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1 Numbers, arithmetic and basic algebra

1.1 Natural Numbers

The positive integers are called natural numbers.

These numbers can be added, multiplied together and so forth.

Notation:N= {1,2,3,4, ....}

Subtraction and division are not defined on these numbers.

An arbitrary element ofN is most commonly denoted byi, j, n,or m, but any symbol
can be used.

1.1.1 Details

Definition 1.1. The set of positive integers is usually denoted byN, i.e. N =
{1,2,3,4, ....} and is called the set ofnatural numbers. In some cases the number
zero is included as a natural number, but here we will use the symbolN0 to denote the
integers 0, 1, 2 and up.

Within this set of numbers it is possible to add and multiply numbers together. Arithmetic
operations are denoted by+ for addition and· (or×) for multiplication. A natural number
can also be raised to the power of a natural number, e.g. 35 = 3 ·3 ·3 ·3 ·3 or in general
mn = m·m· . . . ·m (n times).

When stating general properties of the natural numbers one needs to use symbols to indica-
te that the property holds for an arbitrary number. It is not enough to just write the property
for a few numbers. For example, to declare that one can interchange numbers in a sum, it
is not enough to say 4+3= 3+4 but one must explicitly state "the addition operator has
the property that any two natural numbers,n, m∈ N satisfyn+m= m+n".

An arbitrary element ofN is most commonly denoted byi, j, n,or m, but any symbol,
a, b, c, . . ., can be used.

Several rules of arithmetic apply (some by definition, others can be derived) such as

ab = ba

a+b = b+a

a+bc = a+(bc)

a(b+c) = ab+ac

(a+b)+c = a+(b+c)

(ab)c = a(bc)

Subtraction and division are not generally defined. In addition, we define one integer,n, to
the power of another,m, to meann multiplied by itselfm times:nm = n ·n · . . . ·n

︸ ︷︷ ︸
m.
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Definition 1.2. The power is anoperator just like addition and multiplication, and is
defined to have higher priority than the other two.

1.1.2 Examples

Example 1.1. If we havex= 4 andy= 2 and want to evaluate

xy+yx

then we replace the values of x and y in the expression, and evaluate it, taking care to
observe the correct order of operations:

42+24 = 16+16= 32.

1.2 Starting with R

Download R from the R website: http://www.r-project.org/

Look at on-line information on R, and take the tutor-web R tutorial: http://tutor-
web.net/stats/stats240.1

Simple R commands:

• Assignment:x<−2

• Arithmetic: 2∗5+4

1.2.1 Details

To assign values to a variable in R one can use « -ǫr -"; however, these areNOT equivalent.
Using the equals sign is confusing and therefore not recommended.

1.2.2 Examples

Example 1.2. Assigning values to a variable:

x<-2

y<-3

z<-x+y

Example 1.3. Viewing assigned values:
Type the name,i.e. "z", to view the assigned value.
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z

[1℄ 5

1.3 The Integers

The set of positive and negative integers:
Z= {.., ..,−2,−1,0,1,2, ......}

1.3.1 Details

Definition 1.3. The set of all integers is denoted byZ, i.e.

Z= {.., ..,−2,−1,0,1,2, ......}.

Note 1.1.Note that within this set it is possible to subtract as well asadd and multiply.
Within this set we cannot, however, in general, perform division.

When preforming multiple mathematical operations within the same equation, i.e. 79−8 ·
3, there is a conventional order for which the operations must be performed.

Definition 1.4. The conventional order of operations for equations with multiple mat-
hematical operations is referred to as anoperator precedence.

1.3.2 Examples

Example 1.4. To compute 79−8 ·3 start by multiplying and then subtracting:
79−8 ·3= 79−24= 55

Example 1.5. To compute 15− (24+ 36) we first note that the parentheses (brackets)
imply a precedence; anything inside brackets should be evaluated first.
Thus, we first add 36 to 24 and then we subtract that from 15.
15 - (24+36) = 15 - 60 = - 45

Note that the answer is a negative number.
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Example 1.6. Simple arithmetic in R is easily done at the command prompt.

79-8*3

[1℄ 55

15-(24+36)

[1℄ -45

1.4 Rational numbers

Rational numbers are fractions denoted p/q, where p and q are integers. We can
simplify fractions if the numerator and denominator contain common terms.

1.4.1 Details

0 1/6 1/2 3/4 1 2

Definition 1.5. Rational numbersare fractions denotedp/q, wherepandqare integers.
The set of all rational numbers is usually denotedQ.

Note 1.2.Note that every integer is a rational number (obtained by taking q= 1).

We can simplify fractions if the numerator and denominator contain common terms.

When the rationals are ordered on to a line there are points missing, i.e. there are "gaps",
for example there is no rational numberp/q such that(p/q)2 = 2.

1.4.2 Examples

Example 1.7. 2
6= 2

2·3=1
3

The rational numbers can be put in order along a line as in the figure.
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Example 1.8. As an elaborate example of a fraction, consider the evaluation of the quan-
tity

2
3 +

2
5

1
3 +

1
2

Example 1.9. Evaluate
2
3 +

2
5

1
3 +

1
2

Solution: We can either start by calculating the numerator

2
3
+

2
5

or the denominator

1
3
+

1
2

.
Here we choose to start with the numerator. The first step is tomake the two fractions
in the numerator have a common denominator. We can either findthe least common
denominator or multiply the fractions with each others denominator. Here they are the
same number, 15. So the first step is:

2
3
·5+ 2

5
·3=

2 ·5
3 ·5+

2 ·3
5 ·3 =

10
15

+
6
15

.
Now it is possible to add the two fractions which is the secondstep:

10+6
15

=
16
15

Now the same process has to be done on the denominator.
With the same method (LCM - least common multiple) we get:

1 ·2
3 ·2+

1 ·3
2 ·3 =

2
6
+

3
6
=

5
6

Then the total answer is:

16
15
5
6

=
16
15

· 6
5
=

96
75

=
96/3
75/3

=
32
25

We can see that in the last step of the equation, the factor hasbeen simplified. To do
this we use factoring. We break down the numbers into smallerfactors or multiple prime
numbers. Therefore we have:

96
75

=
3 ·32
3 ·25
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We can now remove "3", or the multiplier, as it is on both sidesof the fraction. So we
have:

32
25

=
25
25

+
7
25

= 1
7
25

In step 1 above we used Cross-Multiplication.

Definition 1.6. Cross-Multiplication is when we multiple the numerator by the
reciprocal of the denominator.

So in this case we rewrite
16
15
5
6

or
16
15

÷ 5
6

as
16
15

· 6
5

As you can see all we are doing is turning

5
6

upside down: and multiplying it with
16
15

This gives:

96
75

In some cases it is possible to draw asquare root of a fractions= p
q , i.e. find a number

r ∈Q such thatr2 = s. The square root is denoted
√

r.

Example 1.10. Consider the expression

(

 

1
9
×24)+(

1
5
×
√

25)

.
To evaluate this expression, first consider separately the two parts on each side of the plus
symbol.
The first part is

(

 

1
9
×24)
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and the second part is

(
1
5
×
√

25)

.
In addition, by definition of root,

 

1
9
=

1
3

.
First part:

(

 

1
9
×24) =

1
3
×16=

16
3

Second part:

(
1
5
×
√

25) =
1
5
×5= 1

Finally, add the first part and the second part:

16
3
+1=

19
3

Example 1.11. Consider the following fraction example, to be solved step by step:

4
2 +(1

4 · 5
3)

2
6 ÷ 1

5

First we need to be aware of operator presedence, meaning that first we solve the brackets,
then multiplication/division, then addition/subtraction and finally the main fraction.

(
1
4
· 5
3
) =

5
12

After solving the bracket we can proceed with adding

4
2

to
5
12

as there is no other action left for the nominator of the main fraction. So:

4
2
+

5
12

When adding fractions together we first have to find a common denominator, in this case
12 would work as

2 ·6= 12

So we multiply both the numerator and the denominator of thatfraction by 6 and then
add the two numerators of the fractions together, keeping the same denominator.

4
2
+

5
12

=
4 ·6
2 ·6+

5
12

=
24
12

+
5
12

=
29
12
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Now we have the top half of the fraction solved. We then proceed with dividing the
two fractions of the bottom half. When dividing fractions weuse the so called cross
multiplication technique. This arithmetic trick is derived from the fact that if you divide
a fraction by its duplicate you get 1. If you multiple a fraction by its reciprocal (it’s
reverse) you also get 1. Like so:

1
2
÷ 1

2
= 1

and
1
2
· 2
1
= 1

These functions always provide the same result and therefore we can turn the fraction
we are dividing by upside down and multiply it to the other fraction as that is usually
much easier.

We can therefore rewrite
2
6
÷ 1

5
as

2
6
· 5
1
=

10
6

We’ve now solved both halves of the original fraction and cantherefore proceed to solve
it, again with the cross multiplication technique as fractions are after all just divisions:

29
12

÷ 10
6

=
29
12

· 6
10

=
174
120

Now
174
120

is a pretty bad looking fraction and we’d preferably like to simplify it.

To do this we use factoring.

Definition 1.7. Factoring essentially means to break a number done into it’s smallest
factors or multipliable prime numbers.

In this case we get
2 ·3 ·29
2 ·3 ·20

These are the smallest prime numbers that can multiply together into 174 and 120
respectively.

A way of doing this in your head is by first dividing both numbers (174,120) by two.
Which gives us:

2 ·87
2 ·60
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and then dividing those numbers (87,60) by 3, since they can’t be divided by 2. Dividing
by 3 gives you

3 ·29
3 ·20

=
29
20

which is a lot nicer than
174
120

The reasoning behind this factoring simplification is that we can remove multipliers if
they are on both sides of a fraction. This is because the result of a fraction where the
numerator and the denominator are the same is always 1. Like so:

1
1
= 1

or
2
2
= 1

or
3
3
= 1

The final answer therefore is

4
2 +(1

4 · 5
3)

2
6 ÷ 1

5

=
29
20

1.5 The real line

Some obvious numbers are not fractions.
The set of numbers making up the real line is denoted
by the symbolR.

21

1

The
diagonal of a rectangle with unit side lengths of

√
2,

Note that
√

2 ia not a fraction.

1.5.1 Details

Some obvious numbers, which commonly occur, are not fractions. These are in between
the rational numbers (fractions). Filling in the missing points to obtain a continuum results
in the set of "real numbers".

Denoted byR the entire set of "real numbers"which corresponds to "filling in"the "missing
pieces̨of the line.
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1.5.2 Examples

Example 1.12. If C is the circumference of a circle andD is the diameter and we define
π = C

D thenπ is not a fraction.

Example 1.13. One example of a non fraction is the number e (Euler’s number)which
can be defined by

e=
∞∑

n=0

1
n!

Example 1.14. If you have a right triangle with unit side length, what is thelength of its
hypotenuse and what class of numbers does it belong to?
An isosceles triangle is defined as having adjacent and opposite sides of same length,
connected by a 90◦ angle. Unit side length of these, refers to a side length of

1

.
As we have a 90◦ angle, we can use Pythagoras’ theorem:

a2+b2 = c2

With
a= ad jacent

b= opposite

c= hypotenuse

So with
a,b= 1

:

c2 = 12+12

c2 = 1+1

c2 = 2

We take the square root to get
c

c=
√

2

Now that we answered the first part of the question, it needs tobe defined, which class of
number √

2
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belongs to. √
2

is an irrational number, and belongs thereby to the set of real numbers

R

Real numbers can be imagined as points on an infinitely long line, which is also called
the real line.

2 Data vectors

2.1 The plane

Pairs of numbers can be depicted as points on a plane.
The plane is normally denoted byR2.

2.1.1 Details

Pairs of numbers can be depicted as points on a plane.

Definition 2.1. A plane is a perfectly flat surface with no thickness and no end, it can
extend forever in all directions. It has two-dimensions, length and width. We need two
values to find a point on the plane.

Normally we talk about "the plane"as the collection of all pairs of numbers and denoted it
by

R2 = {(x,y) : x,y∈ R}
, giving coordinates to each point.

2.1.2 Examples

Example 2.1. Plotting the point (2,4) in the x-y plane using R.

plot(2,4,xlim=
(0,6),ylim=
(0,6),xlab="x",ylab="y",
ex=2)

text(2,4,"(2,4)",pos=4,
ex=2)

Additional points can be added using thepointsfunction:

points(3,5, 
ex = 0.5) ## a point at (3,5)

If you have 2 sets of coordinates on a plane you can calculate the distance between the 2
points and graph the line connecting the points
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Example 2.2. What is the distance between the 2 points (3,9) and (5,1)?
We will use the Pythagorean theorem:

d =
»

(x2−x1)2+(y2−y1)2

We insert our values into the formula:

d =
»

(5−3)2+(1−9)2

When we combine inside the parenthesis we get:

d =
»

(2)2+(−8)2

Squaring both terms:
d =

√
4+64

Then we take the square root:
d =

√
68

The result:
d = 8.2462

2.2 Simple plots in R

Graphing functions in R

• plot - plots a scatter plot (as a line plot)

• points - adds points to a plot

• text - adds text to a plot

• lines - adds lines to a plot
0 1 2 3 4 5

0
1

2
3

4
5

x

y

(1,2)

(3,1)

Points
on a plane, drawn with R.

2.2.1 Examples

Example 2.3. plot(2,3)

gives a single plot and

plot(2,3, xlim=
(0,5), ylim=
(0,5))

gives a single plot but forces both axes to range from 0 to 5.
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Example 2.4. The following R commands can be used to generate a plot with two points:

plot(1,2,xlim=
(0,5),ylim=
(0,5),xlab="x",ylab="y")

points(3,1)

text(1,2,"(1,2)",pos=4, 
ex=2)

text(3,1,"(3,1)",pos=4, 
ex=2)

Example 2.5. In this example, we plot 3 points. The first two points are by including
vectors with a length of 2 as the x and y arguments of the plot function. The third plot
was added with the points function. The second and third points were labeled using the
text function and a line was drawn between them using the lines function.

Note 2.1.Note that if you are unsure of what format the arguments of an Rfunction
needs to be, you can call a help file by typing "?"before the function name (e.g. "?lines")

plot(
(2,3),
(3,4),xlim=
(2,6),ylim=
(1,5),xlab="x",ylab="y")

points(4,2)

text(3,4,"(3,4)",pos=4, 
ex=2)

text(4,2,"(4,2)",pos=4, 
ex=2)

lines(
(3,4), 
(4,2))

2.3 Data

Data are usually a sequence of numbers, typically called a vector.

2.3.1 Details

When we collect data these are one or more sequences of numbers, collected into data
vectors. We commonly think of these data vectors as columns in a table.

2.3.2 Examples

Example 2.6. In R, if the command

x <- 
(4,5,3,7)

is given, thenx contains a vector of numbers.

Example 2.7. Create a function in R, give it a name "Myfunction"which takes the sum
of x,y.
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Myfun
tion<- fun
tion(x,y) {

sum(x,y)

}

If you input the vectors 1:3 and 4:7 into the function it will calculate the sum of
x<-(1+2+3) andy<-(4+5+6+7) as follows

> Myfun
tion(1:3,4:7)

28

2.4 Indices for a data vector

If data are in a vectorx, then we use indicesto refer to individual elements.

2.4.1 Details

If i is an integer thenxi denotes thei’th element ofx.

Note that although we do not distinguish (much) between row-and column vectors, usually
a vector is thought of as a column. If we need to specify the type of vector, row or column,
then for vectorx, the column vector would be referred to asx′ and the row vector asxT (the
transposeof the original).

2.4.2 Examples

Example 2.8. If x= (4,5,3,7) thenx1 = 4 andx4 = 7

Example 2.9. How to remove all indices below a certain value in R

x <- 
(1,5,8,9,4,16,12,7,11)

x

[1℄ 1 5 8 9 4 16 12 7 11

y <- x[x>10℄

y

[1℄ 16 12 11

Example 2.10. Consider a function that takes to vectors

a∈ Rn,b∈ Nm

as arguments with
n≥ m
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and
1≤ b1, ...,bm≤ n

. The function returns the sum
m∑

i=1

abi (1)

Long version:
fN <- function(a,b)
result <- sum(a[b])
return(result)

Short version:
|fN <- function(a,b) sum(a[b])|

2.5 Summation

We use the symbolΣ to denote sums.
In R, the sum function adds numbers.

2.5.1 Examples

Example 2.11. If x= (4,5,3,7)
then

4∑

i=1

xi = x1+x2+x3+x4 = 4+5+3+7= 19

and

4∑

i=2

xi = x2+x3+x4 = 5+3+7= 15.

Within R one can give the corresponding commands:

x<-
(4,5,3,7)

x

[1℄ 4 5 3 7

sum(x)

[1℄ 19

sum(x[2:4℄)

[1℄ 15

3 More on algebra

3.1 Some Squares

If a and b are real numbers, then

(a+b)2 = a2+2ab+b2
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3.1.1 Details

If a, b are real numbers, then:
(a+b)2 = a2+2ab+b2

This can be proven formally with the following argument:

(a+b)2 = (a+b)(a+b)

= (a+b)a+(a+b)b

= a2+ba+ba+b2

= a2+2ab+b2

3.2 Pascal’s Triangle

Pascal’s triangle is a geometric arrangement of the binomial coefficients in a triangle

1
1 1

1 2 1
...

...
...

...
...

3.2.1 Details

n= 0: 1

n= 1: 1 1

n= 2: 1 2 1

n= 3: 1 3 3 1

To build Pascal’s triangle, start with "1"at the top, and then continue placing numbers below
it in a triangular pattern. Each number is just the two numbers above it added together
(except for the edges, which are all "1").

3.2.2 Examples

Example 3.1. The following function in R gives you the Pascal’s triangle for n = 0 to
n= 10.

fN <- fun
tion(n) formatC(n, width=2)

for (n in 0:10) {


at(fN(n),":", fN(
hoose(n, k = -2:max(3, n+2))))


at("\n")

}

0 : 0 0 1 0 0 0

1 : 0 0 1 1 0 0

2 : 0 0 1 2 1 0 0

3 : 0 0 1 3 3 1 0 0

4 : 0 0 1 4 6 4 1 0 0
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5 : 0 0 1 5 10 10 5 1 0 0

6 : 0 0 1 6 15 20 15 6 1 0 0

7 : 0 0 1 7 21 35 35 21 7 1 0 0

8 : 0 0 1 8 28 56 70 56 28 8 1 0 0

9 : 0 0 1 9 36 84 126 126 84 36 9 1 0 0

10 : 0 0 1 10 45 120 210 252 210 120 45 10 1 0 0

Changing the numbers in the linefor(n in 0:10) will give different portions of the
triangle.

3.3 Factorials

We define the factorial of an integer n as
n! = n · (n−1) · (n−2) · . . . ·3 ·2 ·1

3.3.1 Details

Definition 3.1. We define the factorial of an integer n as

n! = n · (n−1) · (n−2) · · ·. . . ·3 ·2 ·1.

3.3.2 Examples

Example 3.2. Suppose you have 6 apples,{a,b,c,d,e, f} and you want to put each one
into a different apple basket,{1,2,3,4,5,6}.

For the first basket you can choose from 6 apples{a,b,c,d,e, f}, and for the second
basket you have then 5 apples to choose from and so it goes for the rest of the baskets,
so for the last one you only have 1 apple to choose from.

The end result would then be: 6!= 6 ·5 ·4 ·3 ·2 ·1= 720 possible allocations.

This could also be calculated in R with the factorial function:

fa
torial(6)

[1℄ 720

3.4 Combinations

The number of different ways one can choose a subset of sizex from a set ofn elements
is determined using the following calculation:

(

n
x

)

=
n!

x! (n−x)!

29



3.4.1 Details

Definition 3.2. A combination is an un-ordered collection of distinct elements

Suppose we want to toss a coinn times. In each toss we obtain head (H) or tail (T) resulting
in a sequence of H,T,T,H, ... T.

How many of these possible sequences contain exactlyx tails? There aren positions in
the sequence, we can choosex of these in

Än
x

ä

ways and put our "Ts"in those positions. If
the probability of landing tails then each one of these sequences with exactlyx tails has
probabilitypx(1− p)n−x so the total probability of landing exactlyx tails in n independent
tosses is

(

n
x

)

=
n!

x! (n−x)!
.

For convenience we define 0! to be 1.

3.4.2 Examples

Example 3.3. Consider tossing a coin four times.

(a) How many times will this experiment result in exactly twotails?

There are a total of 16 possible sequences of heads and tails from four tosses. These can
simply all be written down to answer a question like this.

We get two tails in 6 of these tosses. We can explicitly write the corresponding comb-
inations of two tails as follows

HHTT

HTHT

HTTH

THTH

TTHH

THHT

(b) How many times you will end up with 1 tail? The answer is 4 times and the output
can be written as;

HHHT

HTHH

THHH

HHTH

The case of a single tail is easy: The single tail can come up inany one of four positions.
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3.5 The binomial theorem

(a+b)n =
n∑

x=0

(

n
x

)

axbn−x

3.5.1 Details

If a and b are real numbers and n is an integer then the expression(a+b)n can be expanded
as:
(a+b)n = an+

Än
1

ä

an−1b+
Än

2

ä

an−2b+ . . .+
Ä n

n−1

ä

abn−1+bn

(a+b)n =
∑n

i=1

Än
x

ä

axbn−x

This can be seen by looking at(a+b)n as a product of n parentheses and multiply these by
picking one item (a or b) from each. If we pickeda from x parentheses andb from (n−x),
then the product isaxbn−x. We can choose thex a’s in a total of

Än
x

ä

ways so the coefficient
of axbn−x is

Än
x

ä

.

3.5.2 Examples

Example 3.4. Since

(a+b)n =
n∑

x=0

(

n
x

)

axbn−x,

it follows that

2n = (1+1)n =
n∑

x=0

(

n
x

)

i.e.

2n =

(

n
0

)

+

(

n
1

)

+

(

n
2

)

. . .+

(

n
n

)

4 Discrete random variables and the binomial distributi-
on

4.1 Simple probabilities

4.1.1 Details

Of all the possible 3-digit strings,
Ä3

x

ä

of them havex heads. So the probability of landingx

heads is
Ä3

x

ä

px(1− p)3−x.

4.1.2 Examples

Example 4.1. Consider a biased coin which has probabilityp of landing heads up. If we
toss this coin 3 independent times the possible outcomes are:
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sequence probability Numbero f heads
HHH p · p · p= p3 3
HHT p2(1− p) 2
HTH p2(1− p) 2
HTT p(1− p)2 1
THH p2(1− p) 2
THT p(1− p)2 1
TTH p(1− p)2 1
TTT (1− p)3 0

Example 4.2. It is also possible to aggregate these values into a table anddescribe only
the number of heads obtained:

heads probabilityp(x)
0 (1− p)3

1 3p(1− p)2

2 3p2(1− p)
3 p3

If we are only interested in the number of heads, then this table describes aprobability
mass functionp, namely the probabilityp(x) of every possible outcomex of the experi-
ment.

Example 4.3. Given that a year is 365 days and each day has the same probability of
being someone’s birthday. What’s the probability of at least 2 people sharing a birthday
in a group of 25 people?

Now, calculating each of the possible outcomes could becomevery tedious. That is
calculating the odds that 2 people share a birthday, 3 people, 4 people, etc. So instead
we try to find out the odds that no one in the group shares a birthday and subtract those
odds from 1 (100%).

First, let’s look at the odds of only two people having distinct birthdays.

365
365

· 364
365

= 0.9973

Person one can be born on any day and the odds of having a distinct birthday are
therefore 1. The next person can be born on everyday but the 1 the other person was
born on, so 364 days.

Now let’s say we add the 3rd person and calculate his/her oddsof having a distinct birt-
hday.

