ifori =1,2,...n.

A1%

The definition above was taken from: http://www.stat.yede/Courses/1997
98/101/linmult.htm

32.3 The one-way model

The one-way ANOVA model is of the form:
Yij = Hi +&ij
or
Yij = U+ Qj + &
32.3.1 Detalils

The one-way ANOVA model is of the form:
Yij = i +Eij

whereYijj is observation in treatment group andy; are the parameters of the model and
are means of treatment groupThezg;j; are independent and follow a normal distribution
with mean zero and constant variaraeoften written as ~ N(0,g?).

The ANOVA model can also be written in the form:
Yij = U+ O + &

where is the overall mean of all treatment groups andis the deviation of mean of
treatment group from the overall mean. The; follow a normal distribution as before.

The expected value ofj is | as the expected value of the errors is zero, often written as
E[Yij] = w.
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32.3.2 Examples

Example 32.1. In the rat diet experiment the model would be of the form:
Yij = Hi +&ij

whereyij is the weight gain for raj in diet groupi, 4 would be the mean weight gain
diet groupi andeij would be the deviation of rgtfrom the mean of its diet group.

32.4 Random effects in the one-way layout

The random effects model is written ag; = U+ 01 + &
where

j=1,...J
=1,

and assumes;j ~ n(0,0%), a; ~ n(0,0%), and that they are all independent.

32.4.1 Detalils
Note that this is considerably different from the fixed effemdel

Eyij =1
Vyij = 0% +0?
we have
COVYij, Yirj’) = COV(Qj + &ij, O + €irjr)
= E[(ai +&ij) (ay + & )]
= Elajay] +E[eijay] +E[aigy ] + E[gij&ij/]

Note 32.1.Note thatE[UW] = E[U]E[W] if U,W are independent

So,
E[Eijai/] = E[Giﬁi/j/] = EGiESi/j/ =0
Further, ,
g o ifi=ilj=]
Eleijel)] = { 0 otherwise
and 2 i
. [og ifi=i
E[O"“']_{ 0 ifii
So

0§\+02 ifi=ij=j
Comyij, Yirj) = op ifi=ij#]
0 otherwise
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It follows that the correlation between measuremegntandy;;, (within the same group)
are

cor(yij, Yijr = i
P NV ]
N
(0% +02)?
- yi) = A
:>C0|’(Y|jayij’) = 03+0?

This is the intra-class correlation.

32.5 Linear mixed effects models (Imm)

The simplest mixed effects model is

Yij = W+ 0+ Bj + &j
wherep,a1,0z,...,0; are unknown constants,
Bj ~n(0,ap)
& j ~n(0,0%)
(Bj ands; j independent).

32.5.1 Details

Thepanda; are the fixed effects arfg) is the random effects.

Recall that in the simple one-way layout with = P+ 0 + &j, we can write the model in
matrix formy = X+ & wheref = (4,ay,...,a;)" andX is appropriately chosen.

The same applies to the simplest random effects mpget u+ B + €j where we can
writey = p-1+2ZU + e where 1= (1,1,...,1),U = (B1,...,By)".

In general, we write the mixed effects models in matrix forithwy = XE+ZQ+§, where
BB contains the fixed effects atfl contains the random effects.

32.5.2 Examples

Example 32.2. 1.y, =B1+B2x +& (SLR)
2. Yij = U+ 0+ Bixij +&j only fixed effects (ANCOVA)
3. Vijk = U+ aj+bj +&ijk wherea; are fixed bub; are random.

4. Yijk = U+ai+bjxij +&jx wherea; are fixed bubj are random slopes.
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32.6 Maximum likelihood estimation in Imm

The likelihood function for the unknown parameté&(§, 03, 02) is

1 o 1/20-%xBy5y-XB)
(21'[)”/2 ’Zy’”/z

wheres, = 0327 + o?l.

MaximisingL over 3, 0%, 0 gives the variance components and the fixed effects. May
also need], this is normally done using BLUP.

32.6.1 Details

Recall that ifW is a random variable vector withW = pandVW = % then
E[AW] = A
V[AW] = AZA
In particular, ifW ~ n(W, Z( thenAW ~ n(Ap, AZA).

Now consider the Imm with

y=XB+Zu+e
where

u= (Ug,...,Un)

€= (€1,...,&m)
and the random variabldg; ~ n(0,0%), & ~ n(0,02) are all independent so that~
n(0,04l) ande ~ n(0,a2l).
ThenEy= X and

= V[Zu+V[g]

— Z(0al)Z' + o2l

0aZZ + 0%l

and hence ~ n(XB,02ZZ +a?l).
Therefore the likelihood function for the unknown parameté, 0%, 0?) is

1
n/2

_ 1 ety xp
(2m"/2 |z

whereZ, = 03ZZ + 0?l. MaximizingL over, 0%, a2 gives the variance components and
the fixed effects. May also neeglwhich is normally done using BLUP.

33 Some regression topics

33.1 Poisson regression

Datay; are from a Poisson distribution with megnand Iny; = 31+ B2X;. A likelihood
function can be written and the parameters can be estimated maximum likelihood
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33.2 The generalized linear model (GLM)

Datay; are from a distribution within the exponential family, wittheany; andg(;) =
xB’ for some link functiong. A likelihood function can now be written and the para-
meters can be estimated using maximum likelihood.

33.2.1 Details

Datay; are from a distribution within the exponential family, witheany; andg(p) = i3’
for some link functiong.

The exponential family includes distributions such as tlae€3ian, binomial, Poisson, and
gamma (and thus exponential and chi-squared).

The link functions are typically
¢ identity(with the Gaussian)
¢ log (with the Poisson and the gamma)
e logistic (with the binomial)

A likelihood function can be written and the parameters caestimated using maximum
likelihood.
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