365
365

· 364
365

· 363
365

= 0.9918

This can also be rewritten as
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365·364·363
3653

And we can do this on and on for all the 25 people we are interested in. But that may
also become a bit tedious. So we use factorials instead. So instead of doing

365·364·363... ·341
36525

we do

365!
340!

36525 = 0.4313

Essentially the division of factorials here removes all thevalues < 341, leaving 340, 339,
338 ... 1
Now remember this is the probability that no one shares a birthday. So when we subtract
this from 1 we get

1−0.4313= 0.5687

or roughly 57% odds of at least 2 people in a group of 25 sharingthe same birthday.

4.2 Random variables

A random variable is a concept used to denote the outcome of anexperiment before it is
conducted.

4.2.1 Examples

Example 4.4. Let X denote the number of heads in a coin tossing experiment. We can
then talk about the probabilities of certain events such as obtaining two heads, i.e.X = 2.
We write this as

P[X = 2] =

(

n
2

)

p2(1− p)n−2

In general:

P[X = x] =

(

n
x

)

px(1− p)n−x

wherex= 0,1, .....,n

4.2.2 Handout

Definition 4.1. A random variable, X, is a function defined on a sample space, with
outcomes in the set of real numbers.

It is simpler to think of a random variable as a symbol used to denote the outcome of an
experiment before it is conducted.
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Note 4.1.Note that it isessentialto distinguish between upper case and lower case letters
when writing these probabilities - it makes no sense to writeP[x= x].

Note 4.2.Random variables are generally denoted by upper case letters such asX, Y and
so on.

Note 4.3.To see how a random variable is a function, it is useful to consider the actual
outcomes of two coin tosses. These outcomes can be denoted{HH,HT,TH,TT}. Now
consider a random variableX which describes the number of heads obtained. This random
variable attributed 2 to the outcomeHH and 0 toTT, i.e. X is a function withX(HH) = 2,
X(HT) = X(TH) = 1 andX(TT) = 0.

4.3 Simple surveys with replacement

If we randomly draw individuals (with replacement) and ask aquestion with two possible
answers (positive or negative), then the number of positiveanswers will come from a
binomial distribution.

4.3.1 Examples

Example 4.5. Suppose we are participating in a lottery. We pick a number from a lottery
bowl (a simple random sample). We can put the number aside, orwe can put it back into
the bowl. If we put the number back in the bowl, it may be selected more than once; if
we put it aside, it can be selected only one time.

Definition 4.2. When an element can be selected more than one time, we are sampling
with replacement.

Definition 4.3. When an element can be selected only one time, we are samplingwit-
hout replacement.

4.4 The binomial distribution
If we toss a biased coinn independent times, each with probabilityp of landing heads
up, then the probability of obtainingx heads is

(

n
x

)

px(1− p)n−x

4.4.1 Examples
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Example 4.6. Suppose we toss a coin, with probabilityp of landing on headsn times
obtaining a sequence of Hs (when it lands heads) and Ts (when it lands tails). Any
sequence,

HTH...HTHHH

which hasx heads (H) andn− x tails (T), has the probabilitypx(1− p)n−x. There are
exactly

Än
x

ä

such sequences, so the total probability of landingx heads inn tosses is

(

n
x

)

px(1− p)n−x.

Example 4.7. Let the probability that a certain football club wins a matchbe equal to
0.4.If the total number of matches played in the season is 30,what is the probability that
the football club wins the match 10% of the time?

We first calculate the number of times a match was played and won by multiplying the
percentage of wins by the number of matches played.

10% of 30 times = 3 times

We can now proceed to calculate the probability that they will win the match given
that their probability of a winning is 0.4 if they play 3 timesin a season. This can be
computed as follows:

(

30
3

)

× (0.4)3× (1−0.4)30−3

= 0.000265

This can be calculated in R using the code below:

dbinom(3,30,0.4)

[1℄ 0.0002659437

This is equal to the manual calculation using the binomial theorem.

Example 4.8. Suppose a youngster puts his shirt on by himself every day forfive days.
The probability that he puts it on the right way each time isp = 0.2. We letX be a
random variable that describes the number of times the youngster puts his shirt on the
right way. The youngster can either put the shirt on the wrongor the right way so
X follows the binomial distribution with the parametersp = 0.2 (the probability of a
successful trial) andn = 5 (number of trials). We can now calculate for example the
probability that the youngster will put it on the right way for at least 4 days.
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Putting the shirt on the right way for at least 4 days means that the youngster will either
put it on the right way for either four or five days (at least four or more days of five days
total). We thus have to calculate the probability that the youngster will put his shirt on
the right way for 4 and 5 days separately and then we add it together. We can write this
process as follows:

P(X ≥ 4) = P(X = 4)+P(X = 5)

=

(

5
4

)

×0.24× (1−0.2)5−4+

(

5
5

)

×0.25× (1−0.2)5−5

= 5×0.24×0.81+1×0.25×0.80

= 5×0.24×0.8+0.25×1

= 5×0.8×0.24+0.25

= 4×0.24+0.25

= 4×0.0016+0.00032

= 0.00672

The probability that the youngster will put his shirt on the right way for at least four out
of five is thus 0,7%.

This is possible to calculate in R in a several ways, either using the command dbinom or
pbinom. The command dbinom calculates

P(X = k)

and the command pbinom calculates

P(X ≤ k)

wherek is the number of successful trials. Ifn is the number of trials andp is the
probability of a successful trials then the commands are used by writing: dbinom(k,n,p)
and pbinom(k,n,p).

To calculate the probability that the youngster will put hisshirt on the right way for at
least four days of five we thus write the command:

dbinom(4,5,0.2) + dbinom(5,5,0.2)

which gives 0.00672.

This is the same as writing:

dbinom(
(4,5),5,0.2)

or
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dbinom(4:5,5,0.2)

which give two separate numbers: 0.00640 and 0.00032 which can be added together to
get 0.00672.

There is also a command to add them together for us:

sum(dbinom(
(4,5),5,0.2))

or

sum(dbinom(4:5,5,0.2))

They give the answer 0.00672.

The fourth way of calculating this in R is to use pbinom. As said before pbinom calculates

P(X ≤ k)

wherek is the number of successful trials. Here we want to calculatethe probability that
the youngster will put his shirt on the right way in 4 or 5 times(of 5 total) so the number
of successful trials is 4 or greater. That means we want to calculate

P(X ≥ 4)

which equals
1−P(X ≤ 3)

. We thus putk as 3 and the R command will be:

1 - pbinom(3,5,0.2)

which also gives 0.00672.

Example 4.9. In a certain degree program, the chance of passing an examination is
20%. What is the chance of passing at most 2 exams if the student takes five exams?

Solution:
In this problem, we compute the chance of a student passing, 0.1 or 2 exams.This is given
by,

p(X = 0 or 1 or 2) =

(

5
0

)

0.200.85+

(

5
1

)

0.210.84+

(

5
2

)

0.220.83

= 1×0.200.85+5×0.210.84+10×0.220.83

= 0.32768+0.4096+0.2048

= 0.94208

In the R console, we can use the command,sum(dbinom(
(0:2),5,0.2)), which also
gives

0.94208.

The same answer is obtained with

dbinom(0,5,0.2)+dbinorm(1,5,0.2)+dbinom(2,5,0.2)

37



and with

pbinom(2,5,0.2)

Example 4.10. Consider the probability of someone jumping off a cliff is 0.35. Suppose
we randomly selected four individuals to participate in thecliff jumping activity. What
is the chance that exactly one of them will jump off the cliff?

Consider a scenario where one person jumps:
P (A =jump , B = refuse, C = refuse, D = refuse)
= P (A =jump) P (B = refuse) P (C = refuse) P (D = refuse)
= (0.35)(0.65)(0.65)(0.65)= (0.35)1(0.65)3 = 0.096

But there are three other scenarios( B, C, or D) in which one only person decides to jump.
In each of these cases, the probability is again 0.096. Thesefour scenarios exhaust all the
possible ways that exactly one of the four people jumps:
4 · (0.35)1(0.65)3 = 0.38.

In the R console we can use the command:dbinom(1,4,0.35) which gives the answer
as 0.384475.

4.5 General discrete probability distributions

A general discrete probability distribution can be described by a list of all possible
outcomes and associated probabilities.

4.5.1 Details

A general discrete probability distribution is described by the possible outcomes

x1,x2, . . .

and associated probabilities, denoted byp1, p2, . . . or p(x1), p(x2), . . .

If a random variableX has this distribution, then we can write

P[X = xi ] = p(xi) = pi

or in general

P[X = x] = p(x)

where it is understood thatp(x) = 0 if x is not one of thesexi .

4.5.2 Examples
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Example 4.11. If X is the number of heads (H) before obtaining the first tail (T) when
tossing an unbiased coin 4 independent times, then the possible basic outcomes are:

Toss
In binary 1 2 3 4 #H beforeT

0000 H H H H 4
0001 H H H T 3
0010 H H T H 2
0011 H H T T 2
0100 H T H H 1
0101 H T H T 1
0110 H T T H 1
0111 H T T T 1
1000 T H H H 0
1001 T H H T 0
1010 T H T H 0
1100 T H T T 0
1101 T T H H 0
1110 T T T H 0
1111 T T T T 0

Since the coin is unbiased, each of these has the same probability of occurring. We can
now count sequences to find the number of possibilities of a particular number of heads,
H, before a tail in 4 coin tosses and thus obtain the corresponding probabilities as:

Number of tosses before a heads Probability
x p(x)
0 8

16 =
1
2

1 4
16 =

1
4

2 2
16 =

1
8

3 1
16

4 1
16

4.6 The expected value or population mean

The expected value is the sum of the possible outcomes, weighted with the respective
probabilities (discrete variable). Think of this in terms of an urn full of marbles, each
labelled with number.

4.6.1 Details

If the possible outcomes arex1,x2... with probabilitiesp1, p2... then the expected value is

µ= x1 · p1+x2 · p2+ . . . .

The fact that this is the only sensible definition of an expected value follows from consi-
dering random draws from a finite population where there areni possibilities of obtaining
the valuexi . If we setn=

∑
xi andpi = ni/n then the expected value above is the simple

average of all the numbers in the original population.
In the case of thebinomial distribution with n trials and success probabilityp it turns out
that
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µ= n · p

If X is the corresponding random variable, we denote this quantity by E[X].

4.6.2 Examples

Example 4.12. If we toss a fair coin 10 independent times, we expect on averagenp=
10· 1

2 = 5 heads.

Example 4.13. Toss a fair die and pay $60 if a six comes up and nothing otherwise. The
expected outcome is

5
6
·$0+

1
6
·$60= $10.

Example 4.14. In Las Vegas, a particular sports bet has about a 30% chance ofwinning.
If the bet wins, the bettor will win 15 dollars. If the bet loses, the bettor will lose 10
dollars. The expected return of placing one of these bets is -2.50 dollars.
Detailed calculation:

$15·0.3−$10·0.7=−$2.5

Example 4.15. Class starts at 8:00 and the last bus that will get you to classon time
leaves at 7:30. The teacher has a policy that if you are late toclass 6 of the 30 classes,
then she drops your final grade by 1/10 points. You know that ifyou set your alarm for
7:15, you miss the 7:30 bus approximately every fourth time,but if you set it for 7:10,
you’ll only miss the bus approximately every eighth time. Ifyou set it for 7:00, you’ll
only miss the bus every one hundredth time.

Part A: Assuming you try to go to class every time, can you expect to have your grade
dropped in the following scenarios?
1 - You set your alarm for 7:15 throughout the duration of the class.
2 - You set your alarm for 7:15 until you reach 5 missed classes, then switch to 7:10.
3 - You set your alarm for 7:15 until you reach 5 missed classes, then switch to 7:00.

Part B: What is your expected grade in the course, assuming you would have had a 7/10
without the late penalty, and:
1 - You would never choose the first alarm-clock strategy and you would most likely
choose scenario 2 (let’s say 9/10 times), but there’s a smallchance you might choose the
3rd strategy (let’s say 1/10 times).
2 - You would never choose the first alarm-clock strategy and you would most likely
choose scenario 3 (let’s say 9/10 times), but there’s a smallchance you might choose the
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2nd strategy (let’s say 1/10 times).

Answers:
A1 - Let’s call X our random variable, which we want to be the number of times we make
it to class on-time. With the alarm set to 7:15 we expect to make it to class on-time:

E[X] = 30× (1− 1
4
) = 22

1
2

You’re grade would most likely be dropped.

A2 - First we need to see how many classes we go to before we reach the 5-late-classes
threshhold:

E[X] = n× (1− 1
4
) = n−5

E[X] = n((1− 1
4
)−1) =−5

E[X] = n=
−5

−1
4

E[X] = n=
20
1

= 20

So, the night before our 21st class, you get worried and change alarm-clock strategies. If
you set it at 7:15 for the rest of the course (10 classes), you will be on time:

E[X] = 15+10× (1− 1
8
) = 23

3
4

You’re grade would most likely be dropped.

A3: If you instead start setting the alarm clock for 7:00 for the rest of the course, you
will be on time:

E[X] = 15+10× (1− 1
100

) = 24
1
9

You’re grade would most likely NOT be dropped.

Part B:This seems to contain errorsIn Part A, we calculated the mean of several bin-
omial distributions that described the expected number of days that you will arrive on-
time to class. Each distribution corresponded to a different alarm-setting scenario. In this
part, we are describing a different binomial distribution.It describes your expected gra-
de. Therefore, the grade is the outcome n, weighted by the probability of you choosing
the particular alarm-clock setting procedure:

1−E[X] = 0×6+0.9×6+0.1×7= 6.1

1−E[X] = 0×6+0.1×6+0.9×7= 6.9

Note that the probabilities of these three choices (0 + 0.9 + 0.1) must equal 1, since these
are the only three choices defined.
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4.7 The population variance

The (population) variance, for a discrete distribution, is

σ2 = E
[

(X−µ)2
]

= (x1−µ)2p1+(x2−µ)2p2+ ...

where it is understood that the random variableX has this distribution andµ is the
expected value.

In the case of the binomial distribution, it turns out that:
σ2 = np(1− p)

4.7.1 Details

Definition 4.4. If µ is the expected value, then thevariance of a discrete distribution
is defined as

σ2 = (x1−µ)2p1+(x2−µ)2p2+ . . . .

If a random variableX has associated probabilities,pi = P[X = xi ], then one can equi-
valently write

σ2 =V[X] = E
[

(X−µ)2
]

.

4.7.2 Examples

Example 4.16. In the case of the binomial distribution, it turns out that:

σ2 = np(1− p).

5 Functions

5.1 Functions of a single variable

A function describes the relationship between varia-
bles.
Examples:
f (x) = x2

y= 2+3 ·x4

−2 −1 0 1 2

0
1

2
3

4

x

x^
2
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5.1.1 Details

Functions are commonly used in statistical applications, to describe relationships.

Definition 5.1. A function describes the relationship between variables. A variabley is
described as a function of a variablex by completely specifying howy can be computed
for any given value ofx.

An example could be the relationship between a dose level andthe response to the dose.

The relationship is commonly expressed by writing eitherf (x) = x2 or y= x2.

Usually names are given to functions, i.e. to the relationship itself. For example,f might
be the function andf (x) could be its value for a given numberx. Typically f (x) is a number
but f is the function, but the sloppy phrase "the functionf (x) = 2x+4"is also common.

5.1.2 Examples

Example 5.1. f (x) = x2 or y= x2 specifies that the computed value ofy should always
bex2, for any given value ofx.

5.2 Functions in R

A function can be defined in R using the "functi-
on"command

0 2 4 6 8 10

5
10

15
20

25
30

x

y

5.3 Ranges and plots in R

Functions in R can commonly accept a range of values and will return a corresponding
vector with the outcome.

5.3.1 Examples

Example 5.2. f <- fun
tion(x) {return(x*12)}

x <- seq (-5,5,0,1)

y <- f(x)

plot {(x,y) type= 'l'}
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5.4 Plotting functions

In statistics, the function of interest is commonly cal-
led the response function. If we write Y=f(x), the
outcome Y is usually called the response variable
and x is the explanatory variable. Function values
are plotted on vertical axis while x values are plotted
on horizontal axis. This plots Y against x.
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5.4.1 Examples

Example 5.3. The following R commands can be used to generate a plot for function;
Y= 2+3x

x<- seq(0:10)

g <- fun
tion(x){

+ yhat <- 2+3*x

+ return(yhat)

+ }

x<-seq(0,10,0.1)

y<- g(x)

plot(x,y,type="l", xlab="x",ylab="y")

5.5 Functions of several variables

5.5.1 Examples

Example 5.4.

z= 2x+3y+4 (2)

v= t2+3x (3)

w= t2+3b∗x (4)

6 Polynomials

6.1 The general polynomial

The general polynomial:
p(x) = a0+a1x+a2x2+ ...+anxn

The simplest:p(x) = a
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6.1.1 Details

Definition 6.1. A polynomial describes a specific function consisting of linear comb-
inations of positive integer powers of the explanatory variable.

The general form of a polynomial is:
p(x) = a0+a1x+a2x2+ ...+anxn

The simplest of these is the constant polynomialp(x) = a.

6.2 The quadratic

The general form of the quadratic (parabola) is
p(x) = ax2+bx+c.
The simplest quadratic isp(x) = x2
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 −
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Para-
bolas: Quadratic functions.

6.2.1 Details

The quadratic polynomial of the formp(x) = ax2+bx+c describes a parabola when points
(x,y) with y= p(x) are plotted.

The simplest parabola isp(x) = x2 (Fig. a) which is always non-negativep(x) ≥ 0 and
p(x) = 0 only whenx= 0.

Note 6.1.Note thatp(−x) = p(x) since(−x)2 = x2.

If the coefficient at the highest power is negative, then the parabola is "upside down"(Fig.
b).

This is sometimes used to describe a response function.

6.3 The cubic

The general form of a cubic polynomial is:
p(x) = ax3+bx2+cx+d
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6.4 The Quartic

The general form of the quartic polynomial isp(x) =
ax4+bx3+cx2+dx+e
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general shape. Here we used the following equation
y= x4−x3−7x2+x+6

6.5 Solving the linear equation

If the value ofy is given and we know thatx andy are on a specific line so thaty= a+bx,
then we can find the value ofx

6.5.1 Details

If a value of y is given and we know thatx andy lie on a specific straight line so that
y= a+bx, then we can find the value ofx by consideringy= a+bx as an equation to be
solved forx, sincey, a andb are all known.

The general solution is found through the following steps:

• Equation:y= a+bx

• Subtracta from both sides

– y−a= bx

– bx= y−a

• Divide by b on both sides ifb is not equal to 0.

– x= 1
b(y−a).

6.6 Roots of the quadratic equation

The general solution ofax2+bx+c= 0 is given byx= −b±
√

b2−4ac
2a .

6.6.1 Details

Suppose we want to solveax2+bx+c= 0, wherea 6= 0.
The general solution is given by the formula

x=
−b±

√
b2−4ac

2a
,

if b2−4ac≥ 0. On the other hand, ifb2− 4ac< 0, the quadratic equation has no real
solution.

46



6.6.2 Examples

Example 6.1. Solvex2−3x+2= 0
Putting this into the context of the formulationax2+bx+c= 0, the constants are;
a= 1,b=−3,c= 2
Inserting this into the formula for the roots gives:

x =
−(−3)±

»

(−3)2−4(1)(2)
2(1)

x =
3±

√
9−8

2

x =
3±

√
1

2

x =
3+1

2
,
3−1

2

x =
4
2
,
2
2

x = 2,1

Example 6.2. Find the roots of the following polynomial

3x4+14x2+15

We can use the quadratic equation to solve for the roots of this polynomial if we substitute
a variable for

x2

Let’s use the letter
a

3a2+14a+15

We then plug the constants in to the quadratic equation.

x=
−(14)±

»

142− (4)(3)(15)
(2)(3)

which simplifies to

−(14)±
√

196−180
6

which equals

−1
2
3

and
−3

.
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Then, since we substituted a for
x2

we need to take the square root of these values to get the rootsof the polynomial.
So,

x1,2 =±
 

−1
2
3

and
x3,4 =±

√
3

7 Simple data analysis in R

7.1 Entering data; dataframes

Several methods exist to enter data into R:

1. Enter directly: x<-c(4,3,6,7,8)

2. Read in a single vector: x<-scan("filename")

3. Use: x<-read.table("file address")

7.1.1 Details

The most direct method will not work if there are a lot numbers; therefore, the second met-
hod is to read in a single vector by x<-scan("filename"), "filename- text string, either a full
path name or refers to a file in the working directory.

The scan() command returns a vector, but the read.table() command returns a dataframe,
which is a rectangular table of data whose columns have names. A column can be extracted
from a data frame, e.g., with x<- dat$a where"dat"is the nameof the data frame and "a"is
the name of a column.

Note 7.1.Note that for read.table("file address"), "file address"refers to the location of the
file. Thus, it can be the URL or the complete file directory depending on where the table is
stored.

7.1.2 Examples

Example 7.1. Below are three examples using R code to enter data

1. x<-c(4,3,6,7,8)

2. x<-scan("lecture 70.txt")

3. x<-read.table("http://notendur.hi.is/ gunnar/kennsla/alsm/data/set115.dat", hea-
der=T)
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7.2 Histograms

A histogram is a graphical display of tabulated frequ-
encies, shown as bars.
In R use the command: hist()
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7.2.1 Examples

A histogram is a graphical display of tabulated frequencies, shown as bars.

Example 7.2. If we toss a fair die 100 times and record the number of sixes, then we
can view that as the outcome of a random variableX, which is binomial withn = 100
andp= 1

6, i.eX ∼ b(n= 100, p= 1
6)

Now this can be done e.g. 1000 times to obtain numbers,x1, ...,x1000. Within R this can
be simulated using

x <- rbinom(1000,100,1/6)

We would typically plot these using a histogram, e.g.
hist(x)
or
hist(x,nclass=50);l

7.3 Bar Charts

The bars in a bar chart usually correspond to frequ-
encies in categories and are therefore kept apart.
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7.3.1 Details

A bar chart is similar to the histogram but is used for categorical data.
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7.4 Mean, standard error, standard deviations

7.4.1 Details

The most familiar measure of central tendency is the arithmetic mean.

Definition 7.1. An arithmetic mean is the sum of the values divided by the number
values, typically expressed as:

ȳ=
∑n

i=1yi

n

Definition 7.2. Thesample varianceis a measure of the spread of a set of values from
the mean value:

s2 =
1

n−1

n∑

i=1

(xi − x̄)2

The sample standard deviation is more commonly used as a measure of the spread of a set
of values from the mean value.

Definition 7.3. The standard deviation is the square root of the variance and may be
expressed as:

s=

Ã

1
n−1

n∑

i=1

(xi − x̄)2

Definition 7.4. The standard error is a method used to indicate the reliability of the
sample mean:

SĒy =

√

s2

n

If a vector x in R contains an array of numbers then:
mean(x) returns the average, ¯x
sd(x) returns the standard deviation,s
var(x) returns the variance,s2

We may also want to use several other related operations in R:
median(x), the median value in vector x
range(x), which list the range:max(x)-\verbmin(x);
If the variablex contains discrete categories,table(x) returns counts of the frequency in
each category.
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7.5 Scatter plots and correlations

If we have paired explanatory and response data we
are often interested in seeing if a relationship exists
between them. To do this, we first plot the data in a
scatter plot.

20 40 60 80 100

0
50

00
10

00
0

15
00

0

Length (cm)

W
ei

gh
t (

g)

Figure: Scatter plot showing the length-weight
relationship of fish species "X". Data source :
Marine Resource Institution - Iceland.

7.5.1 Details

A first step in analyzing data is to prepare different plots. The type of variable will determ-
ine the type of plot. For example, when using a scatter plot both the explanatory and
response data should be continuous variables.

The equation for the Pearson correlation coefficient is:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2∑n

i=1(yi − ȳ)2 ,

wherex̄ andȳ are the sample means of the x- and y-values.
The correlation is always between -1 and 1.

7.5.2 Examples

The following R commands can be used to generate a scatter plot for vectors x and y

Example 7.3. plot(x,y)

8 Indices and the apply commands in R

8.1 Giving names to elements

We can name elements of vectors and data frames in R using the "names"command.

8.1.1 Examples

Example 8.1. X<-
(41, 3, 73)

names(X)<-
("One", "Two", "Three")

View the results by simply typing "X"and the output of "X"is given as follows:
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X

One Two Three

41 3 73

With this we can refer to the elements by name as well as locations using...

X[1℄

One

X["Three"℄

Three

73

8.2 Regular matrix indices and naming

A matrix is a table of numbers. Typical matrix indexing: mat[i,j], mat[1:2,] etc

A matrix can have row and column names Indexing with row and column names:
mat["a","B"]

8.2.1 Details

Definition 8.1. A matrix is a (two-dimensional) table of numbers, indexed by row and
column numbers.

Note 8.1.Note that a matrix can also have row and column names so that the matrix can
be indexed by its names rather than numbers.

8.2.2 Examples

Example 8.2. Consider a matrix with 2 rows and 3 columns. Consider extracting first
element (1,2), then all of line 2 and then columns 2-3 in an R session:

mat<-matrix(1:6,n
ol=3)

mat

[,1℄ [,2℄ [,3℄

[1,℄ 1 3 5

[2,℄ 2 4 6

mat[1,2℄

[1℄ 3

mat[2,℄

[1℄ 2 4 6

mat[,2:3℄
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[,1℄ [,2℄

[1,℄ 3 5

[2,℄ 4 6

Next, consider the same matrix, but give names to the rows andcolumns. The rows will
get the names "a"and "b"and the columns will be named "A", "B"and "C".
The entire R session could look like this:

mat<-matrix(1:6,n
ol=3)

dimnames(mat)<-list(
("a","b"),
("A","B","C"))

mat

A B C

a 1 3 5

b 2 4 6

mat["b",
("B","C")℄

B C

4 6

8.3 The apply command

The apply command...
apply(mat,2,sum) – applies the sum function within each column
apply(mat,1,mean) – computes the mean within each row

8.4 The tapply command

Commonly one has a data vector and another vector of the same length giving categories
for the measurements. In this case one often wants to computethe mean or variance (or
median etc) within each category. To do this we use the tapplycommand in R.

8.4.1 Examples

Example 8.3. z<-
(5,7,2,9,3,4,8)
i<-
("m","f","m","m","f","m","f")

A. Find the sum within each group

tapply(z,i,sum)

f m

18 20

B.Find the sample sizes

tapply(z,i,length)

f m

3 4

C.Store outputs and use names
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n<-tapply(z,i,length)

n

f m

3 4

n["m"℄

m

4

8.5 Logical indexing

A logical vector consists ofTRUE(1) orFALSE(0) values. These can be used to index
vectors or matrices.

8.5.1 Examples

Example 8.4. i<-
("m","f","m","m","f","m","f")
z<-
(5,7,2,9,3,4,8)

i=="m"

[1℄ TRUE FALSE TRUE TRUE FALSE TRUE FALSE

z[i=="m"℄

[1℄ 5 2 9 4

z[
(T,F,T,T,F,T,F)℄

[1℄ 5 2 9 4

8.6 Lists, indexing lists

A list is a collection of objects. Thus, data frames are lists.

8.6.1 Examples

Example 8.5. x<-list(y=2,z=
(2,3),w=
("a","b","
"))
x[["z"℄℄

[1℄ 2 3

names(x)

[1℄ "y" "z" "w"

x["w"℄

$w

[1℄ "a" "b" "
"

x$w

[1℄ "a" "b" "
"
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9 Functions of functions and the exponential function

9.1 Exponential growth and decline

Exponential growth is typically expressed as:
y(t) = Aekt
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Exponential growth curve

9.1.1 Details

Definition 9.1. Exponential growth is the rate of population increase across time when
a population is devoid of limiting factors (i.e. competition, resources, etc.) and
experiences a constant growth rate.

Exponential growth is typically expressed as:
y(t) = Aekt

where
A (sometimes denotedP)=initial population size
k= growth rate
t =number of time intervals

Note 9.1.Note that exponential growth occurs whenk> 0 and exponential decline occurs
whenk< 0.

9.2 The exponential function

An exponential function is a function with the form:f (x) = bx

9.2.1 Details

For the exponential functionf (x) = bx, x is a positive integer andb is a fixed positive real
number. The equation can be rewritten as:

f (x) = bx = b ·b ·b...b

.
When the exponential function is written asf (x) = ex then, it has a growth rate at timex
equivalent to the value ofex for the function atx.
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9.3 Properties of the exponential function

Recall that the methods of the basic arithmetic implies that:

ea+b = eaeb

for any real numbersa andb.

9.4 Functions of functions

9.4.1 Details

Consider two functions,f andg, each defined for some set of real numbers. Wherex can be
solved in functionf usingY = f (x) wheng(Y) exists for all such resultingY. If Y = f (x)
andg(Y) exist then we can computeg( f (x)) for anyx.
If
f (x) = x2 and
g(y) = ey then
g( f (x)) = ef (x) = ex2

If we call the resulting functionh;
h(x) = g( f (x))
Thenh is commonly written as
h= g◦ f

9.4.2 Examples

Example 9.1. If
g(x) = 3+2x and
f (x) = 5x2

Then
g( f (x)) = 3+2 f (x)
g( f (x)) = 3+10x2

f (g(x)) = 5(g(x))2

f (g(x)) = 5(3+2x)2

f (g(x)) = 45+60x+20x2

9.5 Storing and using R code

As R code gets more complex (more lines) it is usually stored in files. Functions are
typically stored in separate files.

9.5.1 Examples
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Example 9.2. Save the following file (test.r):

x=4

y=8


at("x+y is", x+y, "\n")$

To read the file use:

sour
e("test.r")

and the outcome of the equation is displayed in R

9.6 Storing and calling functions in R

To save a function in a separate file use a command of the form "function.r".

9.6.1 Examples

Example 9.3. f<-fun
tion(x) {

return (exp(sum(x)))

}

can be stored in a file function.r and subsequently read usingthe source command.

10 Inverse functions and the logarithm

10.1 Inverse Function
If f is a function, then the functiong is the inverse function off if

g( f (x)) = x

for all x in which f (x) can be calculated

10.1.1 Details

The inverse of a functionf is denoted byf−1, i.e.

f−1( f (x)) = x

10.1.2 Examples

Example 10.1. If f (x) = x2 for x< 0 then the functiong, defined asg(y) =
√

y for y> 0,

is not the inverse off sinceg( f (x)) =
√

x2 = |x|=−x for x< 0.
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10.2 When the inverse exists: The domain question

Inverses do not always exist. For an inverse off to
exist, f must be one-to-one, i.e. for eachx, f (x) must
be unique.

x

x^
2

f(x) = x2

− 1 1

The
function f (x) = x2 does not have an inverse since
f(x)=1 has two possible solutions -1 and 1.

10.2.1 Examples

Example 10.2. f (x)= x2 does not have an inverse sincef (x)= 1 has two possible soluti-
ons -1 and 1.

Note 10.1.Note that iff f is a function, then the functiong is the inverse function off , if
g( f (x)) = x for all calculated values ofx in f (x).

The inverse function off is denoted byf−1, i.e. f−1( f (x)) = x.

Example 10.3. What is the inverse function,f−1, of f if f (x) = 5+4x.

The simplest approach is to writey= f (x) and solve forx:
With

f (x) = 5+4x

we write
y= 5+4x

which we can now rewrite as
y−5= 4x

and this implies
y−5

4
= x

And there we have it, very simple:

f−1( f (x)) =
y−5

4
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10.3 The base 10 logarithm

Whenx is a positive real number inx= 10y, y is referred to as the base 10 logarithm of
x and is written as:

y= log10(x)

or
y= log(x)

10.3.1 Details

If log(x) = a and log(y) = b, thenx= 10a andy= 10b, and

x·y= 10a ·10b = 10a+b

so that
log(xy) = a+b

10.3.2 Examples

Example 10.4.

log(100) = 2

log(1000) = 3

Example 10.5. If
log(2)≈ 0.3

then
10y = 2

Note 10.2.Note that
210 = 1024≈ 1000= 103

therefore
2≈ 103/10

so
log(2)≈ 0.3
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10.4 The natural logarithm

A logarithm with e as a base is referred to as the
natural logarithm and is denoted asln :

y= ln(x)

if
x= ey = exp(y)

Note thatln is the inverse ofexp.

y = ln(x)

10 x

The
curve depicts the fuctiony = ln(x) and shows that
ln is the inverse ofexp. Note that ln(1) = 0 and
wheny= 0 thene0 = 1.

10.5 Properties of logarithm(s)

Logarithms transform multiplicative models into additivemodels, i.e.

ln(a ·b) = lna+ lnb

10.5.1 Details

This implies that any statistical model, which is multiplicative becomes additive on a log
scale, e.g.

y= a ·wb ·xc

lny= (lna)+ ln(wb)+ ln(xc)

Next, note that

ln(x2) = ln(x·x)
= lnx+ lnx

= 2 · lnx

and similarly ln(xn) = n · lnx for any integer n.
In general ln(xc) = c· lnx for any real number c (for x>0).
Thus the multiplicative model (from above)

y= a ·wb ·xc

becomes
y= (lna)+b · lnw+c· lnx

which is a linear model with parameters(lna), b andc.
In addition, the log-transform is often variance-stabilizing.

10.6 The exponential function and the logarithm

The exponential function and the logarithms are inverses ofeach other

x= ey ⇔ y= lnx
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10.6.1 Details

Note 10.3.Note the properties:

ln(x·y) = ln(x)+ ln(y)

and
ea ·eb = ea+b

10.6.2 Examples

Example 10.6. Solve the equation

10e1/3x+3= 24

for x.
First, get the 3 out of the way.

10e1/3x = 21

Then the 10.

e1/3x = 2.1

Next, we can take the natural log of 2.1. Sinceln is an inverse function ofe this would
result in

1
3

x= ln(2.1)

This yields
x= ln(2.1) ·3

which is
≈ 2.23

11 Continuity and limits

11.1 The concept of continuity

A function is continuous if it has no jumps. Thus,
small changes in eachx0, the input, correspond to
small changes in the output,f (x0).
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above figure is an example of linear growth. Thom-
as Robert Malthus (1766-1834) warned about the
dangers of uninhibited population growth.

61



11.1.1 Details

A function is said to be discontinuous if it has jumps. The function is continuous if it has
no jumps. Thus, for a continuous function, small changes in eachx0, the input, correspond
to small changes in the output,f (x0).

Note 11.1.Note that polynomials are continuous as are logarithms (forpositive numbers).

11.2 Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete
random variable is discontinuous.

x

y

11.2.1 Details

Definition 11.1. If X is a random variable with a discrete probability distribution and the
probability mass function of

p(x) = P[X = x]

then thecumulative distribution function , defined by

F(X) = P[X ≤ x]

is discontinuous, i.e. it jumps at points in which a positiveprobability occurs.

Note 11.2.When drawing discontinuous functions it is common practiceto use a filled
circle at(x, f (x)) to clarify what the function value is at a pointx of discontinuity.

11.2.2 Examples

Example 11.1. If a coin is tossed 3 independent times andX denotes the number of
heads, thenX can only take on the values 0, 1, 2 and 3. The probability of landing
exactlyx heads,P(X = x), is p(x) =

Än
x

ä

pn(1− p)n−x. The probabilities are

x | p(x) | F(x)

----------------

0 | 1/8 | 1/8

1 | 3/8 | 4/8

2 | 3/8 | 7/8

3 | 1/8 | 1
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The cumulative distribution function,F(x) = P[X ≤ x] =
∑

t≤x p(t) has jumps and is
therefore discontinuous.

Note 11.3.Notice on the above figure how the circles are filled in, the solid circles indica-
te where the function value is.

11.3 Notes on discontinuous function

A function is discontinuous for values or ranges of
the variable that do not vary continuously as the
variable increases. In other words, breaks or jumps.
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11.3.1 Details

A function can be discontinuous in a number of different ways. Most commonly, it may
jump at certain points or increase without bound in certain places.

Consider the functionf , defined byf (x) = 1/x whenx 6= 0. Naturally, 1/x is not defined
for x= 0. This function increases towards+∞ asx goes to zero from the right but decreases
to−∞ asx goes to zero from the left. Since the function does not have the same limit from
the right and the left, it can not be made continuous atx= 0 even if one tries to definef (0)
as some number.

11.4 Continuity of polynomials

All polynomials,p(x) = a0+a1x+a2x2+ . . .+anxn,
are continuous.
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11.4.1 Details

It is easy to show that simple polynomials such asp(x) = x, p(x) = a+bx, p(x) = ax2+
bx+c are continuous functions.
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It is generally true that a polynomial of the form

p(x) = a0+a1x+a2x2+ . . .+anxn

is a continuous function.

11.5 Simple Limits

A "limit"is used to describe the value that a function
or sequence "approaches"as the input or index app-
roaches some value. Limits are used to define cont-
inuity, derivatives and integrals.
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f (x) = xx, for x> 0

11.5.1 Details

Definition 11.2. A limit describes the value that a function or sequence approaches as
the input or index approaches some value.

Limits are essential to calculus (and mathematical analysis in general) and are used to
define continuity, derivatives and integrals.

Consider a function and a pointx0. If f (x) gets steadily closer to some numberc asx gets
closer to a numberx0, thenc is called the limit off (x) asx goes tox0 and is written as:

c= lim
x→x0

f (x)

If c= f (x0) then f is continuousat x0.

11.5.2 Examples

Example 11.2. A simple example of limits:
Evaluate the limit off (x) = x2−16

x−4 whenx→ 4, or

lim
x→4

x2−16
x−4

.

Notice that in principle we can not simply stick in the valuex= 4 since we would then
get 0/0 which is not defined. However we can look at the numerator andtry to factor it.
This gives us:

x2−16
x−4

=
(x−4)(x+4)

x−4
= x+4

and the result has the obvious limit of 4+4= 8 asx→ 4.
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Example 11.3. Consider the function

g(x) =
1
x

wherex is a positive real number. Asx increases,g(x) decreases, approaching 0 but never
getting there since1x = 0 has no solution. One can therefore say, “The limit ofg(x), asx
approaches infinity, is 0,” and write

lim
x→∞

g(x) = 0.

11.6 More on limits

Limits impose a certain range of values that may be
applied to the function.
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function f (x) = 1

1+e−x .

11.6.1 Examples

Example 11.4. The Beverton-Holt stock recruitment curve is given by:

R=
αS

1+ S
K

whereα,K > 0 are constants and S = biomass and R= recruitment.

The behavior of this curve as S increasesS→ ∞ is

lim
S→∞

αS

1+ S
K

= αK.

This is seen by rewriting the formula as follows:

lim
S→∞

αS

1+ S
K

= lim
S→∞

α
1
S+

1
K

= αK.

Example 11.5. A popular model for proportions is:

f (x) =
1

1+e−x
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As x increases,e−x decreases which implies that the term 1+e−x decreases and hence
1

1+e−x increases, from which it follows thatf is an increasing function.

Notice thatf (0) = 1
2 and further,

lim
x→∞

f (x) = 1.

This is seen from considering the components:
Sincee−x = 1

ex and the exponential function goes to infinity asx→ ∞, e−x goes to 0 and
hencef (x) goes to 1.

Through a similar analysis one finds that

lim
x→−∞

f (x) = 0,

since, asx→ ∞, first−x→ ∞ and seconde−x → ∞.

Example 11.6. Evaluate the limit of

f (x) =

√
x+4−2

x

as
x→ 0

lim
x→0

√
x+4−2

x
Since the square root is present we cannot just direct substitute the 0 asx. This will give
us 0

0, which is an indeterminate form. We must perform some algebra first. The way to
get rid of the radical is to multiply the numerator by the conjugate.

√
x+4−2

x
·
√

x+4+2√
x+4+2

This gives us
(
√

x+4)2+2(
√

x+4)−2(
√

x+4)−4

x(
√

x+4+2)

The numerator reduces tox, and thexs will cancel out leaving us with

1√
x+4+2

At this point we can direct substitute 0 forx, which will give us

1√
0+4+2

Therefore,

lim
x→0

√
x+4−2

x
=

1
4
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11.7 One-sided limits

f (x) may tend towards different numbers depending
on whetherx→ x0:
from the right (x→ x0+)
or from the left (x→ x0−).

x

y

11.7.1 Details

Sometimes a function is such thatf (x) tends to different numbers depending on whether
x→ x0 from the right (x→ x0+) or from the left (x→ x0−).

If
lim

x→x0+
f (x) = f (x0)

then we say thatf is continuous from the right atx0.

12 Sequences and series

12.1 Sequences

A sequenceis a string of indexed numbersa1,a2,a3, . . .. We denote this sequence with
(an)n≥1.

12.1.1 Details

In a sequence the same number can appear several times in different places.

12.1.2 Examples

Example 12.1. (1
n)n≥1 is the sequence 1, 1

2,
1
3,

1
4, . . ..

Example 12.2. (n)n≥1 is the sequence 1,2,3,4,5, . . ..

Example 12.3. (2nn)n≥1 is the sequence 2,8,24,64, . . ..
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12.2 Convergent sequences

A sequencean is said toconvergeto the number b if for everyε > 0 we can find an
N ∈N such that|an−b|< ε for all n≥ N. We denote this with limn→∞ an = b or an → b,
asn→ ∞.

12.2.1 Details

A sequencean is said toconvergeto the number b if for everyε > 0 we can find anN ∈ N

such that|an−b|< ε for all n≥N. We denote this with limn→∞ an = b or an→ b, asn→∞.
If x is a number then,
(1+ x

n)
n → ex asn→ ∞

12.2.2 Examples

Example 12.4. The sequence(1
n)n≥∞ converges to 0 asn→ ∞

Example 12.5. If x is a number then,
(1+ x

n)
n → ex asn→ ∞

12.3 Infinite sums (series)

We are interested in, whether infinite sums of sequences can be defined.

12.3.1 Details

Consider a sequence of numbers,(an)n→∞.
Now define another sequence(sn)n→∞, where

sn =
n∑

k=1

ak.

If (sn)n→∞ is convergent toS= limn→∞ sn, then we write

S=
∞∑

n=1
an.

12.3.2 Examples

Example 12.6. If
ak = xk,k= 0,1, .....

then

sn =
n∑

k=0

xk = x0+x1+ ......+xn
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Note also that
xsn = x(x0+x1+ ......+xn) = x+x2+ .....+xn+1

We have
sn = 1+x+x2+ ....+xn

xsn = x+x2+ .....+xn+xn+1

sn˘xsn = 1−xn+1

i.e.
sn(1−x) = 1−xn+1

and we have

sn =
1−xn+1

1−x

if x 6= 1. If 0< x< 1 thenxn+1 → 0 asn→ ∞ and we obtainsn → 1
1−x so

∑∞
n=0xn = 1

1−x.

12.4 The exponential function and the Poisson distribution

The exponential function can be written as a series (infinitesum):

ex =
∞∑

n=0

xn

n!
.

The Poisson distribution is defined by the probabilities

p(x) = e−λ λx

x!
for x= 0, 1, 2, . . .

12.4.1 Details

The exponential function can be written as a series (infinitesum):

ex =
∞∑

n=0

xn

n!
.

Knowing this we can see why the Poisson probabilities

p(x) = e−λ λx

x!

add to one: ∞∑

x=0

p(x) =
∞∑

x=0

e−λ λx

x!
= e−λ

∞∑

x=0

λx

x!
= e−λeλ = 1.

12.5 Relation to expected values

The expected value for the Poisson is given by

∞∑

x=0

xp(x) =
∞∑

x=0

xe−λ λx

x!

= λ
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12.5.1 Details

The expected value for the Poisson is given by

∞∑

x=0

xp(x) =
∞∑

x=0

xe−λ λx

x!

= e−λ
∞∑

x=1

xλx

x!

= e−λ
∞∑

x=1

λx

(x−1)!

= e−λλ
∞∑

x=1

λ(x−1)

(x−1)!

= e−λλ
∞∑

x=0

λx

x!

= e−λλeλ

= λ

13 Slopes of lines and curves

13.1 The slope of a line

Linear functions produce straight-line graphs. In
general, a straight line follows the following equati-
on:

y= a+bx,

wherea andb are fixed numbers.

The line on the graph is the set of points:

{(x,y) : x,y∈ R,y= a+bx} . 2 4 6 8 10

5
10

15
20

x

y

13.1.1 Details

The slope of a straight line represents the change in they coordinate corresponding to a
unit change in thex coordinate.
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13.2 Segment slopes

Let’s assume we have a more general function
y= f (x).

To find the slope of a line segment, consider 2x-
coordinates,x0 andx1, and look at the slope between
(x0, f (x0)) and(x1, f (x1)).

0 2 4 6 8 10

0
10

20
30

40
50

x

y

13.2.1 Details

Consider two points,(x0,y0) and(x1,y1). The slope of the straight line that goes through
these points is

y1−y0

x1−x0
.

Thus, the slope of a line segment passing throught the points(x0, f (x0)) and(x1, f (x1)),
for some function,f , is

f (x1)− f (x0)

x1−x0

If we let x1 = x0+h then the slope of the segment is

f (x0+h)− f (x0)

h
.

13.3 The slope ofy= x2

Consider the task of computing the slope of the
functiony= x2 at a given point.
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13.3.1 Examples

Consider the functiony= f (x) = x2.

In order to find the slope at a given point(x0), we look at

y=
f (x0+h)− f (x0)

h

for small values ofh.
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For this particular function,f (x) = x2, and hence

f (x0+h) = (x0+h)2 = x2+2hx0+h2.

The slope of a line segment is therefore given by

f (x0+h)− f (x0)

h
=

2hx0+h2

h
= 2x0+h.

As we makeh steadily smaller, the segment slope, 2x0+h, tends towards 2x0. It follows
that the slope,y′, of the curveat a general point xis given byy′ = 2x.

13.4 The tangent to a curve

A tangent to a curve is a line that intersects the curve
at exactly one point. The slope of a tangent for the
functiony= f (x) at the point(x0, f (x0)) is

lim
h→0

f (x0+h)− f (x0)

h
.
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13.4.1 Details

To find the slope of the tangent to a curve at a point, we look at the slope of a line segment
between the points(x0, f (x0)) and(x0+h, f (x0+h)), which is

f (x0+h)− f (x0)

h

and then we takeh to be closer and closer to 0. Thus the slope is

lim
h→0

f (x0+h)− f (x0)

h

when this limit exists.

13.4.2 Examples

Example 13.1. We wish to find tangent line for the functionf (x) = x2 at the point(1,1).
First we need to find the slope of this tangent, it is given as

lim
h→0

(1+h)2−12

h
= lim

h→0

2h+h2

h
= lim

h→0
(2+h) = 2.

Then, since we know the tangent goes through the point(1,1) the line isy= 2x−1.
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13.5 The slope of a general curve

−6 −4 −2 0 2 4 6
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13.5.1 Details

Imagine a nonlinear function whose graph is a curve described by the equation,
y= f (x).

Here we want to find the slope of a line tangent to the curve at a specific point(x0).
The slope of the line segment is given by the equationf (x0+h)− f (x0)

h .

Reducingh towards zero, gives the slope of this curve if it exists.

14 Derivatives

14.1 The derivative as a limit

The derivative of the functionf at the pointx is defined as

lim
h→0

f (x+h)− f (x)
h

if this limit exists.

14.1.1 Details

Definition 14.1. The derivative of the function f at the point x is defined as

lim
h→0

f (x+h)− f (x)
h

if this limit exists.

When we writey= f (x), we commonly use the notationdy
dx or f ′(x) for this limit.
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14.2 The derivative of f (x) = a+bx

If f (x) = a+bx then f (x+h) = a+b(x+h) = a+
bx+bh and thus

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

bh
h

= b

0 2 4 6 8 10
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20

x

y

f(x)=3+2x

14.2.1 Details

If f (x) = a+bx then f (x+h) = a+b(x+h) = a+bx+bh and thus

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

bh
h

= b.

Thus f ′(x) = b.

14.3 The derivative of f (x) = xn

If f (x) = xn, then f ′(x) = nxn−1.

14.3.1 Details

Let f (x) = xn, wheren is a positive integer. To calculatef ′ we use the binomial theorem in
the third step:

f (x+h)− f (x)
h

=
(x+h)n−xn

h

=

∑n−1
q=0

Än
q

ä

xqhn−q

h

=
n−1∑

q=0

(

n
q

)

xqhn−q−1 →
(

n
n−1

)

xn−1 = nxn−1

Thus, we obtainf ′(x) = nxn−1.

14.4 The derivative of ln and exp

If
f (x) = ex

then
f ′(x) = ex

If
g(x) = ln(x)

then

g′(x) =
1
x
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14.4.1 Details

The derivatives of the exponential function is the exponential function itself i.e.
if

f (x) = ex

then
f ′(x) = ex

The derivatives of the natural logarithm, ln(x), is 1
x , i.e. if

g(x) = ln(x)

then

g′(x) =
1
x

14.5 The derivative of a sum and linear combination

If f andg are functions then the derivative off +g is given by f ′+g′.

14.5.1 Details

Similarly, the derivative of a linear combination is the linear combination of the derivatives.
If f andg are functions andk(x) = a f(x)+bg(x) thenk′(x) = a f ′(x)+bg′(x).

14.5.2 Examples

Example 14.1. If f (x) = 2+3x andg(x)+x3

then we know that
f ′(x) = 3, g(x) = 3x2 and if we write

h(x) = f (x)+g(x) = 2+3x+x3

then
h′(x) = 3+3x2

14.6 The derivative of a polynomial

The derivative of a polynomial is the sum of the derivatives of the terms of the po-
lynomial.

14.6.1 Details

If
p(x) = a0+a1x+ ...+anxn

then
p′(x) = a1+2a2x+3a3x2+4a4x3+ ...+nanx(n−1)

14.6.2 Examples
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Example 14.2. If
p(x) = 2x4+x3

then
p′(x) = 2dx4

dx + dx3

dx = 2 ·4x3+3x2 = 8x3+3x2

14.7 The derivative of a product

If
h(x) = f (x) ·g(x)

then
h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x)

14.7.1 Details

Consider two functions,f andg and their product,h:

h(x) = f (x) ·g(x).

The derivative of the product is given by

h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x).

14.7.2 Examples

Example 14.3. Suppose the functionf is given by

f (x) = xex+x2 lnx.

Then the derivative can be computed step by step as

f (x) =
dx
dx

ex+x
dex

dx
+

dx2

dx
lnx+x2d lnx

dx

= 1 ·ex+x·ex+2x· lnx+x2 · 1
x

= ex (1+x)+2xlnx+x

14.8 Derivatives of composite functions

If f andg are functions andh= f ◦g so that

h(x) = f (g(x)) then

h′(x) = dh(x)
dx = f ′(g(x))g′(x)

14.8.1 Examples
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Example 14.4. For fixedx consider:

f (p) = ln(px(1− p)n−x)

= ln px+ ln(1− p)n−x

= xln p+(n−x) ln(1− p)

f ′(p) = x
1
p
+

n−x
1− p

(−1)

=
x
p
− n−x

1− p

Example 14.5. f (b) = (y−bx)2 (y,x fixed)

f ′(b) = 2(y−bx)(−x)

= −2x(y−bx)

= (−2xy)+(2x2)b

15 Applications of differentiation

15.1 Tracking the sign of the derivative

If f is a function, then the sign of its derivative,f ′, indicates whetherf is increasing
( f ′ > 0), decreasing (f ′ < 0), or zero. f ′ can be zero at points wheref has a maximum,
minimum, or a saddle point.

15.1.1 Details

If f is a function, then the sign of its derivative,f ′, indicates whetherf is increasing
( f ′ > 0), decreasing (f ′ < 0), or zero. f ′ can be zero at points wheref has a maximum,
minimum, or a saddle point.

If f ′(x)> 0 for x< x0, f ′(x0) = 0 and f ′(x)< 0 for x> x0 then f has a maximum atx0

If f ′(x)< 0 for x< x0, f ′(x0) = 0 and f ′(x)> 0 for x> x0 then f has a minimum atx0

If f ′(x)> 0 for x< x0, f ′(x0) = 0 and f ′(x)> 0 for x< x0 then f has a saddle point atx0

If f ′(x)< 0 for x< x0, f ′(x0) = 0 and f ′(x)< 0 for x< x0 then f has a saddle point atx0
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15.1.2 Examples

Example 15.1. If f is a function such that its derivative is given by

f ′(x) = (x−1)(x−2)(x−3)(x−4),

then applying the above criteria for maxima and minima, we see that f has maxima at 1
and 3 andf has minima at 2 and 4.

15.2 Describing extrema usingf ′′

x0 with f ′(x0) = 0 corresponds to a maximum iff ′′(x0)< 0
x0 with f ′(x0) = 0 corresponds to a minimum iff ′′(x0)> 0

15.2.1 Details

If f ′(x0) = 0 corresponds to a maximum, then the derivative is decreasing and the second
derivative can not be positive, (i.e.f ′′(x0) ≤ 0). In particular, if the second derivative is
strictly negative, (f ′′(x0)< 0), then we are assured that the point is indeed a maximum, and
not a saddle point.

If f ′(x0) = 0 corresponds to a minimum, then the derivative is increasing and the second
derivative can not be negative, (i.e.f ′′(x0)≥ 0).

If the second derivative is zero, then the point may be a saddle point, as happens with
f (x) = x3 atx= 0.

15.3 The likelihood function
If p is the probability mass function (p.m.f.):

p(x) = P[X = x]

then the joint probability of obtaining a sequence of outcomes from independent
sampling is

p(x1) · p(x2) · p(x3) . . .p(xn)

Suppose each probability includes some parameterθ, this is written,

pθ(x1), . . .pθ(xn)

If the experiment givesx1,x2 . . . ,xn we can write the probability as a function of the
parameters:

Lx(θ) = pθ(x1), . . . pθ(xn).

This is thelikelihood function.
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15.3.1 Details

Definition 15.1. Recall that theprobability mass function (p.m.f) is a function giving
the probability of outcomes of an experiment.

We typically denote the p.m.f. byp so p(x) gives the probability of a given outcome,x, of
an experiment. The p.m.f. commonly depends on some parameter. We often write,

p(x) = P[X = x].

If we take a sample of independent measurements, fromp, then the joint probability of a
given set of numbers is,

p(x1) · p(x2) · p(x3) . . . p(xn)

Suppose each probability includes the same parameterθ, then this is typically written,

pθ(x1), . . .pθ(xn)

Now consider the set of outcomesx1,x2 . . . ,xn from the experiment. We can now take the
probability of this outcome as a function of the parameters.

Definition 15.2. Lx(θ) = pθ(x1), . . .pθ(xn)
This is thelikelihood function and we often seek to maximize it to estimate the unknown
parameters.

15.3.2 Examples

Example 15.2. Suppose we toss a biased coinn independent times and obtain x heads,
we know the probability of obtaining x heads is,

(

n
x

)

px(1− p)n−x

The parameter of interest isp and the likelihood function is,

L(p) =

(

n
x

)

px(1− p)n−x

If p is unknown we sometimes wish to maximize this function with respect top in order
to estimate thetrueprobabilityp.

15.4 Plotting the likelihood

missing slide – want to give a numeric example and plotL
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15.4.1 Examples

missing example – want to give a numeric example and plotL

15.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.f.pθ, then the valuêθ which gives the maximum
of L:

L(θ̂) = max
θ

(Lθ)

is the maximum likelihood estimator (MLE) ofθ

15.5.1 Details

Definition 15.3. If L is a likelihood function for a p.m.f.pθ, then the valuêθ which gives
the maximum of L:

L(θ̂) = max
θ

(Lθ)

is themaximum likelihood estimator of θ

15.5.2 Examples

Example 15.3. If x is the number of heads fromn independent tosses of a coin, the
likelihood function is:

Lx(p) =

(

n
x

)

px(1− p)n−x

Maximizing this is equivalent to maximizing the logarithm of the likelihood, since loga-
rithmic functions are increasing. The log-likelihood can be written as:

ln(L(p)) = ln

(

n
x

)

+xln(p)+(n−x) ln(1− p).

To find possible maxima , we need to differentiate this formula and set the derivative to
zero

0=
dl(p)
dp

= 0+
x
p
+

n−x
1− p

(−1)

0= p(1− p)
(x)
p

− p(1− p)
n−x
1− p

0= (1− p)x− p(n−x)

0= x− px− pn+ px= x− pn

So,

0= x− pn
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p=
x
n

is the extreme and so we can write

p̂=
x
n

for the MLE

15.6 Least squares estimation

Least squares: Estimate the parametersθ by minimizing

n∑

i=1

(yi −gi(θ))2

15.6.1 Details

Suppose we have a model linking data to parameters. In general we are predictingyi asgi

(θ).
In this case it makes sense to estimate parametersθ by minimizing

n∑

i=1

(yi −gi(θ))2.

15.6.2 Examples

Example 15.4. One may predict numbers,xi , as a mean,µ, plus error. Consider the
simple modelxi = µ+ εi, whereµ is an unknown parameter (constant) andεi is the error
in measurement when obtaining thei’th observations,xi , i = 1, . . . ,n.

A natural method to estimate the parameter is to minimize thesquared deviations

min
µ

n∑

i=1

(x−µ)2 .

It is not hard to see that the ˆµ that minimizes this is the mean:

µ̂= x̄.

Example 15.5. One also commonly predicts datay1, · · · ,yn with values on a straight
line, i.e. withα+βxi , wherex1, . . . ,xn are fixed numbers.

This leads to theregression problem of finding parameter values forα̂ andβ̂ which gives
the best fitting straight line in relation to least squares:

min
α,β

∑

(yi − (α+βxi))
2
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Example 15.6. As a general exercise in finding the extreme of a function, let’s look at
the function f (θ) =∑n

i=1(xiθ−3)2 wherexi are some constants. We wish to find theθ
that minimizes this sum. We simply differentiateθ to obtainf ′(θ) =∑n

i=12(xiθ−3)x1 =
2
∑n

i=1x2
i θ−2

∑n
i=13xi . Thus,

f ′(θ) = 2θ
n∑

i=1

x2
i −2

n∑

i=1

3xi = 0

⇔ θ =

∑n
i=13xi

∑n
i=1x2

i
.

16 Integrals and probability density functions

16.1 Area under a curve

The area under a curve between x=a and x=b (for a
positive function) is called the integral of the functi-
on.

x

y

a b

f(x)=c

area=c*(b−a)

x

y

a

a f(x)=x

area=1/2 a2

x

y
a b

f(x)=x

area=1/2 b2−1/2 a2

Example 1, 2 and 3

16.1.1 Details

Definition 16.1. The area under a curve between x=a and x=b (for a positive function)
is called theintegral of the function and is denoted:

∫ b
a f (x)dx when it exists.

16.2 The antiderivative

Given a functionf , if there is another functionF such thatF ′ = f , we say thatF is the
antiderivativeof f . For a functionf the antiderivative is denoted by

∫

f dx.
Note that ifF is one antiderivative off andC is a constant, thenG= F +C is also an
antiderivative. It is therefore customary to always include the constant, e.g.

∫

xdx=
1
2x2+C.

16.2.1 Examples

Example 16.1. The antiderivative ofx to a power raises the power.
∫

xndx= 1
n+1xn+1+

C.
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Example 16.2.
∫

exdx= ex+C.

Example 16.3.
∫ 1

xdx= ln(x)+C.

Example 16.4.
∫

2xex2
dx= ex2

+C.

16.3 The fundamental theorem of calculus

If F ′(x) = f (x) for x∈ [a,b], then
∫ b
a f (x)dx= F(b)−F(a)

16.3.1 Detail

It is not too hard to see that the area under the graph of a positive function f on the interval
[a,b] must be equal to the difference of the values of its antiderivative ata andb. This also
holds for functions which take on negative values and is formally stated below.

Definition 16.2. Fundamental theorem of calculus:If F is the antiderivative off , i.e.
F ′ = f for x∈ [a,b], then

∫ b
a f (x)dx= F(b)−F(a).

This difference is often written as
∫ b
a f dxor [F(x)]ba.

16.3.2 Examples

Example 16.5. The area under the graph ofxn between 0 and 3 is
∫ 3
0 xndx= [ 1

n+1xn+1]30=
1

n+13n+1− 1
n+10n+1 = 3n+1

n+1

Example 16.6. The area under the graph ofex between 3 and 4 is
∫ 4
3 exdx= [ex]43 =

e4−e3

Example 16.7. The area under the graph of1
x between 1 anda is

∫ a
1

1
xdx= [ln(x)]a1 =

ln(a)− ln(1) = ln(a).
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16.4 Density functions

The probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.).

x

f(
x) 1

1x

16.4.1 Details

Definition 16.3. If X is a random variable such that

P(a≤ X ≤ b) =
b∫

a

f (x)dx,

for some functionf which satisfiesf (x)≥ 0 for all x and

∞∫

−∞

f (x)dx= 1

then f is said to be aprobability density function (p.d.f.) for X.

Definition 16.4. The function

F(x) =
x∫

−∞

f (t)dt

is thecumulative distribution function (c.d.f.) .

16.4.2 Examples

Example 16.8. Consider a random variableX from the uniform distribution, denoted by
X ∼U(0,1). This distribution has density

f (x) =
®

1 if 0 ≤ x≤ 1
0 e.w.

The cumulative distribution function is given by

P[X ≤ x] =
x∫

−∞

f (t)dt =







0 if x< 0
x if 0 ≤ x≤ 1
1
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Example 16.9. SupposeX ∼ P(λ), where X may denote the number of events per unit
time. The p.m.f. of X is described byp(x)=P[X = x] =e−λ λx

x! for x=0,1,2, .... Consider
now the waiting time, T, between events, or simply until the first event. Consider the
eventT > t for some number t>0. IfX ∼ p(λ) denotes the number of events per unit
time, then letXt denote the number of events during the time period for 0 through t. Then
it is natural to assume
Xt ∼ P(λt) and it follows thatT > t if and only if Xt = 0 and we obtainP[T > t] = P[Xt =
0] = e−λt . It follows that the c.d.f. of T isFT(t) = P[T ≤ t] = 1−P[T > t] = 1−e−λt for
t > 0.

The p.d.f. of T is thereforefT(t) = F ′
T(t) =

d
dtFT(t) = d

dt(1−e−λt = 0−e−λt ∗ (−λ) =
λe−λt for t ≥ 0 and fT(t) = 0 for t = 0.

The resulting density

f (t) =
®

λe−λt for t ≥ 0
0 for t < 0

describes the exponential distribution.
This distribution has the expected value

E[T] =
∞∫

−∞

t f (t)dt =
∞∫

0

tλe−λtdt.

the stuff below is all messed up...
We setu= λt anddu= λdt to obtain

∫

ue−udu=
1
λ

∞∫

0

ue−udu=
1
λ
=

∞∫

0

1 ·e−udu

=
î

−ue−u
ó∞
0

=

ñ

1
λ
(−e−u)

ô∞

0
−0=

1
λ
.

16.5 Probabilities in R: The normal distribution

R has functions to compute values of probability density functions (p.d.f.) and cumulati-
ve distribution functions (c.m.d.) for most common distributions.

16.5.1 Details

The p.d.f. for the normal distribution is

p(t) =
1√
2π

e−
t2
2

The c.d.f. for the normal distribution is
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Φ(x) =
x∫

−∞

1√
2π

e−
t2
2 dt

16.5.2 Examples

Example 16.10.dnorm() gives the value of the normal p.d.f.

Example 16.11.pnorm() gives the value of the normal c.d.f.

16.6 Some rules of integration

16.6.1 Examples

Example 16.12.Using integration by parts we obtain

∫

ln(x)xdx=
1
2

x2 ln(x)−
∫ 1

2
x2 · 1

x
dx=

1
2

x2 ln(x)−
∫ 1

2
xdx=

1
2

x2 ln(x)− 1
4

x2.

Example 16.13.Consider
∫ 2
1 2xex2

dx. By settingx= g(t) =
√

t we obtain

∫ 2

1
2xex2

dx=
∫ 4

1
2
√

tet 1

2
√

t
dt =

∫ 4

1
etdt = e4−e.

16.6.2 Handout

The two most common "tricks"applied in integration are a) integration by parts and b) in-
tegration by substitution.

a) Integration by parts

( f g)′ = f ′g+ f g′

by integrating both sides of the equation we obtain:

f g=
∫

f ′gdx+
∫

f g′dx⇔
∫

f g′dx= f g−
∫

f ′gdx
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b) Integration by substitution

Consider the definite integral
∫ b
a f (x)dx and letg be a one-to-one differential function for

the interval(c,d) to (a,b). Then

∫ b

a
f (x)dx=

∫ d

c
f (g(y))g′(y)dy

17 Principles of programming

17.1 Modularity

Modularity involves designing a system that is divided intoa set of functional units
(named modules) that can be composed into a larger application.

Any programming project should be split into logical modulepieces of code which are
combined into a complete program.

17.1.1 Details

Typically input, initialization, analysis, and output commands are grouped into separate
parts.

17.1.2 Examples

Example 17.1. Input

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/

set115.dat", header=T)


ols<- 
("le", "osl")

Analysis

Mn<-mean(dat[, 
ols[1℄℄)

Output

print (Mn)

17.2 Modularity and functions

In many cases groups of commands can be collected together into a function.

17.2.1 Details

Typically a project has several such functions.

17.2.2 Examples
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Example 17.2. Suppose you want to plot the weight vs. length for several datasets in

http://hi.is/~gunnar/kennsla/alsm/data

A function can then be set up with the file number as an argument:

plotwtle<-fun
tion (fnum){

fname<-paste(

"http://hi.is/~gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")


at("The URL B", fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("Data from file number", fnum)

plot(dat$le,dat$osl,main=ttl)

}

Now call this with

plotwtle(105)

17.3 Modularity and files

It is advisable to split larger projects into several manageable files.

17.3.1 Details

Once a project reaches more than five lines of code, it should be stored in one or more
separate files. In order to combine these files a single “source” command file can be crea-
ted.

Typically function definitions are stored in separate files,so one may have several separate
files like:

"input.r"
"function.r"
"analysis.r"

ǫutput.r"

While developing the analysis, the data would only be read once with

source(“input.r”)

The goal of this practice is to end up with a set of files which are completely self-contained,
so one can start with an empty R session and give only the commands like:

source (“input.r”)
source (“functions.r”)
source (“analysis.r”)

Furthermore, this ensures repeatability.
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17.3.2 Examples

Example 17.3. For a given project “input”, “functions” “analysis” and “output” files can
be created as below.
input.r

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/

set115.dat", header=T)

functions.r

plotwtle<-fun
tion(fnum){

fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",

fnum,".dat",sep="")


at("The URL is",fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("My data set was",fnum)

plot(dat$le,dat$osl,main=ttl,xlab="Length(
m)",ylab="Live weight (

g)")

}

output.r

sour
e("fun
tions.r")

for(i in 101:150){

fnam<-paste("plot",i,".pdf",sep="")

pdf(fnam)

plotwtle(i)

dev.off()

}

These files can be executed with source commands as below:

source (“input.r”)

source (“functions.r”)

source (“output.r”)

17.4 Structuring an R project

17.4.1 Details

We already covered how to split code into different functions and linking them together
with the help of one executable file that is "sourcing"the others. However, when you und-
ertake a larger project, there will be a lot of different dataand files and it is very advisable
to have a consistent structure throughout the project.

A common project layout is to allocate all project files into afolder, something along the
lines of:

/proje
t

/data

/sr
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/do


/figs (or /out)

Such a structure is quite normal in programming languages such as C, Matlab, and R.

Purpose of the different folders:

/data: Contains all important data to the project, which youwill use. This folder should be
read-only! No function is allowed to write anything into this folder.

/src: (abbreviation for "source(-code)") Here you will store all the functions that you
programmed. You can decide to store the executable functionhere as well or, alternati-
vely, have that one in the root project folder.

/doc: Contains further documentation material about your project. This could be, for
example, readme files for other people who use your functions, or the paper you wrote
about the project, or the latex files while you’re writing.

/figs or /out: Here your functions are allowed to write and canproduce the different results,
like graphs, figures or anything else.

Finally, a large programming project should at some stage besplit into packages and stored
on dedicated servers such as github or CRAN.

17.4.2 Examples

Example 17.4. Consider first the issue of maintaining the code itself. It iscommon for
R beginners to only work interactively within the command-line interface. However, it
is essential that the code be kept in one or more files.

For large projects these will be several different files, each with its own purpose. To run
a complete analysis one would typically set up one file to run all the tasks by reading in
data through analyses to outputs.

For example, a file named "run.r"could contain the sequence of commands:

source("setup.r")

source("analysis.r")

source("plot.r")

17.5 Loops, for

If a piece of code is to be run repeatedly, the for-loop is normally used.

17.5.1 Details

If a piece of code is to be run repeatedly, the for-loop is normally used. The R code form
is:
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for(index in sequen
e){


ommands

}

17.5.2 Examples

Example 17.5. To add numbers we can use

tot <- 100

for(i in 1:100){

tot <- tot + i

}


at ("the sum is ", tot, "\n")

Example 17.6. Define the plot function

plotwtle <- AS BEFORE

To plot several of these we can use a sequence:

plotwtle(101)

plotwtle(102)

.

.

.

or a loop

for (i in 101:150){

fname<- paste("plot", i, ".pdf", sep="")

pdf(fname)

plotwtle(i)

dev.off()

}

17.6 The if and ifelse commands

The "if"statement is used to conditionally execute statements.
The "ifelse"statement conditionally replaces elements ofa structure.

17.6.1 Examples

Example 17.7. If we want to computexx for x-values in the range 0 through 5, we can
use
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xlist<-seq(0,5,0.01)

y<-NULL

for(x in xlist){

if(x==0){

y<-
(y,1)

}else{

y<-
(y,x**x)

}

}

Example 17.8.x<-seq(0,5,0.01)
y<-ifelse(x==0,1,x^x)

Example 17.9.dat<-read.table ("file")

dat<-ifelse (dat==0,0.01,dat)

Example 17.10.x<-ifelse (is.na(x),0,x)

17.7 Indenting

Code should be properly indented!

17.7.1 Details

fFunctions, for-loops, and if-statements should always beindented.

17.8 Comments
All code should contain informative comments. Comments areseparated out from code
using the pound symbol (#).

17.8.1 Examples
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Example 17.11.####################
####SETUP DATA####
####################

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length
y<-log(dat$wt) #log-transformation of weight

######################
####THE ANALYSIS####
######################

18 The Central Limit Theorem and related topics

18.1 The Central Limit Theorem

If measurements are obtained independently and
come from a process with finite variance, then the
distribution of their mean tends towards a Gaussian
(normal) distribution as the sample size increases.
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18.1.1 Details

Theorem 18.1 TheCentral Limit Theorem states that ifX1,X2, . . . are independent and
identically distributed random variables with meanµ and (finite) varianceσ2, then the
distribution ofX̄n := X1+···+Xn

n tends towards a normal distribution.

It follows that for a large enough sample sizen, the distribution random variablēXn can be
approximated byn(µ,σ2/n).
The standard normal distribution is given by the p.d.f.

ϕ(z) =
1√
2π

e
−z2

2

for z∈ R.

The standard normal distribution has an expected value of zero,

µ=
∫

zϕ(z)dz= 0
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and a variance of
σ2 =

∫

(z−µ)2ϕ(z)dz= 1

If a random variableZ has the standard normal (or Gaussian) distribution, we write Z ∼
n(0,1).
If we define a new random variable,Y, by writingY = σZ+µ, thenY has an expected value
of µ, a variance ofσ2 and a density (p.d.f.) given by the formula:

f (y) =
1√
2πσ

e
−(y−µ)2

2σ2 .

This is general normal (or Gaussian) density, with meanµ and varianceσ2.
The Central Limit Theorem states that if you take the mean of several independent random
variables, the distribution of that mean will look more and more like a Gaussian distribution
(if the variance of the original random variables is finite).
More precisely, the cumulative distribution function of

X̄n−µ
σ/

√
n

converges toΦ, then(0,1) cumulative distribution function.

18.1.2 Examples

Example 18.1. If we collect measurements on waiting times, these are typically assumed
to come from an exponential distribution with density

f (t) = λe−λt , for t > 0

The Central Limit Theorem states that the mean of several such waiting times will tend
to have a normal distribution.

Example 18.2. We are often interested in computing

w=
x̄−µ0

s√
n

which comes from a t-distribution (see below), if thexi are independent outcomes from
a normal distribution.
However, ifn is large andσ2 is finite thenw values will look as though they came from a
normal distribution. This is in part a consequence of the Central Limit Theorem, but also
of the fact thatswill become close toσ asn increases.

18.2 Properties of the binomial and Poisson distributions

The binomial distribution is really a sum of 0 and 1 values (counts of failures = 0 and
successes =1). So, a simple, single binomial outcome will correspond to coming from a
normal distribution if the count is large enough.
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18.2.1 Details

Consider the binomial probabilities:

p(x) =

(

n
x

)

px(1− p)n−x

for x = 0,1,2,3, · · · ,n wheren is a non-negative integer. Supposep is a small positive
number, specifically consider a sequence of decreasingp-values, specified withpn =

λ
n and

consider the behavior of the probability asn→ ∞. We obtain:

(

n
x

)

px
n(1− pn)

n−x =
n!

x!(n−x!)

Ç

λ
n

åxÇ

1− λ
n

ån−x

(5)

=
n(n−1)(n−2) · · ·(n−x+1)

x!

λ
n

x

Ä

1− λ
n

äx

Ç

1− λ
n

ån

(6)

=
n(n−1)(n−2) · · ·(n−x+1)

x!nx

λx

Ä

1− λ
n

äx

Ç

1− λ
n

ån

(7)

(8)

Note 18.1.Notice thatn(n−1)(n−2)···(n−x+1)
nx → 1 asn→ ∞. Also notice that(1− λ

n)
x → 1

asn→ ∞. Also

lim
n→∞

Ç

1− λ
n

å

= e−λ

and it follows that

lim
n→∞

(

n
x

)

px
n(1− pn)

n−x =
e−λλx

x!
,x= 0,1,2, · · · ,n

and hence the binomial probabilities may be approximated with the corresponding Poisson.

18.2.2 Examples

Example 18.3. The mean of a binomial (n,p) variable isµ = n · p and the variance is
σ2 = np(1− p).

The R commanddbinom(q,n, p) calculates the probability ofq successes inn trials
assuming that the probability of a success isp in each trial (binomial distribution), and the
R commandpbinom(q,n, p) calculates the probability of obtainingq or fewer successes
in n trials.
The normal approximation of this distribution can be calculated with
pnorm(q,mu,sigma) which becomespnorm(q,n ∗ p,sqrt(n ∗ p(1− p)). Three nu-
merical examples (note that pbinom and pnorm give similar values for large n):

pbinom(3,10,0.2)

[1℄ 0.8791261

pnorm(3,10*0.2,sqrt(10*0.2*(1-0.2)))

[1℄ 0.7854023
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pbinom(3,20,0.2)

[1℄ 0.4114489

pnorm(3,20*0.2,sqrt(20*0.2*(1-0.2)))

[1℄ 0.2880751

pbinom(30,200,0.2)

[1℄ 0.04302156

pnorm(30,200*0.2,sqrt(200*0.2*(1-0.2)))

[1℄ 0.03854994

Example 18.4. We are often interested in computingw= x̄−µ
s/
√

n which has a t-distribution

if the xi are independent outcomes from a normal distribution. Ifn is large andσ2 is
finite, this will look as if it comes from a normal distribution.

The numerical examples below demonstrate how the t-distribution approaches the normal
distribution.

qnorm(0.7)

[1℄ 0.5244005

#This is the value whi
h gives the 
umulative probability of p=0.7

for a n~(0,1)

qt(0.7,2)

[1℄ 0.6172134

#The value, whi
h gives the 
umulative probability of p=0.7 with n=2

for the t-distribution.

qt(0.7,5)

[1℄ 0.5594296

qt(0.7,10)

[1℄ 0.541528

qt(0.7,20)

[1℄ 0.5328628

qt(0.7,100)

[1℄ 0.5260763
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18.3 Monte Carlo simulation

If we know an underlying process we can simulate
data from the process and evaluate the distribution
of any quantity based on such data.
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18.3.1 Examples

Example 18.5. Suppose our measurements come from an exponential distribution and
we want to compute

t =
x−µ
s/
√

n

but we want to know the distribution of those whenµ is the true mean.

For instance,n = 5 andµ = 1, we can simulate (repeatedly)x1, . . . ,x5 and compute a
t-value for each. The following R commands can be used for this:

library(MASS)

n<-5

mu<-1

lambda<-1

tve
<-NULL

for(sim in 1:10000){

x<-rexp(n,lambda)

xbar<-mean(x)

s<-sd(x)

t<-(xbar-mu)/(s/sqrt(n))

tve
<-
(tve
,t)

}

#then do...

truehist(tve
) #truehist gives a better histogram

sort(tve
)[9750℄

sort(tve
)[250℄
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19 Miscellanea

19.1 Simple probabilities in R

R has functions to compute probabilities based on most common distributions.

If X is a random variable with a known distribution, then R can typically compute values
of the cumulative distribution function or:

F(x) = P[X ≤ x]

19.1.1 Examples

Example 19.1. If X ∼ b(n, p) has binomial distribution, i.e.

P(X = x) =

(

n
x

)

px(1− p)n−x,

then cumulative probabilities can be computed withpbinom, e.g.

pbinom(5,10,0.5)

gives
P[X ≤ 5] = 0.623

where

X ∼ b(n= 10, p=
1
2
).

This can also be computed by hand. Here we haven= 10, p= 1/2 and the probability
P[X ≤ 5] is obtained by adding up the individual probabilities,P[X = 0] +P[X = 1] +
P[X = 2]+P[X = 3]+P[X = 4]+P[X = 5]

P[X ≤ 5] =
5∑

x=0

(

10
x

)

1
2

x1
2

10−x

.

This becomes

P[X ≤5] =

(

10
0

)

1
2

01
2

10−0

+

(

10
1

)

1
2

11
2

10−1

+

(

10
1

)

1
2

21
2

10−2

+

(

10
3

)

1
2

31
2

10−3

+

(

10
4

)

1
2

41
2

10−4

+

(

10
5

)

1
2

51
2

10−

or

P[X ≤5] =

(

10
0

)

1
2

10

+

(

10
1

)

1
2

10

+

(

10
1

)

1
2

10

+

(

10
3

)

1
2

10

+

(

10
4

)

1
2

10

+

(

10
5

)

1
2

10

=
1
2

10

[1+10+45+ ...] .

Furthermore,

pbinom(10,10,0.5)

[1℄ 1

and

pbinom(0,10,0.5)

[1℄ 0.0009765625
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It is sometimes of interest to computeP[X = x] in this case, and this is given by the
dbinomfunction, e.g.

dbinom(1,10,0.5)

[1℄ 0.009765625

or 10
1024

Example 19.2. SupposeX has a uniform distribution between 0 and 1, i.e.X ∼U(0,1).
Then thepuni f function will return probabilities of the form

P[X ≤ x] =
∫ x

−∞
f (t)dt =

∫ x

0
f (t)dt

where f (t) = 1 if 0 ≤ t ≤ 1 and f (t) = 0. For example:

punif(0.75)

[1℄ 0.75

To obtainP[a≤ X ≤ b], we usepuni f twice, e.g.

punif(0.75)-punif(0.25)

[1℄ 0.5

19.2 Computing normal probabilities in R

To compute probabilitiesX ∼ n(µ,σ2) is usually transformed, since we know that

Z :=
X−µ

σ
∼ (0,1)

The probabilities can then be computed for eitherX or Z with the pnormfunction in R.

19.2.1 Details

SupposeX has a normal distribution with meanµ and variance

X ∼ n(µ,σ2)

then to compute probabilities,X is usually transformed, since we know that

Z =
X−µ

σ
∼ (0,1)

and the probabilities can be computed for eitherX or Z with the pnormfunction.

19.2.2 Examples
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Example 19.3. If Z ∼ n(0,1) then we can e.g. obtainP[Z ≤ 1.96] with

pnorm(1.96)

[1℄ 0.9750021

pnorm(0)

[1℄ 0.5

pnorm(1.96)-pnorm(1.96)

[1℄ 0

pnorm(1.96)-pnorm(-1.96)

[1℄ 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 19.4. If X ∼ n(42,32) then we can compute probabilites either by transforming

P[X ≤ x] = P[
X−µ

σ
≤ x−µ

σ
]

= P[Z ≤ x−µ
σ

]

and callingpnormwith the computed valuez= x−µ
σ , or call pnormwith x and specifyµ

andσ.

To computeP[X ≤ 48], either setz= (48−42)/3= 2 and obtain

pnorm(2)

[1℄ 0.9772499

or specifyµ andσ

pnorm(42,42,3)

[1℄ 0.5

19.3 Introduction to hypothesis testing

19.3.1 Details

If we have a random samplex1, . . . ,xn from a normal distribution, then we consider them
to be outcomes of independent random variablesX1, . . . ,Xn whereXi ∼ n(µ,σ2). Typically,
µ andσ2 are unknown but assume for now thatσ2 is known.

Consider the hypothesis:

H0 : µ= µ0 vs. H1 : µ> µ0
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whereµ0 is a specified number.

Under the assumption of independence, the sample mean

x=
1
n

n∑

i=1
xi

is also an observation from a normal distribution, with meanµbut a smaller variance.Specifically,
x is the outcome of

X =
1
n

n∑

i=1

Xi

and

X ∼ n(µ,
σ2

n
)

so the standard deviation of X isσ√n, so the appropriate error measure forx is f racσ
√

n,
whenσ is unknown.

If H0 is true, then

z :=
x−µ0

σ/
√

n

is an observation from ann∼ n(0,1) distribution, i.e. an outcome of

Z =
X−µ0

σ/
√

n

whereZ ∼ n(0,1) whenH0 is correct. It follows that e.g.P[|Z| > 1.96] = 0.05 and if we
observe|Z|> 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is a quantile of the normal distribution and we can obtain
other quantiles with thepnormfunction, e.g.pnorm(0.975) gives 1.96.

20 Multivariate probability distributions

20.1 Joint probability distribution

If
X1, . . . ,Xn are discrete random variables with
P[X1 = x1,X2 = x2, . . . ,Xn = xn] = p(x1, . . . ,xn), wherex1, . . . ,xn are numbers, then
the functionp is the joint probability mass function (p.m.f.) for the random variables
X1, . . . ,Xn.

For continuous random variablesY1, . . . ,Yn, a function f is called the joint probability
density function if,
P[Y ∈ A] =

∫ ∫

. . .
∫

f (y1, . . .yn)dy1dy2 · · ·dyn.

20.1.1 Details
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Definition 20.1. If X1, . . . ,Xn are discrete random variables withP[X1 = x1,X2 =
x2, . . . ,Xn = xn] = p(x1, . . . ,xn) wherex1 . . .xn are numbers, then the functionp is the
joint probability mass function (p.m.f.) for the random variablesX1, . . . ,Xn.

Definition 20.2. For continuous random variablesY1, . . . ,Yn, a function f is called the
joint probability density function if,

P[Y ∈ A] =
∫ ∫

. . .
∫

︸ ︷︷ ︸

A

f (y1, . . .yn)dy1dy2 · · ·dyn.

Note 20.1.Note that ifX1, . . . ,Xn are independent and identically distributed, each with
p.m.f. p, thenp(x1,x2, . . . ,xn) = q(x1)q(x2) . . .q(xn), i.e,P[X1= x1,X2= x2, . . . ,Xn= xn] =
P[X1 = x1]P[X2 = x2] . . .P[Xn = xn].

Note 20.2.Note also that ifA is a set of possible outcomes(A⊆ Rn), then we have

P[X ∈ A] =
∑

(x1,...,xn)∈A

p(x1, . . . ,xn).

20.1.2 Examples

Example 20.1. An urn contains blue and red marbles, which are either light or heavy.
Let X denote the color andY the weight of a marble, chosen at random

X/Y L H TT

B 5 6 11
R 7 2 9

TT 12 8 20

We haveP[X = “b“ ,Y = ” l “ ] = 5
20.

The joint p.m.f. is:

X/Y L H TT

B 5
20

6
20

11
20

R 7
20

2
20

9
20

TT 12
20

8
20 1
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20.2 The random sample

A set of random variablesX1, . . . ,Xn is a random
sample if they are independent and identically
distributed (i.i.d.).

A set of numbersx1, . . . ,xn are called a random
sample if they can be viewed as an outcome of such
random variables.

x1

f(
x) 1

1

20.2.1 Details

Samples from populations can be obtained in a number of ways.However, to draw valid
conclusions about populations, the samples need to obtained randomly.

Definition 20.3. In random sampling, each item or element of the population has an
equal and independent chance of being selected.

A set of random variables;X1 . . .Xn is a random sample if they are independent and identically
distributed (i.i.d.).

Definition 20.4. If a set of numbersx1 . . .xn can be viewed as an outcome of random
variables, these are called arandom sample.

20.2.2 Examples

Example 20.2. If X1, . . . ,Xn ∼ U(0,1), i.i.d., i.e. X1 andXn are independent and each
have a uniform distribution between 0 and 1. Then they have a joint density which is the
product of the densities ofX1 andXn.

Given the data in the above figure and ifx1,x2 ∈ R

f (x1,x2) = f1(x1) f2(x2) =

®

1 if 0 ≤ x1,x2 ≤ 1
0 elsewhere
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Example 20.3. Toss two dice independently, and letX1,X2 denote the two (future)
outcomes.

Then

P[X1 = x1,X2 = x2] =

® 1
36 if 1 ≤ x1,x2 ≤ 6
0 elsewhere

is the joint p.m.f.

20.3 The sum of discrete random variables

20.3.1 Details

SupposeX andY are discrete random values with a probability mass functionp. Let Z =
X+Y. Then

P(Z = z) =
∑

{(x,y):x+y=z}
p(x,y)

20.3.2 Examples

Example 20.4. X,Y = outcomes,

[,1℄ [,2℄ [,3℄ [,4℄ [,5℄ [,6℄

[1,℄ 2 3 4 5 6 7

[2,℄ 3 4 5 6 7 8

[3,℄ 4 5 6 7 8 9

[4,℄ 5 6 7 8 9 10

[5,℄ 6 7 8 9 10 11

[6,℄ 7 8 9 10 11 12

P[X+Y = 7] =
6
36

=
1
6

Because there are a total of 36 equally likely outcomes and 7 occurs six times this means
thatP[X+Y = 7] = 1

6.
Also

P[X+Y = 4] =
3
36

=
1
12
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20.4 The sum of two continuous random variables

If X and Y are continuous random variables with jo-
int p.d.f. f and Z = X +Y, then we can find the
density ofZ by calculating the cumulative distributi-
on function.

x

y

1

1

z1−1

z1−1

2−z2

{(x,y):x+y=1/2} {(x,y):x+y=3/2}

P[X+Y leq 1]=1/2

P[X+Y leq 1/2]=1/8

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

20.4.1 Details

If X and Y are c.r.v. with joint p.d.f.f andZ = X+Y, then we can find the density ofZ by
first finding the cumulative distribution function

P[Z ≤ z] = P[X+Y ≤ z] =
∫ ∫

{(x,y):x+y≤z}
f (x,y)dxdy.

20.4.2 Examples

Example 20.5. If X and Y ∼ U(0,1), independent andZ = X+Y then

P[Z ≤ z] =







0 for z≤ 0
z2

2 for 0< z< 1
1 for z> 2

1− (2−z)2

2 for 1< z< 2
the density of z becomes

g(z) =







z for 0< z≤ 1
2−z for 1< z≤ 2

0 for elsewhere

Example 20.6. To approximate the distribution ofZ=X+Y whereX,Y ∼U(0,1) i.i.d.,
we can use Monte Carlo simulation. So, generate 10.000 pairs, set them up in a matrix
and compute the sum.

20.5 Means and variances of linear combinations of independent random
variables

If X andY are random variables anda,b∈ R, then

E[aX+bY] = aE[X]+bE[Y].
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20.5.1 Details

If X andY are random variables, then

E[X+Y] = E[X]+E[Y]

i.e. the expected value of the sum is just the sum of the expected values. The same applies
to a finite sum, and more generally

E[
n∑

i=1

aiXi ] =
n∑

i=1

aiE[Xi]

whenXi, ...,Xn are random variables anda1, ...,an are numbers (if the expectations exist).
If the random variables are independent, then the variance also add

V[X+Y] =V[X]+V[Y]

and

V[
n∑

i=1

aiXi] =
n∑

i=1

a2
i V[Xi]

20.5.2 Examples

Example 20.7. X,Y ∼U(0,1), i.i.d. then

E[X+Y] = E[X]+E[Y] =
∫ 1

0
x·1dx+

∫ 1

0
x·1dx= [

1
2

x2]10+[
1
2

x2]10 = 1.

Example 20.8. Let X,Y ∼ N(0,1). ThenE[X2+Y2] = 1+1= 2.
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20.6 Means and variances of linear combinations of measurements

If x1, ....,xn andy1, ....,yn are numbers, and we set

zi = xi +yi

wi = axi

where a>0, then

z=
1
n

n∑

i=1

zi = x+y

w= ax

s2
w =

1
n−1

n∑

i=1

(wi −w)2

=
1

n−1

n∑

i=1

(axi −ax)2

= a2s2
x

and
sw = asx

20.6.1 Examples

Example 20.9. We set:

a<-3

x<-
(1:5)

y<-
(6:10)

Then:

z<-x+y

w<-a*x

n<-length(x)

Thenz is:

(sum(x)+sum(y))/n

[1℄ 11

mean(z)

[1℄ 11

andw becomes:

a*mean(x)

[1℄ 9

mean(w)

[1℄ 9

ands2
w equals:

sum((w-mean(w))^2))/(n-1)

[1℄ 22.5

sum((a*x - a*mean(x))^2)/(n-1)

[1℄ 22.5
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a^2*var(x)

[1℄ 22.5

andsw equals:

a*sd(x)

[1℄ 4.743416

sd(w)

[1℄ 4.743416

20.7 The joint density of independent normal random variables

If Z1,Z2 ∼ n(0,1) are independent then they each have density

φ(x) =
1√
2π

e−
x2
2 ,x∈ R

and the joint density is the productf (z1,z2) = φ(z1)φ(z2) or

f (z1,z2) =
1

(
√

2π)2
e
−z21

2 − z22
2 .

20.7.1 Details

If X ∼ n(µ1,σ2
1) andY ∼ n(µ2,σ2

2) are independent, then their densities are

fX(x) =
1√

2πσ1
e
−(x−µ1)

2

2σ2
1

and

fY(y) =
1√

2πσ2
e
−(y−µ2)

2

2σ2
2

and the joint density becomes

1
2πσ1σ2

e
− (x−µ1)

2

2σ2
1

− (y−µ2)
2

2σ2
2

Now, supposeX1, . . . ,Xn ∼ n(µ,σ2) are i.i.d., then

f (x) =
1

(2π)
n
2 σn

e
−

n∑

i=1

(xi −µ)2

aσ2

is the multivariate normal density in the case of i.i.d. variables.

20.8 More general multivariate probability density functions

20.8.1 Examples
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Example 20.10.Suppose X and Y have the joint density

f (x,y) =







2 0≤ y≤ x≤ 1

0 otherwise

First notice that
∫

R

∫

R f (x,y)dxdy=
∫ 1
x=0

∫ x
y=02dydx=

∫ 1
0 2xdx= 1, so f is indeed a

density function.
Now, to find the density ofX we first find the c.d.f. ofX, first note that fora< 0 we have
P[X ≤ a] = 0 but if a≥ 0, we obtain

FX(a) = P[X ≤ a] =
∫ a

x0

∫ x

y=0
2dydx= [x2]a0 = a2.

The density ofX is therefore

fX(x) =
dF(x)

dx







2x 0≤ x≤ 1

0 otherwise
.

20.8.2 Handout

If
f : Rn → R

is such that
P[X ∈ A] =

∫

A . . .
∫

f (x1, . . . ,xn)dx1 · · ·dxn

and f (x)≥ 0 for all x∈ Rn

then f is thejoint densityof

X =

Ü

X1
...

Xn

ê

If we have the joint density of some multidimensional randomvariableX = (X1, . . . ,Xn)
given in this manner, then we can find the individual density functions of theXi ’s by in-
tegrating the other variables.

21 Some distributions related to the normal

21.1 The normal and sums of normals

The sum of independent normally distributed random variables is also normally distri-
buted.

21.1.1 Details

The sum of independent normally distributed random variables is also normally distribu-
ted. More specifically, ifX1 ∼ n(µ1,σ2

1) andX2 ∼ n(µ2,σ2
2) are independent thenX1+X2 ∼

n(µ,σ2) sinceµ= E [X1+X2] = µ1+µ2 and
σ2 =V [X1+X2] with σ2 = σ2

1+σ2
2

if X1 andX2 are independent.

Similarly
n∑

i=1

Xi
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is normal ifX1, . . . ,Xn are normal and independent.

21.1.2 Examples

Example 21.1. Simulating and plotting a single normal distribution.Y ∼ n(0,1)

library(MASS) # for truehist

par(mf
ol=
(2,2))

y<-rnorm(1000) # generating 1000 n(0,1)

mn<-mean(y)

vr<-var(y)

truehist(y,ymax=0.5) # plot the histogram

xve
<-seq(-4,4,0.01) # generate the x-axis

yve
<-dnorm(xve
) # theoreti
al n(0,1) density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("Simulation and theory n(0,1)\n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

Example 21.2. Sum of two normal distributions.

Y1 ∼ n(2,22)

and
Y2 ∼ n(3,32)

y1<-rnorm(10000,2,2) # n(2,2^2)

y2<-rnorm(10000,3,3) # n(3, 3^2)

y<-y1+y2

truehist(y)

xve
<-seq(-10,20,0.01)

# 
he
k

mn<-mean(y)

vr<-var(y)


at("The mean is",mn,"\n")


at("The varian
e is ",vr,"\n")


at("The standard deviation is",sd(y),"\n")

yve
<-dnorm(xve
,mean=5,sd=sqrt(13)) # n() density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("The sum of n(2,2^2) and n(3,3^2)\n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)
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Example 21.3. Sum of nine normal distributions, all withµ= 42 andσ2 = 22

ymat<-matrix(rnorm(10000*9,42,2),n
ol=9)

y<-apply(ymat,1,mean)

truehist(y)

# 
he
k

mn<-mean(y)

vr<-var(y)


at("The mean is",mn,"\n")


at("The varian
e is ",vr,"\n")


at("The standard deviation is",sd(y),"\n")

# plot the theoreti
al 
urve

xve
<-seq(39,45,0.01)

yve
<-dnorm(xve
,mean=5,sd=sqrt(13)) # n() density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("The sum of nine n(42^2) \n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

21.2 The Chi-square distribution

If X ∼ n (0,1),thenY = X2 has a distribution which
is called the Chi - square distribution (χ2) on one
degree of freedom. This can be written as:

Y ∼ χ2

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

21.2.1 Details

Definition 21.1. If X1,X2, . . . ,Xn are i.i.d.N(0,1) then the distribution of
Y = X2

1 +X2
1 + . . .+X2

n has aChi square (χ2)distribution .
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21.3 Sum of Chi square Distributions

Let Y1 andY2 be independent variables. IfY1 = χ2
ν1

andY2 = χ2
ν2

,
then the sum of these two variables also follows a
chi-squared (χ2)distribution

Y1+Y2 = χ2
ν1+ν2

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

X

21.3.1 Details

Note 21.1.Recall that if
X1, . . . ,Xn ∼ n(µ,σ2)

are i.i.d., then

n∑

i=1

Ç

X̄−µ
σ

å2

=
n∑

i=1

(X̄−µ)2

σ
∼ χ2

21.4 Sum of squared deviation

If X1, · · · ,Xn ∼ n(µ,σ2) i.i.d, then

n∑

i=1

Ç

Xi −µ
σ

å2

∼ χ2
n,

but we are often interested in

1
n−1

n∑

i=1

(Xi − X̄)2 ∼ χ2
n−1.

21.4.1 Details

Consider a random sample of Gaussian random variables, i.e.X1, · · · ,Xn ∼ n(µ,σ2) i.i.d.
Such a collection of random variables have properties whichcan be used in a number of
ways.

n∑

i=1

Ç

Xi −µ
σ

å2

∼ χ2
n,

but we are often interested in

1
n−1

n∑

i=1

(Xi − X̄)2 ∼ χ2
n−1.

Note 21.2.A degree of freedom is lost because of subtracting the estimator of the mean as
opposed to the true mean.
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The correct notation is:
µ = population mean
X̄ = sample mean (a random variable)
x̄ = sample mean (a number)

21.5 The t-distribution

If U ∼ n(0,1) andW ∼ χ2
ν are independent, then the random variable

T =
U
»

w
ν

has a distribution which we call the t-distribution onν degrees of freedom denotedT ∼
tν.

21.5.1 Details

Definition 21.2. If U ∼ n(0,1) andW ∼ χ2
ν are independent, then the random variable

T :=
U
»

w
ν

has a distribution which we call thet-distribution on ν degrees of freedom, denoted
T ∼ tν.

It turns out that ifX1, . . . ,Xn ∼ n(µ,σ2) and we set

X̄ =
1
n

n∑

i=1

Xi

and

S=

Ã

1
1−n

n∑

i=1

(Xi −X)2

then
X̄−µ
S/

√
n
∼ tn−1.

This follows fromX̄ and
∑n

i=1(Xi−X̄)2 being independent andX̄−µ
σ/

√
n ∼ n(0,1),

∑ (Xi−X̄)2

σ2 ∼
χ2

n−1.
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22 Estimation, estimates and estimators

22.1 Ordinary least squares for a single mean

If µ is unknown andxi , . . . ,xn are data, we can estimateµ by finding

min
µ

n∑

i=1

(xi −µ)2

In this case the resulting estimate is simply

µ= x

and can easily be derived by setting the derivative to zero.

22.1.1 Examples

Example 22.1. Consider the numbersx1, . . . ,x5 to be

13,7,4,16 and 9

We can plot
∑
(xi −µ)2 vs. µ and find the minimum.

22.2 Maximum likelihood estimation

If (Y1, . . . ,Yn)
′ is a random vector from a densityfθ whereθ is an unknown parameter,

andy is a vector of observations then we define thelikelihood function to be

Ly(θ) = fθ(y).

22.2.1 Examples

Example 22.2. If, x1, . . . ,xn are assumed to be observations of independent random
variables with a normal distributions and mean ofµ and variance ofσ2, then the joint
density is

f (x1) · f (x2) · . . . · f (xn)

=
1√
2πσ

e−
(x1−µ)2

2σ2 · . . . · 1√
2πσ

e−
(xn−µ)2

2σ2

= Πn
i=1

1√
2πσ

e−
(xi−µ)2

2σ2

=
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1(xi−µ)2

and if we assumeσ2 is known then the likelihood function is

L(µ) =
1

(2π)n/2σn
e−

1
2σ2
∑n

i=1(xi−µ)2
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Maximizing this is done by maximizing the log, i.e. finding theµ for which:

d
dµ

lnL(µ) = 0,

which again results in the estimate
µ̂= x

22.2.2 Detail

Definition 22.1. If (Y1, . . . ,Yn)
′ is a random vector from a densityfθ where θ is an

unknown parameter, andy is a vector of observations then we define thelikelihood
function to be

Ly(θ) = fθ(y).

22.3 Ordinary least squares

Consider the regression problem where we fit a line
through (xi ,yi) pairs with x1, . . . ,xn fixed numbers
but whereyi is measured with error.

0 10 20 30 40

−
3

−
2

−
1

0
1

2

x

y

Regression line through data pairs.

22.3.1 Details

The ordinary least squares (OLS) estimates of the parameters α andβ in the modelyi =
α+βxi + εi are obtained by minimizing the sum of squares

∑

i

(yi − (α+βxi))
2

a= y−bx

b=

n∑

i=1

(xi −x)(yi −y)

n∑

i=1
(xi −x)2
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22.4 Random variables and outcomes

22.4.1 Details

Recall thatX1, . . . ,Xn are random varibles (reflecting the population distribution) andx1, . . . ,xn

are numerical outcomes of these distributions. We use uppercase letters to denote random
variables and lower case letters to denote outcome or data.

22.4.2 Examples

Example 22.3. Let the mean of a population be zero and theσ = 4. Then draw three
samples from this population with size, n, either 4, 16 or 64.The sample mean̄X will
have a distribution with mean zero and standard deviation ofσ√

n where n= 4, 16 or 64.

22.5 Estimators and estimates

In OLS regression, note that the values ofa andb

a= y−bx

b=

∑n
i=1(xi −x)(yi −y)
∑n

i=1(xi −x)2

are outcomes of random variables e.g.b is the
outcome of

β̂ =

∑n
i=1(xi −x)(Yi −Y)
∑n

i=1(xi −x)2

the estimator which has some distribution.

0.30 0.35 0.40 0.45 0.50

0
2

4
6
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10

betahat

Shows an example of the distribution of the
estimatorβ̂

22.5.1 Details

The following R commands can be used to generate a distribution for the estimator̂β

library(MASS)

nsim <- 1000 # repli
ates

betahat <- NULL

for (i in 1:nsim){

n <- 20

x <- seq(1:n) # Fixed x ve
tor

y <- 2 + 0.4*x + rnorm(n, 0, 1)

xbar <- mean(x)

ybar <- mean(y)

b <- sum((x-xbar)*(y-ybar))/sum((x-xbar)^2)

a <- ybar - b* xbar

betahat <- 
(betahat, b)

}

truehist(betahat)
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23 Test of hypothesis, P values and related concepts

23.1 The principle of the hypothesis test

The principle is to formulate a hypothesis and an alternative hypothesis,H0 and Ha

respectively, and then select a statistic with a given distribution whenH0 is true and
select a rejection region which has a specified probability(α) whenH0 is true.
The rejection region is chosen to reflectHa, i.e to ensure a high probability of rejection
whenHa is true.

23.1.1 Examples

Example 23.1. Suppose we want to evaluate whether a coin is biased. We can plan an
experiment for this. Suppose we toss the coin 5 times and count the number of heads.
We can test the following hypothesis simply.

H0 : p= 1
2 whereH0 is the null hypothesis

Ha; p> 1
2 whereHa is an alternative hypothesis

andp is probability of having a head.

We rejectH0 if we get all heads. (Assuming the only interest is in a tendency towards
larger probabilities). So the probability of rejecting thenull hypothesisH0 is:
P[rejectH0]= P [ all heads in 5 trials]≡ p5

If H0 is true, then P [rejectH0] = 1
2

Need to choose 5 trials to ensure1
25 =

1
32 <

1
32 < 0.05

i.e. The probability of incorrectly rejectingH0 is less thanα = 0.05

Example 23.2. Flip a coin to test
H0 : P= 1

2 vs Ha : P 6= 1
2

Reject, if no heads or all heads are obtained in 6 trials, where the error rate is
P [rejectH0 when true] = P [all heads or all tails]
= P[all heads] + P [all tails]
= 1

26 +
1
26 = 2 1

64 =
1
32 < 0.05

A variation of this test is called the sign test, which is usedto test hypothesis of the form,
H0: true median = 0 using a count of the number of positive values.
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23.2 The one sided z test for normal mean

Consider testing

H0 : µ= µ0

vs

Ha : µ> µ0

Where datax1 . . .xn are collected as independent observations ofX1 . . .Xn ∼ n(µ,σ2) and
σ2 is known. IfH0 is true, then

x̄∼ n(µ0,
σ2

n
)

So,

Z =
x̄−µ0

σ√
n

∼ n(0,1)

It follows that,

P[Z > z∗] = α

Where

z∗= z1−α

So if the datax1 . . .xn are such that,

z=
x̄−µ0

σ√
n

> z∗

ThenH0 is rejected.

23.2.1 Examples

Example 23.3. Consider the following data set:47, 42, 41, 45, 46.
Suppose we want to test the following hypothesis

H0 : µ= 42

vs

Ha : µ> 42

σ = 2 is given
The mean of the given data set can be calculated as

x̄= 44.2

we can calculatezby using following equation

z=
x̄−µ

σ√
n

=
44.2−42

2√
5
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z=
2.2

0.8944
= 2.459

z∗= 1.645

Here
z> z∗
SoH0 is rejected withα = 0.05

23.3 The two-sided z test for a normal mean

z :=
x−µ0

s
√

n
∼ n(0,1)

23.3.1 Details

Consider testingH0 : µ = µ0 versusHa : µ 6= µ0 based on observation fromX1, ...,X ∼
n(µ,σ2) i.i.d. whereσ2 is known. IfH0 is true, then

Z :=
x−µ0

σ
√

n
∼ n(0,1)

and
P[|z|> z⋆] = α

with
z⋆ = z1

We rejectH0 if |z|> z⋆. If |z|> z⋆ is not true, then we "Cannot reject theH0".

23.3.2 Examples

Example 23.4. In R, you may generate values to calculate thez value. The command
that is generally used is:quantile
To illustrate:

z<-rnorm(1000,0,1)

quantile(z,
(0.025,0.975))

2.5% 97.5%

-1.995806 2.009849

So, thez value for a two-sided normal mean is|−1.99|.

23.4 The one-sided t-test for a single normal mean

Recall that ifX1, ...,Xn ∼ N(µ,σ2) i.i.d. then

X−µ
S/

√
n
∼ tn−1
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23.4.1 Details

Recall that ifX1, . . . ,Xn ∼ N(µ,σ2) i.i.d. then

X−µ
S/

√
n
∼ tn−1

To test the hypothesisH0 : µ= µ0 vsH1 : µ> µ0 first note that ifH0 is true, then

T =
X−µ0

S/
√

n
∼ tn−1

so
P[T > t∗] = α

if
t∗= tn−1,1−α

Hence, we rejectH0 if the datax1, ...,xn results in a a value oft := x−µ0
S/

√
n such that t>t*,

otherwiseH0 can not be rejected.

23.4.2 Examples

Example 23.5. Suppose the following data set (12,19,17,23,15,27) comes independently
from a normal distribution and we need to testH0 : µ= µ0 vs Ha : µ> µ0. Here we have
n= 6,x= 18.83,s= 5.46,µ0 = 18 so we obtain

t =
x−µ0

s/
√

n
= 0.37

soH0 cannot be rejected.

In R, t* is found using qt(n-1,0.95) but the entire hypothesis can be tested using

t.test(x,alternative="greater",mu=<$\mu_0$>)

23.5 Comparing means from normal populations

Suppose data are gathered independently from two normal populations resulting in
x1, ....,xn andy1, ...ym

23.5.1 Details

We know that if

X1, ....,Xn ∼ n(µ1,σ)

Y1, ....,Ym∼ n(µ2,σ)

are all independent then

X̄−Ȳ ∼ n(µ1−µ2,
σ2

n
+

σ2

m
)
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Further,
n∑

i=1

(Xi − X̄)2

σ2 ∼ X2
n−1

and
m∑

j=1

(Yj −Ȳ)2

σ2 ∼ X2
m−1

so
∑n

i=1(Xi − X̄)2+
∑m

j=1(Yj −Ȳ)2

σ2 ∼ X2
n+m−2

and it follows that
X̄−Ȳ− (µ1−µ2)

S
√

(1
n +

1
m)

∼ tn+m−2

where

S=

Ã

∑n
i=1(X1− X̄)2+

∑m
j=1(Yj −Ȳ)2

n+m−2

consider testingH0 : µ1 = µ2 vs H1 = mu1 > µ2. Hence, ifH0 is true then the observed
value

t =
x̄− ȳ

S
√

1
n +

1
m

comes from a t-test withn+m−2 df and we rejectH0 if |t|> t∗. Here,

S=

√
∑

i(xi − x̄)2+
∑

j(y j − ȳ)2

n+m−2

andt∗ = tn+m−2,1−α

23.6 Comparing means from large samples <Ól.B.M.>

If X1, ....Xn andY1, .....Ym, are all independent (with finite variance) with expected values
of µ1 andµ2 respectively, and variances ofσ2

1,andσ2
2 respectively, then

X−Y− (µ1−µ2)
…

σ2
1

n +
σ2

2
m

∼̇n(0,1)

if the sample sizes are large enough.

This is the central limit theorem.

23.6.1 Details

Another theorem (Slutzky) stakes that replacingσ2
1 andσ2

2 with S2
1 andS2

2 will result in the
same (limiting) distribution.

It follows that for large samples we can test

H0 : µ1 = µ2 vs. Ha : µ1 > µ2

by computing

z=
x−y
…

s2
1
n +

s2
2

m

and rejectH0 if z> z1−α.
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23.7 The P-value

The p-value of a test is an evaluation of the probability of obtaining results which are as
extreme as those observed in the context of the hypothesis.

23.7.1 Examples

Example 23.6. Consider a dataset and the following hypotheses

H0 : µ= 42

vs.
Ha : µ> 42

and suppose we obtain

z= 2.3

We rejectH0 since
2.3> 1.645+z0.95

The p-value is
P[Z > 2.3] = 1−Φ(2.3)

obtained in R using

1-pnorm(2.3)

[1℄ 0.01072411

If this had been a two tailed test, then

P= P[|Z|> 2.3]

= P[Z <−2.3]+P[Z > 2.3]

= 2 ·P[Z > 2.3]

23.8 The concept of significance

23.8.1 Details

Two sample means are statisticallysigni f icantlydi f f erent if their null hypothesis (µ1 =
µ2)can bere jected. In this case, one can make the following statements:

• The population means are different.

• The sample means are significantly different.

• µ1 6= µ2

• x̄ is significantly different from ¯y.

But one does not say:

• The sample means are different.

• The population means are different with probability 0.95.
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Similarly, if the hypothesisH0 : µ1 = µ2 can not be rejected, we can say:

• There is no significant difference between the sample means.

• We can not reject the equality of population means.

• We can not rule out...

But we can not say:

• The sample means are equal.

• The population means are equal.

• The population means are equal with probability 0.95.

24 Power and sample sizes

24.1 The power of a test

Suppose we have a method to test a null hypothesis against an alternative hypothesis.
The test would be "controlled"at some levelα, i.e. P[re ject H0]≤α wheneverH0 is true.

On the other hand, whenH0 is false one wantsP[re ject H0] to be as high as possible.

If the parameter to be tested isθ andθ0 is a value withinH0 andθa is in Ha then we
wantPθ0[re ject H0]≤ α andPθa[re ject H0] as large as possible.

For a generalθ we write
β(θ) = Pθ[re ject H0]

for the power of the test

24.1.1 Details

Do not use the phrase "accept".

24.2 The power of tests for proportions

0.0 0.2 0.4 0.6 0.8 1.0
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24.2.1 Examples
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Example 24.1. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 1: A student records a 0 if they toss an even number(2,4,6), and
records a 1 if they toss an odd number (1,3,5). After tossing the dice 9 times and
recording a 0 or 1 the student tabulates the number of 1s. Thisprocess is repeated 6
more times.

Data and outcomes: x = number of successes in n trials =
∑n

i=1. Thus, x = num-
ber of odd numbers

Question:Test whetherp= P[oddnumber] = 1
2 that is

H0 : p= 1
2 vs. Ha : p 6= 1

2

Solution: Now, x is an outcome ofX ∼ Bin(n, p). We know from the CLT that

X−np
»

np(1− p)
∼ Ṅ(0,1)

write p0 =
1
2 so if H0 : p= p0 is true then

Z :=
X−np0

»

np0(1− p0)
∼ Ṅ(0,1)

so we rejectH0 if the observed value

z=
x−np0

»

np0(1− p0)

is such that|z|> z1−α
2

Outcomes from 21 trials
7 4 4
3 4 6
5 3 4
5 5 3
6 4 5
4 3 5
3 6 7

z=
7−9 · 1

2
√

9 · 1
2 · 1

2

=
7−4.5

3 · 1
2

=
14−9

3
=

5
3
< 1.96

So we do not reject the null hypothesis!

Note 24.1.Note that we can rewrite the test statistics slightly

z=
x− n

2
√

n · 1
2 · 1

2

=
x− 9

2

3 · 1
2

=
2x−9

3

Note 24.2.Note that we reject if2x−9
3 > 1.96 i.e. if 2x> 9+3 ·1.96≈ 9+6= 15

x> 7.5 [for x=8 or 9] or 2x< 9−3 ·1.96,x< 1.5 [for x=0 or 1].
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Example 24.2. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 2: The procedure is the same as in experiment 1, but now the student records
0 for a 1 or 2 and a 1 for a 3,4,5,or 6.

Data and outcomes:
x = number of successes in n trials =

∑n
i=1 Thus, x = number of ’b’s

Solution: Outcomes from 21 experiments
5 4 3
8 5 7
5 7 3
7 6 5
7 8 8
5 6 4
2 5 7
This time our test isH0 : p = 2

3 vs Ha : p = 2
3. Note that we rejectH0 if 6x−4n

9 > 1,96
[for x=9] or if 6x−4n

9 <−1,96 [for x=0,1,2,3].

We rejectH0 in 3 out of 21 trials.

Example 24.3. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 3: Same as experiment 1 except 0 is recorded for 1,2,3,4,5 and a 1 is
recorded for 6.

Data and outcomes:
x = number of successes in n trials =

∑n
i=1 Thus, x = number of ’1’s

Solution: Outcomes from 21 experiments
0 1 2
1 2 1
1 4 2
1 1 1
1 3 1
1 1 2
0 2 0
With the same kind of calculations as above, we find that we reject the null hypothesis
H0 : p= 1

6 in 14 out of 21 trials.
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24.3 The Power of the one sided z test for the mean

The one sided z-test for the mean(µ) is based on a random sample where
X1 . . .Xn ∼ n(µ,σ2) are independent andσ2 is known.

The power of the test for an arbitraryµ can be computed as:

β(µ) = 1−Φ

Ñ

µ0−µ
σ√
n

+z1−α

é

24.3.1 Details

The one sided z-test for the mean(µ) is based on a random sample whereX1 . . .Xn ∼
n(µ,σ2) are independent andσ2 is known.

If the hypotheses are:
H0 : µ= µ0 vs
Ha : µ> µ0

Then we know that, ifH0 is true

Z =
X̄−µ0

σ√
n

∼ n(0,1)

Given datax1, . . .xn, the z-value is

z=
x̄−µ0

σ√
n

We rejectH0 if z> z1−α
The level of this test is

Pµ0[Re jectH0] = Pµ0[
X̄−µ0

σ√
n

> z1−α]

= P[z> z1−α] = α

sinceZ ∼ n(0,1) whenµ0 is the true value.

The power of the test for an arbitraryµ can be computed as follows.

β(µ) = Pµ[re jectH0]

= Pµ[
X̄−µ0

σ√
n

> z1−α]

= Pµ[X̄ > µ0+z1−α
σ√
n
]

= Pµ[
X̄−µ

σ√
n

>
µ0−µ

σ√
n

+z1−α]
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= P[Z >
µ0−µ

σ√
n

+z1−α]

We obtain

β(µ) = 1−Φ

Ñ

µ0−µ
σ√
n

+z1−α

é

24.3.2 Examples

Example 24.4. Suppose we knowσ = 2 and we will take a sample fromn
Ä

µ,σ2
ä

intending to test the hypothesisµ = 3 at levelα = 0.05. We want to know the power
against a one-tailed alternative when the true mean is actually µ = 4 when the sample
size isn= 25.

We can set this up in R with:

alpha<-0.05

n<-25

sigma<-2

mu0<-3

mu<-4

z
rit<-qnorm(1-alpha)

Sticking the formula into R gives

1-pnorm((mu0-mu)/(sigma/sqrt(n))+z
rit)

[1℄ 0.803765

On the other hand, one can also use a simple simulation approach. First, decide how many
samples are to be simulated (Nsim). Then, generate all of these samples, arrange them in
a matrix and compute the mean of each sample. The z-value of each of these Nsim tests
are then computed and a check is made whether it exceeds the critical point (1) or not (0).

Nsim<-10000

m<-matrix(rnorm(Nsim*n,mu,sigma),n
ol=n)

mn<-apply(m,1,mean)

z<-(mn-mu0)/(sigma/sqrt(n))

i<-ifelse(z>z
rit,1,0)

sum(i/Nsim)

[1℄ 0.8081
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24.4 The non central t - distribution

Recall that ifZ ∼ n(0,1) andU ∼ χ2
v are independent then

Z
√

U
v

∼ tv

and it follows for a random sampleX1 . . .Xn ∼ n(µ,σ2) independent; that

X̄−µ
s√
n

=

X̄−µ
σ√
n

 ∑
(Xi−X̄)2

σ2
n−1

∼ tn−1

24.4.1 Details

On the other hand, ifW ∼ n(∆,1) andU ∼ χ2
v are independent, thenW»

U
v

has a non central

t-distribution withv degrees of freedom and non centrality parameter∆. This distribution
arises, ifX1 . . .Xn ∼ n(µ,σ2) independent and we want to consider the distribution of:

X̄−µ
S√
n

=

X̄−µ
σ√
n
+ µ−µ0

σ√
n

S√
n

=
Z+ µ−µ0

σ√
n

√
U
v

Whereµ 6= µ0 which is a non central t with non centrality parameters

∆ =
µ−µ0

σ√
n

with n−1 df. Herev= n−1d f sinceZ ∼ n(0,1) andU ∼ χ2
n−1 in this equation

24.5 The power of t-test for a normal mean

24.5.1 Details

ConsiderX1, . . . ,Xn ∼ n(µ,σ2) i.i.d. whereσ2 is unknown and we want to testH0 : µ= µ0

vs. Ha : µ> µ0. We know that

T :=
X−µ
s/
√

n
∼tn−1

and we will rejectH0 if the computed value

t :=
x−µ0

s/
√

n

is such that
t > t⋆ = tn−1,1−α.

The power of this test is:

B(µ) = Pµ[re ject H0] = Pµ[
x−µ0

s/
√

n
> t⋆]

= Pµ[x−µ0 > t⋆ ·s/
√

n]

= Pµ[
x−µ
s/
√

n
> t⋆+

µ0−µ
s/
√

n
].
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Which is the probability that atn−1,1−α-variable exceedt⋆+ µ0−µ
s/
√

n.

24.6 Power and sample size for the one-sided z-test for a single normal
mean

Suppose we want to testH0 : µ= µ0 vs Ha : µ> µ0. We will rejectH0 if the observed
value

z=
x−µ0

σ/
√

n

is such thatz> z1−α.

24.6.1 Details

Suppose we want to testH0 : µ= µ0 vs Ha : µ> µ0. So based onX1, ...,Xn ∼ n(µ,σ2) i.i.d.
with σ2 known we will rejectH0 if the observed value

z=
x−µ0

σ/
√

n

is such thatz> z1−α. The power is given by:

β(µ) = 1−Φ(
µ−µ0

σ/
√

n
+z1−α)

and describes the probability of rejectingH0 whenµ is the correct value of the parameter.
Suppose we want to rejectH0 with a prespecified probabilityβ1, whenµ1 is the true value
of µ. For this, we need to select the sample size so that

β(µ1)≥ β1

i.e. find n which satisfies
1−Φ(

µ1−µ0

σ/
√

n
+z1−α)≥ β1

24.6.2 Examples

Example 24.5.mu0<-10
sigma<-2

mu1<-11

n<-50

d<-(mu1-mu0)

power.t.test(n=n,delta=d,sd=sigma,sig.level=0.05,type="one.sample",

alternative="one.sided",stri
t

+ = TRUE)

One-sample t test power 
al
ulation

n = 50

delta = 1

sd = 2
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sig.level = 0.05

power = 0.9672067

alternative = one.sided

24.7 Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test for a single mean (one
sample), this can easily be done in R with thepower.t.test command.

24.7.1 Details

△= µ1−µ2

δ = µ1−µ2
σ/

√
n

24.7.2 Examples

Example 24.6. For a one sided power analysis we wish to test the following hypotheses:

For a one sample test:
H0 : µ= µ0 vs. Ha : µ> µ0

For a two sample test:
H0 : µ1 = µ2 vs. Ha : µ1 > µ2

In R, thepower.t.test command is useful to calculate how many samples one needs
to obtain a certain power of a test, but also to calculate the power when we have a given
number of samples.

Example 24.7. How many samples do I need to get a power of .9?

power.t.test(power = .95, delta=1.5,sd=2, type="one.sample",

alternative = "one.sided")

One-sample t test power 
al
ulation

n = 20.67702

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.95

alternative = one.sided
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We would thus need a sample size of n = 31.15 or≈ 32 samples to obtain a power of 0.9
for our analysis.

Example 24.8. With a sample size of n = 45, what will the power of my test be?

power.t.test(n=45,delta=1.5,sd=2,sig.level=0.05,type="one.sample",

alternative="one.sided")

One-sample t test power 
al
ulation

n = 45

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.9995287

alternative = one.sided

This is done the same way for two samples only by changing the alternative to
"two.sample". For two sided power analysis, one only needs to change the alternative to
"two.sided".

Example 24.9. If one is interested in doing a power analysis for an ANOVA test, this is
done in a fairly similar way.

With a given sample size of n=20:

power.anova.test(groups=4, n=20, between.var=1, within.var=3)

Balanced one-way analysis of variance power calculation

groups = 4

n = 20

between.var = 1

within.var = 3

sig.level = 0.05

power = 0.9679022

To calculate the sample size needed to obtain a power of 0.90 for a test:

power.anova.test(groups=4, between.var=1, within.var=3, power=.9)

Balanced one-way analysis of variance power calculation

groups = 4

n = 15.18834
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between.var = 1

within.var = 3

sig.level = 0.05

power = 0.9

24.8 The power of the 2-sided t-test

A power analysis on a two-sided t-test can be done in R using the power.t.testcommand.

24.8.1 Details

For a one sample test:
H0 : µ= µ0 vs. Ha : µ 6= µ0

The power.t.test command is useful to provide information for determining the minim-
um sample size one needs to obtain a certain power of a test:

power.t.test(n= ,delta= ,sd= ,sig.level= ,power= ,type=
("two.sample"

,"one.sample","paired"),alternative=
("two.sided"))

where:
n=sample size
d=effect size
sd=standard deviation
sig.level=significance level
power= normally 0.8, 0.9 or 0.95
type= two sample, one sample or paired (the type selected depends on the research)
alternative= either one sided or two sided

24.8.2 Examples

Example 24.10.How many samples do I need in my research to obtain a power of 0.8?

power.t.test(delta=1.5,sd=2,sig.level=0.05,power=0.8,type=
("two.

sample"),alternative=
("two.sided"))

Two-sample t test power 
al
ulation

n = 28.89962

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.8

alternative = two.sided

So, one needs 29 samples (n=29) to obtain a power level of 0.8 for this analysis.
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24.9 The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computed asfollows:

β(µ1µ2) = Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2





and the power of a two sample, two-sided t-test is give by:

β(µ1µ2)=Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2



+Pµ1µ2




Z+∆

»

U/(n+m−2)
<−t∗1−α,n+m−2





where∆ = (µ1−µ2)

σ
»

1
n+

1
m

andU is the SSE.

24.9.1 Details

Two Sample, One-sided t-Test:
Suppose data are gathered independently from two normal populations resulting in

X1, . . . ,Xn ∼ n(µ1,σ2)

Y1, . . . ,Ym ∼ n(µ2,σ2)

where all data are independent then

X−Y ∼ n(µ1−µ2,
σ2

n
+

σ2

m
)

The null hypothesis in question isHo : µ1 = µ2 versus alternativeHa : µ1 > µ2. If Ho is true
then the observed value

t =
x−y

s
√

1
n +

1
m

comes from a t-distribution withn+m− 2 degrees of freedom and we rejectHo if |t| >
t∗1−α,n+m−2

The power of the test can be computed as follows:

β(µ1µ2) = Pµ1µ2 [re ject Ho]

= Pµ1µ2




X−Y

S
√

1
n +

1
m

> t∗1−α,n+m−2





= Pµ1µ2








X−Y−(µ1−µ2)

σ
»

1
n+

1
m

+ (µ1−µ2)

σ
»

1
n+

1
m

S/σ
> t∗1−α,n+m−2








= Pµ1µ2








Z+ (µ1−µ2)

σ
»

1
n+

1
m

S/
»

(n+m−2)
> t∗1−α,n+m−2








= Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2




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where∆ = (µ1−µ2)

σ
»

1
n+

1
m

andU is the SSE of the samples which is divided by the appropriate

degrees of freedom to give aχ2 distribution.

This is the probability that a non-centralt-variable exceedst∗.

Two Sample, Two-sided t-Test:
In this case the null hypothesis is defined asHo : µ1 = µ2 versus alternativeHa : µ1 6= µ2.

The power of the test can be computed as follows:

β(µ1µ2) = Pµ1µ2 [re ject Ho]

= Pµ1µ2






∣
∣
∣
∣
∣
∣
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∣
∣
∣
∣
∣
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
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
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


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

= Pµ1µ2








X−Y−(µ1−µ2)

σ
»

1
n+

1
m

+ (µ1−µ2)

σ
»

1
n+

1
m

S/
»

(n+m−2)
> t∗1−α,n+m−2








+Pµ1µ2








X−Y−(µ1−µ2)

σ
»

1
n+

1
m

+ (µ1−µ2)

σ
»

1
n+

1
m

S/
»

(n+m−2)
<−t∗1−α,n+m−2








= Pµ1µ2




Z+∆

»
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+Pµ1µ2
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
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where∆ = (µ1−µ2)

σ
»

1
n+

1
m

andU is the SSE of the samples which is divided by the appropriate

degrees of freedom to give aχ2 distribution.

Note 24.3.Note that the power of a test can be obtained using thepower.t.testfunction in
R.

24.10 Sample sizes for two-sample one and two-sided t-tests

The sample size should always satisfy the desired power.
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24.10.1 Details

Suppose we want to reject theHo with a pre-specified probabilityβ1 whenµ1 andµ2 are
true values ofµ. For this, we need to select the sample sizen andm so thatβ(µ1µ2) ≥ β1

i.e. findn andm which satisfies

Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2





for a two sample, one-sided t-test.

Similarly for a two sample, two-sided t-test we need to findn andm that satisfies

Pµ1µ2

ñ

Z+∆√
U/(n+m−2)

> t∗1−α,n+m−2

ô

+ Pµ1µ2

ñ

Z+∆√
U/(n+m−2)

<−t∗1−α,n+m−2

ô

24.11 A case study in power

Want to compute power in analysis of covariance:

yi j = µi +βxi j + εi j , i = 1,2, j = 1, . . .J,

whereεi j ∼ n(0,σ2) are i.i.d.?

This can be done by simulation and can easily be expanded to other cases.

24.11.1 Handout

Example 24.11. If you want to compute a power analysis in analysis of covariance:

yi j = µi +βxi j + εi j , i = 1,2, j = 1, . . .J,

whereεi j ∼ n(0,σ2) are i.i.d. then use simulation.

To do this one needs to first define the task in more detail, along with what exactly is
known and what the assumptions are.

Note 24.4.Note that there are only two groups, with interceptsµ1 and µ2. The
"power"will refer to the power of a test forµ1 = µ2, i.e. we want to test whether the
group means are equal, correcting for the effect of the continuous variablex.

In principle, thex-values will be either fixed a priori or they may be a random part of the
experiment. Here we will assume that thex-values are randomly selected in the range
20-30 (could e.g. be the ages of patients).

Since this is in the planning stage of the experiment, we alsohave a choice of the sample
size within each group. For convenience, the sample sizes are taken to be the same in
each group,J so the total number of measurements will ben = 2J. We also need to
decide at which levels ofµ1 andµ2 the power is to be computed (but it is really only a
function of the difference,µ1−µ2).

The following pieces of R code can be saved into a file, "ancovapow.r"and then command
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sour
e("an
ovapow.r")

can be used to run the whole thing.

The beginning of the command sequence merely consists of comments and definitions of
parameter values. These need to be changed for each case separately.

#

# an
ovapow.r - power 
omputations for analysis of 
ovararian
e

# - one fa
tor, two levels mu0, mu1

# - one 
ovariate x, x0 stores possible values from whi
h a random

set is 
hosen

#

# first set values of parameters

#

alpha<-0.05

sigma<-7.5 # the 
ommon standard deviation

x0<-20:30 # the set of x values

delta<-10 # the differen
e in the means

mu0<-0 # the first mean

mu1<-mu0+delta # the se
ond mean

slope<-2.5 # the slope in the an
ova

J<-10 # the 
ommon sample size per fa
tor level

n<-2*J # the total sample size

Nsim<- 40000 # the number of simulations for power 
omputations

Rather than head straight for the ancova, start with a simpler case, namely ignoring the
covariate (x) and merely doing a regular two-sample, two-tailed t-test.This should be
reasonably similar to the ancova power computations anyway.

#

# Next do the power 
omputations just for a regular two-sided, two-

sample t-test

# and use simulation

#

Y1<-matrix(rnorm(J*Nsim,mu0,sigma),n
ol=J) # Simulate Nsim samples

of size J, ea n(mu1,sigma^2)

Y2<-matrix(rnorm(J*Nsim,mu1,sigma),n
ol=J) # Simulate Nsim samples

of size J, ea n(mu2,sigma^2)

y1mn<-apply(Y1,1,mean) # 
ompute all the simulated y1-means

y2mn<-apply(Y2,1,mean) # 
ompute all the simulated y2-means

sy1<-apply(Y1,1,sd) # 
ompute all the simulated y1-std.devs

sy2<-apply(Y2,1,sd) # 
ompute all the simulated y2-std.devs

s<-sqrt(((J-1)*sy1^2+(J-1)*sy2^2)/(n-2)) # 
ompute all the pooled

std.devs

t<-(y1mn-y2mn)/(s*sqrt(1/J+1/J)) # 
ompute all the Nsim t-statisti
s

i<-ifelse(abs(t)>qt(1-alpha/2,n-2),1,0) # for ea t, 
ompute 1=reje
t

, 0=do not reje
t

powsim2<-sum(i)/Nsim # the simulated power


at("The simulated power is ",powsim2,"\n")

The above gave the simulated power. In R there is a function todo the same computations
and it is worth while to verify the code (and approach) by checking whether these give
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the same thing:

#

# Then 
ompute the exa
t power for the t-test

#

pow2<-power.t.test(delta=delta,sd=sigma,sig.level=alpha,n=J ,type=
(

"two.sample"),alternative=
("two.sided"))


at("The exa
t power:\n")

print(pow2)

Finally, start setting up the code to do the ancova simulations. Note that for this we need
to generate the x-values. In this example it is assumed that the x-values are not under the
control of the experimenter but arrive randomly, in the range from 20 to 30 (could e.g. be
the age of participants in an experiment).

#

# Finally 
ompute the power in the an
ova - note we already have

simulated Y1, Y2-values but have not added the x-part yet

#

x1<-matrix(sample(x0,Nsim*J,repla
e=T),n
ol=J) # simulate x-values

for y1

x2<-matrix(sample(x0,Nsim*J,repla
e=T),n
ol=J) # simulate x-values

for y2

Y1<-Y1+slope*x1

Y2<-Y2+slope*x2

fulldat<-
bind(Y1,Y2,x1,x2) # a row now 
ontains all y1, then all y2

, then all x1, then all x2; Nsim rows

Rather than try to write code to do an ancova, it is natural to use the R function lm to do
this. The “trick” below is to extract the P-value from the summary command. By defining
a “wrapper” function which takes a single line as an argument, it will subsequently be
possible to use the “apply” function to extract the P-valuesusing a one-line R command.

an
ova.pval<-fun
tion(onerow){ # extra
t the an
ova p-value for diff

in means

J<-length(onerow)/4

n<-2*J

y<-onerow[1:n℄ # get the y-data from the row

x<-onerow[(n+1):(2*n)℄ # get the x-data from the row

grps<-fa
tor(
(rep(1,J),rep(2,J))) # define the groups

sm<-summary(lm(y~x+grps)) # fit the an
ova model

pval<-sm$
oeffi
ients[3,4℄ # extra
t exa
tly the right thing from

the summary 
ommand-the P-value for H0:mu1=mu2

return(pval)

}

Everything has now been defined so it is possible to compute all the P-values in a single
command line:

pve
<-apply(fulldat,1,an
ova.pval)

i2<-ifelse(pve
<alpha,1,0) # for ea test, 
ompute 1=reje
t, 0=do not

reje
t

an
ovapow<-sum(i2)/Nsim # the simulated power


at("The simulated an
ova power is ",an
ovapow,"\n")
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When run, this script returns:

The simulated power is 0.803025

The exa
t power:

Two-sample t test power 
al
ulation

n = 10

delta = 10

sd = 7.5

sig.level = 0.05

power = 0.8049123

alternative = two.sided

NOTE: n is number in *ea
h* group

The simulated an
ova power is 0.775175

It is seen that when thex-values are not included in any way (in particular,β = 0), the
power is 80.5%. However, this is not the correct model in the present situation. Using the
above value ofβ and taking this into account, the power is actually a bit lower or 77.5%.

25 Vectors and Matrix Operations

25.1 Numbers, vectors, matrices

Recall that the set of real numbers isR and that a vector ,v ∈ Rn is just an n-tuple of
numbers.

Similarly, annxmmatrix is just a table of numbers, with n rows and m columns andwe
can write

Amn∈ Rmn

Note that a vector is normally considered equivalent to an×1 matrix i.e. we view these
as column vectors.

25.1.1 Examples

Example 25.1. In R, a vector can be generated with:

X<- 3:6

X

[1℄ 3 4 5 6

A matrix can be generated in R as follows,

matrix(X)

[,1℄

[1,℄ 3

[2,℄ 4
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[3,℄ 5

[4,℄ 6

Note 25.1.We note that R distinguishes between vector and matrices.

25.2 Elementary Operations

We can define multiplication of a real numberk and a vectorv= (v1, . . . ,vn) by k · v=
(kv1, . . . ,kvn). The sum of two vectors inRn, v= (v1, . . . ,vn) andu= (u1, . . . ,un) as the
vectorv+u = (v1+u1, . . . ,vn+un). We can define multiplication of a number and a
matrix and the sum of two matrices (of the same sizes) similarly.

25.2.1 Examples

Example 25.2.A <- matrix(
(1,2,3,4), nr=2, n
=2)

A

[,1℄ [,2℄

[1,℄ 1 3

[2,℄ 2 4

B <- matrix(
(1,0,2,1), nr=2, n
=2)

B

[,1℄ [,2℄

[1,℄ 1 2

[2,℄ 0 1

A+B

[,1℄ [,2℄

[1,℄ 2 5

[2,℄ 2 5

25.3 The tranpose of a matrix

In R, matrices may be constructed using the "matrix"function and the transpose ofA, A′,
may be obtained in R by using the "t"function:
A<-matrix(1:6, nrow=3)

t(A)

25.3.1 Details

If A is ann×m matrix with elementai j in row i and columnj, thenA′ or AT is them×n
matrix with elementai j in row j and columni.

25.3.2 Examples

139



Example 25.3. Consider a vector in R

x<-1:4

x

[1℄ 1 2 3 4

t(x)

[,1℄ [,2℄ [,3℄ [,4℄

[1,℄ 1 2 3 4

matrix(x)

[,1℄

[1,℄ 1

[2,℄ 2

[3,℄ 3

[4,℄ 4

t(matrix(x))

[,1℄ [,2℄ [,3℄ [,4℄

[1,℄ 1 2 3 4

Note 25.2.Note that the first solution gives a 1×n matrix and the second solution gives
an×1 matrix.

25.4 Matrix multiplication

Matrices A and B can be multiplied together if A is
ann×pmatrix and B is anp×mmatrix. The general
elementci j of n×m; C= AB is found by pairing the
ith row of C with thejth column of B, and computing
the sum of products of the paired terms.

25.4.1 Details

Matrices A and B can be multiplied together if A is an× p matrix and B is ap×mmatrix.
Given the general elementci j of nxmmatrix,C = AB is found by pairing theith row of C
with the jth column of B, and computing the sum of products of the paired terms.

25.4.2 Examples

Example 25.4. Matrices in R

A<-matrix(
(1,3,5,2,4,6),3,2)

A

[,1℄ [,2℄

[1,℄ 1 2

[2,℄ 3 4

[3,℄ 5 6

B<-matrix(1,1,2,3)2,2)

B<-matrix(
(1,1,2,3),2,2)
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B

[,1℄ [,2℄

[1,℄ 1 2

[2,℄ 1 3

A%*%B

[,1℄ [,2℄

[1,℄ 3 8

[2,℄ 7 18

[3,℄ 11 28

25.5 More on matrix multiplication

Let A, B, andC bem×n, n× l , andl × p matrices, respectively. Then we have

(AB)C= A(BC).

In general, matrix multiplication is not commutative, thatis AB 6= BA.
We also have

(AB)′ = B′A′.

In particular,(Av)′(Av) = v′A′Av, whenv is an×1 column vector.

More obvious are the rules

1. A+(B+C) = (A+B)+C

2. k(A+B)=kA+kB

3. A(B+C)=AB+AC,

wherek∈ R and when the dimensions of the matrices fit.

25.6 Linear equations

25.6.1 Details

Detail:
General linear equations can be written in the formAx= b.

25.6.2 Examples

Example 25.5. The set of equations

2x+3y= 4
3x+y= 2

can be written in matrix formulation as

ñ

2 3
3 1

ôñ

x
y

ô

=

ñ

4
2

ô
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i.e. Ax= b for an appropriate choice of ofA,x andb

25.7 The unit matrix

Then x n matrix

I =










1 0 . . . 0

0 1 0
...

... 0
... 0

0 . . . 0 1










is the identity matrix. This is because if a matrixA is n x n thenAI = A andIA = A

25.8 The inverse of a matrix

If A is ann×n matrix andB is a matrix such that

BA= AB= I

ThenB is said to be the inverse ofA, written

B= A−1

Note that ifA is ann×n matrix for which an inverse exists, then the equationAx= b
can be solved and the solution isx= A−1b.

25.8.1 Examples

Example 25.6. If matrix A is:
ñ

2 3
3 1

ô

thenA−1 is:[−1
4

3
4

3
4

1
2

]
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26 Some notes on matrices and linear operators

26.1 The matrix as a linear operator

Let A be anm×n matrix, the function

TA : Rn → Rm,TA(x) = Ax,

is linear, that is

TA(ax+by) = aTA(x)+bTA(y)

if x,y∈ Rn anda,b∈ R.

26.1.1 Examples

Example 26.1. If A=
î

1 2
ó

thenTA(x) = x+2y wherex=
Äx

y

ä

∈ R2

Example 26.2. If A=
ñ

0 1
1 0

ô

thenTA
Äx

y

ä

=
ñ

y
x

ô

Example 26.3. If A=
ñ

0 2 3
1 0 1

ô

thenTA

Ö

x
y
z

è

=
ñ

2y+3z
x+z

ô

Example 26.4. If T
Äx

y

ä

=
Ç

x+y
2x−3y

å

thenT(x) = Ax if we set A =
ñ

1 1
2 −3

ô

26.2 Inner products and norms

Assumingx andy are vectors, then we define their inner product by

x·y= x1y1+x2y2+ · · ·+xnyn

wherex=

Ü

x1
...

xn

ê

andy=

Ü

y1
...

yn

ê
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26.2.1 Details

If x, y∈ Rn are arbitrary (column) vectors, then we define their inner product by

x·y= x1y1+x2y2+ · · ·+xnyn

wherex=

Ü

x1
...

xn

ê

andy=

Ü

y1
...

yn

ê

.

Note 26.1.Note that we can also viewx andy asn×1 matrices and we see thatx·y= x′y.

Definition 26.1. The normal length of a vector is defined by‖x‖2 = x·x. It may also be
expressed as‖x‖=

»

x2
1+x2

2+ · · ·+x2
n.

It is easy to see that for vectorsa,b andc we have(a+b) ·c= a ·c+b ·c anda ·b= b ·a.

26.2.2 Examples

Two vectorsx andy are said to be orthogonal ifx·y= 0

Example 26.5. If x=
Ç

3
4

å

andy=
Ç

2
1

å

, then

x·y= 3 ·2+4 ·1= 10,

and

‖x‖2 = 32+42 = 25,

so

‖x‖= 5

26.3 Orthogonal vectors

Two vectorsx andy are said to be orthogonal ifx·y= 0 denotedx⊥ y

26.3.1 Details

Definition 26.2. Two vectorsx andy are said to beorthogonal if x·y= 0 denotedx⊥ y

If a,b∈ Rn then
‖a+b‖2 = a ·a+2a ·b+b ·b

so
‖a+b‖2 = ‖a‖2+‖b‖2+2ab.
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Note 26.2.Note that ifa⊥ b then‖a+b‖2 = ‖a‖2+‖b‖2, which is Pythagoras’ theorem
in n dimensions.

26.4 Linear combinations of i.i.d. random variables

SupposeX1, ....,Xn are i.i.d. random variables and have meanµ1, ....,µn and varianceσ2

then the expected value ofY of the linear combination is

Y =
∑

aiXi

and ifa1, ....,an are real constants then the mean is:

µY =
∑

aiµi

and the variance is:

σ2 =
∑

a2
i σ2

i

26.4.1 Examples

Example 26.6. Consider two i.i.d. random variables,Y1,Y2 and a specific linear
combination of the two,W =Y1+3Y2.

We first obtain

E[W] = E[Y1+3Y2] = E[Y1]+3E[Y2] = 2+3 ·2= 2+6= 8.

Similarly, we can first use independence to obtain

V[W] =V[Y1+3Y2] =V[Y1]+V[3Y2]

and then (recall thatV[aY] = a2V[Y])

V[Y1]+V[3Y2] =V[Y1]+32V[Y2] = 12+32 = 1(4)+9(4) = 40

Normally, we just write this up in a simple sequence

V[W] =V[Y1+3Y2] =V[Y1]+32V[Y2] = 12+32 = 1(4)+9(4) = 40

26.5 Covariance between linear combinations of i.i.d random varia-
bles

SupposeY1, . . . ,Yn are i.i.d., each with meanµ and varianceσ2 anda,b∈ Rn. Writing

Y =

Ü

Y1
...

Yn

ê

, consider the linear combinationa′Y andb′Y.
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26.5.1 Details

The covarience between random variablesU andW is defined by

Cov(U,W) = E[(U −µu)(W−µw)]

where
µu = E[U ],µw = E[W]

Now, letU = a′Y =
∑

Yiai andW = b′Y =
∑

Yibi , whereY1, . . . ,Yn are i.i.d. with meanµ
and varianceσ2, then we get

Cov(U,W) = E[(a′Y−Σaµ)(b
′Y−Σbµ)]

= E[(ΣaiYi −Σaiµ)(Σb jYj −Σb jµ)]

and after some tedious (but basic) calculations we obtain

Cov(U,W) = σ2a ·b

26.5.2 Examples

Example 26.7. If Y1 andY2 are i.i.d., then

Cov(Y1+Y2,Y1−Y2) =Cov((1,1)
Ç

Y1

Y2

å

,(1,−1)
Ç

Y1

Y2

å

)

= (1,1)
Ç

1
−1

å

σ2

= 0

and in general,Cov(a′Y,b′Y) = 0 if a⊥b andY1, . . . ,Yn are independent.

26.6 Random vectors

Y = (Y1, . . . ,Yn) is a random vector ifY1, . . . ,Yn are random variables.

26.6.1 Details

Definition 26.3. If EYi = µi then we typically write

E(Y) =

Ü

µ1
...

µn

ê

= µ

If Cov(Yi ,Yj) = σi j andV[Yi ] = σii = σ2
i , then we define the matrix

Σ = (σi j )

containing the variances and covariances. We call this matrix the covariance matrix of
Y, typically denotedV[Y] = Σ or Cov[Y] = Σ.
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26.6.2 Examples

Example 26.8. If Yi , . . . ,Yn are i.i.d.,EYi = µ, VYi = σ2, a,b∈Rn andU = a′Y, W = b′Y,

and T=
ñ

U
W

ô

then

ET=
ñ

Σaiµ
Σbiµ

ô

VT= Σ = σ2
ñ

Σa2
i Σaibi

Σaibi Σb2
i

ô

Example 26.9. If Y is a random vector with meanµ and variance-covariance matrixΣ,
then

E[a′Y] = a′µ

and

V[a′Y] = a′Σa.

26.7 Transforming random vectors

Suppose

Y =

Ü

Y1
...

Yn

ê

is a random vector withEY = µ andVY = Σ where the variance-covariance matrix

Σ = σ2I

26.7.1 Details

Note that ifY1, . . . ,Yn are independent with common varianceσ2 then

Σ =












σ2
1 σ12 σ13 . . . σ1n

σ21 σ2
2 σ23 . . . σ2n

σ31 σ32 σ2
3 . . . σ3n

...
...

...
. . .

...
σn1 σn2 σn3 . . . σ2

n












=














σ2
1 0 . . . . . . 0

0 σ2
2

. . . 0
...

...
.. . σ2

3
. . .

...
... 0

... ... 0
0 . . . . . . 0 σ2

n













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= σ2













1 0 . . . . . . 0

0 1
... 0

...
...

.. . 1
...

...
... 0

... ... 0
0 . . . . . . 0 1













= σ2I

If A is anm x n matrix, then

E[AY] = Aµ

and
V[AY] = AΣA′

27 Ranks and determinants

27.1 The rank of a matrix

The rank of annxp matrix, A, is the largest number of columns ofA, which are not
linearly dependent (i.e. the number of linearly independent columns).

27.1.1 Details

Vectorsa1,a2, . . . ,an are said to be linearly dependent if the constantk1, . . . ,kn exists and
are not all zero, such that

k1a1+k2a2+ . . .+knan = 0

Note that if such constants exist, then we can write one of thea’s as a linear combination
of the rest, e.g. ifk1 6= 0 then

a1 = c1 =−k2

k1
a2− . . .− k2

k1
an

It can be shown that the rank ofA is the same as the rank ofA′ i.e. the maximum number
of linearly independent rows ofA.

Note 27.1.Note that if rank(A) = p, then the columns are linearly independent.

27.1.2 Examples

Example 27.1. If

A=

ñ

1 0
0 1

ô

the rank ofA = 2, since

k1

Ç

1
0

å

+k2

Ç

0
1

å

=

Ç

0
0

å

if and only if
Ç

k1

k2

å

=

Ç

0
0

å
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so the columns are linearly independent.

Example 27.2. If

A=






1 0 1
0 1 1
0 0 0






the rank ofA = 2.

Example 27.3. If

A=






1 1 1
0 1 0
0 1 0






the rank ofA = 2, since

1

Ö

1
0
0

è

+0

Ö

0
1
1

è

+(−1)

Ö

1
0
0

è

= 0

(and hence the rank can not be more than 2) but

k1

Ö

1
0
0

è

+k2

Ö

0
1
1

è

if and only if k1 = k2 = 0 (and hence the rank must be at least 2).

27.2 The determinant

Recall that for a 2x2 matrix,

A=

ñ

a b
c d

ô

the inverse ofA is

A−1 = 1
ad−bc

ñ

2 3
3 1

ô

27.2.1 Details

Definition 27.1. The numberad−bc is called thedeterminantof the 2x2 matrixA.
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Definition 27.2. Now supposeA is annxn matrix. An elementary product from the
matrix is a product ofn terms based on taking exactly one term from each column of row
x. Each such term can be written in the forma1 j1 ·a2 j2 ·a3 j3 · . . . ·an jn where j1, . . . , jn is a
permutation of the integers 1,2, . . . ,n. Each permutationσ of the integers 1,2, . . . ,n can
be performed by repeatedly interchanging two numbers.

Definition 27.3. A signed elementary productis an elementary product with a positive
sign if the number of interchanges in the permutation is evenbut negative otherwise.

The determinant of A, det(A) or|A| is the sum of all signed elementary products.

27.2.2 Examples

Example 27.4. A=

ñ

a11 a12

a21 a22

ô

then
|A|= a11a22−a12a21.

Example 27.5. A=






a11 a12 a13

a21 a22 a23

a31 a32 a33






|A|
= a11a22a33 This is the identity permutation and has positive sign
−a11a23a32 This is the permutation that only interchanges 2 and 3
−a12a21a33 Only one interchange
+a12a23a31 Two interchanges
+a13a21a32 Two interchanges
−a13a22a31 Three interchanges

Example 27.6. A=

ñ

1 1
1 0

ô

|A|=−1

Example 27.7. A=






1 0 0
0 2 0
0 0 3






|A|= 1 ·2 ·3= 6
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Example 27.8. A=






1 0 0
0 2 0
0 3 0






|A|= 0

Example 27.9. A=






1 0 0
0 0 2
0 3 0






|A|=−6

Example 27.10.A=

ñ

2 1
2 1

ô

|A|= 0

Example 27.11.A=






1 0 1
0 1 1
1 1 2






|A|= 0

27.3 Ranks, inverses and determinants

The following statements are true for ann×n matrixA:

• rank(A) = n

• det(A) 6= 0

• A has an inverse

27.3.1 Details

SupposeA is ann×n matrix. Then the following are truths:

• rank(A) = n

• det(A) 6= 0

• A has an inverse
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28 Multivariate calculus

28.1 Vector functions of several variables

A vector-valued function of several variables is a function

f : Rm → Rn

i.e. a function ofm dimensional vectors, which returnsn dimensional vectors.

28.1.1 Examples

Example 28.1. A real valued function of many variables:f : R3 → R, f (x1,x2,x3) =
2x1+3x2+4x3.

Note 28.1.Note thatf is linear andf (x) = Ax wherex=

Ö

x1

x2

x3

è

andA=
î

2 3 4
ó

.

Example 28.2. Let
f : R2 → R2

where:

f (x1,x2) =

Ç

x1+x2

x1−x2

å

Note 28.2.Note thatf (x) = Ax, whereA=

ñ

1 1
1 −1

ô

.

Example 28.3. Let
f : R3 → R4

be defined by

f (x) =

á

x1+x2

x1−x3

y−z
x1+x2+x3

ë

Note 28.3.Note that:
f (x) = Ax

where

A=








1 1 0
1 0 −1
0 1 −1
1 1 1







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Example 28.4. These multi-dimensional functions do not have to be linear,for example
the functionf : R2 → R2

f (x) =
Ç

x1x2

x2
1+x2

2

å

,

is obviously not linear.

28.2 The gradient

Suppose the real valued functionf : Rm → R is differentiable in each coordinate. Then
the gradient off , denoted∇ f is given by

∇ f (x) =
(

∂ f
∂x1

, . . . , ∂ f
∂x1

)

.

28.2.1 Details

Definition 28.1. Suppose the real valued functionf : Rm → R is differentiable in each
coordinate. Then thegradient of f , denoted∇ f is given by

∇ f (x) =
(

∂ f
∂x1

, . . . , ∂ f
∂x1

)

,

where each partial derivative∂ f
∂xi

is computed by differentiating f with respect to that
variable, regarding the others as fixed.

28.2.2 Examples

Example 28.5.

f (x) = x2+y2+2xy;
∂ f
∂x

= 2x+2y,
∂ f
∂y

= 2y+2x,∇ f =
Ä

2x+2y, 2y+2x
ä

Example 28.6.
f (x) = x1−x2;∇ f =

Ä

1, −1
ä

28.3 The Jacobian

Now consider a functionf : Rm → Rn. Write fi for the ith coordinate off , so we can
write f (x) = ( f1(x), f2(x), . . . , fn(x)), wherex ∈ Rm. If each coordinate functionfi is
differentiable in each variable we can form theJacobian matrixof f :

Ü

∇ f1
...

∇ fn

ê

.
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28.3.1 Details

Now consider a functionf : Rm →Rn. Write fi for the ith coordinate off , so we can write
f (x) = ( f1(x), f2(x), . . . , fn(x)), wherex∈Rm. If each coordinate functionfi is differentia-
ble in each variable we can form theJacobian matrixof f :

Ü

∇ f1
...

∇ fn

ê

.

In this matrix, the element in theith row and jth column is ∂ fi
∂x j

.

28.3.2 Examples

Example 28.7. For the function

f (x,y) =

Ö

x2+y
xy
x

è

=

Ö

f1(x,y)
f2(x,y)
f3(x,y)

è

,

the Jacobian matrix off is the matrix

J =






∇ f1
∇ f2
∇ f3




=






2x 2y
y x
1 0




 .

28.4 Univariate integration by substitution

If f is a continuous function andg is strictly increasing and differentiable then,

∫ g(b)

g(a)
f (x)dx=

∫ b

a
f (g(t))g′(t)dt

28.4.1 Details

If f is a continuous function andg is strictly increasing and differentiable then,

∫ g(b)

g(a)
f (x)dx=

∫ b

a
f (g(t))g′(t)dt

It follows that if X is a continuous random variable with densityf andY = h(X) is a
function ofX that has the inverseg= h−1, soX = g(Y) , then the density ofY is given by,

fY(y) = f (g(y))g′(y)

This is a consequence of

P[Y ≤ b] = P[g(Y)≤ g(b)] = P[X ≤ g(b)] =
∫ g(b)

−∞
f (x)dx=

∫ b

−∞
f (g(y))g′(y)dy.
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28.5 Multivariate integration by substitution

Supposef is a continuous functionf :Rn →R andg : Rn →Rn is a one-to-one function
with continuous partial derivatives. Then ifU ⊆ Rn is a subset,

∫

g(u)
f (x)dx=

∫

u
(g(y))|J|dy

whereJ is the Jacobian matrix and |J| is the absolute value of it’s determinant.

J = |








∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yn

...
... · · · ...

∂gn
∂y1

∂gn
∂y2

· · · ∂gn
∂yn







|= |







∇g1
...

∇gn





 |

28.5.1 Details

Supposef is a continuous functionf : Rn → R andg : Rn → Rn is a one-to-one function
with continuous partial derivatives. Then ifU ⊆ Rn is a subset,

∫

g(u)
f (x)dx=

∫

u
(g(y))|J|dy

whereJ is the Jacobian determinant and |J| is its absolute value.

J = |








∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yn

...
... · · · ...

∂gn
∂y1

∂gn
∂y2

· · · ∂gn
∂yn







|= |







∇g1
...

∇gn





 |

Similar calculations as in 4.5 give us that ifX is a continuous multivariate random variable,
X = (X1, . . . ,Xn)

′ with density f andY = h(X), where his 1-1 with inverseg= h−1. So,
X = g(Y), then the density of Yis given by;

fY(y) = f (g(y))|J|

28.5.2 Examples

Example 28.8. If Y = AX where A is an n × n matrix with det(A) 6= 0 and
X = (X1, . . . ,Xn)

′ are i.i.d. random variables, then we have the following results:

The joint density ofX1 · · ·Xn is the product of the individual (marginal) densities,

fX(x) = f (x1) f (x2) · · · f (xn)

The matrix of partial derivatives corresponds to∂g
∂y whereX = g(Y), i.e. these are the

derivatives of the transformation:X = g(Y) = A−1Y, or X = BY whereB= A−1.

But if X = BY, then

Xi = bi1y1+bi2y2+ · · ·bi j y j · · ·binyn

So, ∂xi
∂yi

= bi j and thus,
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J = |∂dx
∂dy

|= |B|= |A−1|= 1
|A|

The density of Yis therefore;

fY(y) = fX(g(y))|J|= fX(A
−1y) = |A−1|

29 The multivariate normal distribution and related topics

29.1 Transformations of random variables

Recall that ifX is a vector of continuous random variables with a joint probability density
function and ifY = h(X) such thath is a 1-1 function and continuously differentiable
with inverseg soX = g(Y), then the density ofY is given by

fY(y) = f (g(y))|J|

29.1.1 Details

J is the Jacobian determinant ofg. In particular ifY = AX then

fY(y) = f (A−1y)|det(A−1)|

if A has an inverse.

29.2 The multivariate normal distribution

29.2.1 Details

Consider i.i.d. random variables,Z1, . . . ,Zn ∼ (0,1), written Z =

Ü

Z1
...

Zn

ê

and letY =

AZ+µ whereA is an invertiblenxnmatrix andµ∈ Rn is a vector, soZ = A−1(Y−µ).

Then the p.d.f. ofY is given by

fY(y) = fZ(A
−1(y−µ))|det(A−1)|

But the joint p.d.f. ofZ is the product of the p.d.f.’s ofZ1, . . . ,Zn, so fZ(z) = f (z1) · f (z2) ·
. . . · f (zn) where

f (zi) =
1√
2π

e−
z2
2

and hence

fZ(z) =
n∏

i=1

1√
2π

e
−z2

2

= (
1√
2π

)ne−
1
2

∑n
i=1 z2

i
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=
1

(2π)
n
2
e−

1
2z′z

since

n∑

i=1

z2
i = ‖z‖2 = z·z= z′z

The joint p.d.f. ofY is therefore

fY(y) = fZ(A
−1(y−µ))|det(A−1)|

=
1

(2π)
n
2
e−

1
2(A

−1(y−µ))′(A−1(y−µ)) 1
|det(A)|

We can writedet(AA′) = det(A)2 so |det(A)|=
»

det(AA′) and if we writeΣ = AA′, then

|det(A)|= |Σ| 1
2

Also, note that

(A−1(y−µ))′(A−1(y−µ)) = (y−µ)′(A−1)′A−1(y−µ) = (y−µ)′Σ−1(y−µ)

We can now write

fY(y) =
1

(2π)
n
2 |Σ| 1

2
e−

1
2(y−µ)Σ−1(y−µ)

This is the density of the multivariate normal distribution.
Note that

E[Y] = µ

V[Y] =V[AZ] = AV[Z]A′ = AIA′ = Σ

Notation:Y ∼ n(µ,Σ)

29.3 Univariate normal transforms

The general univariate normal distribution with density

fY(y) =
1√
2πσ

e−
(y−µ)2

2σ2

is a special case of the multivariate version.

29.3.1 Details

Further, ifZ ∼ n(0,1), then clearlyX = aZ+µ∼ n(µ,σ2) whereσ2 = a2

29.4 Transforms to lower dimensions

If Y ∼ n(µ,Σ) is a random vector of lengthn andA is anm×n matrix of rankm≤ n,
thenAY∼ n(Aµ,AΣA′).
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29.4.1 Details

If Y ∼ n(µ,Σ) is a random vector of lengthn andA is anm×n matrix of rankm≤ n, then
AY∼ n(Aµ,AΣA′).

To prove this, set up an(n−m)×n matrix, B, so that then×n matrix, C, formed from
combining the rows ofA andB is of full rank n. Then it is easy to derive the density ofCY
which also factors nicely into a product, only one of which containsAY, which gives the
density forAY.

29.5 The OLS estimator

SupposeY ∼ n(Xβ),σ2I). The ordinary least squares estimator, when then× p matrix
is of full rank, p, wherep≤ n, is:

β̂ = (X′X)−1X′Y

The random variable which describes the process giving the data and estimate is:

b= (X′X)−1X′Y

It follows that
β̂ ∼ n(β,σ2(X′X)−1)

29.5.1 Details

SupposeY ∼ n(Xβ,σ2I). The ordinary least squares estimator, when then× p matrix is of
full rank, p, is:

β̂ = (X′X)−1X′Y.

The equation below is the random variable which describes the process giving the data and
estimate:

b= (X′X)−1X′Y

If B= (X′X)−1X′, then we know that

BY∼ n(BXβ,B(σ2I)B′)

Note that
BXβ = (X′X)−1X′Xβ = β

and
B(σ2I)B′ = σ(X′X)−1X′[(X′X)−1X′]′

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1

It follows that
β̂ ∼ n(β,σ2(X′X)−1)
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30 Independence, expectations and the moment generat-
ing function

30.1 Independent random variables

Recall that two events,A andB, are independent if,

P[A∩B] = P[A]P[B]

Since the conditional probability ofA givenB is defined by:

P[A|B] = P[A∩B]
P[B]

We see that A and B are independent if and only if

P[A|B] = P[A](whenP[B]> 0)

Two continuous random variables,X andY, are similarly independent if,

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B]

30.1.1 Details

Two continuous random variables,X andY, are similarly independent if,

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B]

Now supposeX has p.d.f.fX and Y has p.d.f.fY. Then,

P[X ∈ A] =
∫

A
fX(x)dx

P[Y ∈ B] =
∫

B
fY(y)dy

SoX andY are independent if:

P[X ∈,Y ∈ B] =
∫

A
fX(x)dx

∫

B
fY(y)dy

=
∫

A
fX(x)(

∫

B
fY(y)dy)dx

=
∫

A

∫

B
fX(x) fY(y)dydx

But, if f is the joint density ofX andY then we know that

P[X ∈ A,Y ∈ B]

∫

A

∫

B
f (x,y)dydx

HenceX andY are independent if and only if we can write the joint density in the form of,

f (x,y) = fX(x) fY(y)
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30.2 Independence and expected values

If X andY are independent random variables thenE[XY] = E[X]E[Y].

Further, if X and Y are independent random variables thenE[g(X)h(Y)] =
E[g(X)]E[h(Y)] is true ifg andh are functions in which expectations exist.

30.2.1 Details

If X andY are random variables with a joint distribution functionf (x,y), then it is true that
for h : R2 → R we have

E[h(X,Y)] =
∫ ∫

h(x,y) f (x,y)dxdy

for thoseh such that the integral on the right exists.

SupposeX andY are independent continuous r.v., then

f (x,y) = fX(x) fY(y)

Thus,

E[XY] =
∫ ∫

xy f(x,y)dxdy

=
∫ ∫

xy fX(x) fY(y)dxdy

=
∫

x fX(x)dx
∫

y fY(y)dy

= E[X]E[Y]

Note 30.1.Note that ifX andY are independent thenE[h(X)g(Y)] = E[h(X)]E[g(Y)] is
true whenever the functionsh andy have expected values.

30.2.2 Examples

Example 30.1. SupposeX,Y ∈U(0,2) are i.i.d then,

fX(x) =
® 1

2 if 0 ≤ x≤ 2
0 otherwise

and similarly for fY.

Next, note that,

f (x,y) = fX(x) fY(y) =
® 1

4 if 0 ≤ x,y≤ 2
0 otherwise

Also note thatf (x,y) ≥ 0 for all (x,y) ∈ R2 and

∫ ∫

f (x,y)dxdy=
∫ 2

0

∫ 2

0

1
4

dxdy=
1
4
.4= 1

It follows that,

E[XY] =
∫ α

−α

∫ α

−α
xy f(x,y)dxdy
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=
∫ 2

y=0

∫ 2

x=0
xy.

1
4

dxdy

=
∫ 2

y=0
(
∫ 2

x=0
xy

1
4

dx)dy

=
∫ 2

y=0
[
1
4

y.
1
2

x2]2x=0dy

=
∫ 2

y=0

1
4

y(
1
2
.22− 1

2
.0)dy

∫ 2

0

1
4

y2dy=
∫ 2

0

1
2

ydy=
1
2
.
1
2

y2|2y =
1
4
.22 = 1

But

E[X] = E[Y] =
∫ 2

y=0
x.

1
2

dx= 1

So
E[XY] = E[X]E[Y]

30.3 Independence and the covariance

If X andY are independent thenCov(X,Y) = 0.

In fact, if X andY are independent thenCov(h(X),g(Y)) = 0 for any functions in which
expected values exist.

30.4 The moment generating function

If X is a random variable we define the moment generating functionwhent exists as:
M(t) := E(etX).

30.4.1 Examples

Example 30.2. If X ∼ b(n, p) thenM(t) =
n∑

x=0

etxp(x) =
n∑

x=0

etx

(

n
x

)

p · (1− p)n−x

30.5 Moments and the moment generating function

If MX(t) is the moment generating function (mgf) ofX, thenM(n)
X (0) = E[Xn].

30.5.1 Details

Observe thatM(t) = E[etX] = E[1+X+ (tX)2

2! + (tX)3

3! + . . . ] sinceea = 1+a+ a2

2! +
a3

3! + . . . .
If the random variablee|tX| has a finite expected value then we can switch the sum and the
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expected valued to obtain:

M(t) = E[
∞∑

n=0

(tX)n

n!
] =

∞∑

n=0

E[(tX)n]

n!
=

∞∑

n=0

tnE[Xn]

n!

This implies that thenth derivative ofM(t) in t = 0 is exactlyE[Xn]

30.6 The moment generating function of a sum of random variables

MX+Y(t) = MX(t) ·MY(t) if X andY are independent.

30.6.1 Details

Let X andY be independent random vaiables, then

MX+Y(t) = E[eXt+Yt] = E[eXteXt] = E[eXt]E[eXt] = MX(t)MY(t)

30.7 Uniqueness of the moment generating function

Moment generating functions (m.g.f.) uniquely determine the probability distribution
function for random variables. Thus, if two random variables have the same m.g.f, then
they must also have the same distribution.

31 The gamma distribution

31.1 The gamma distribution

If a random variableX has the density

f (x) =
xα−1e

−x
β

Γ(α)βα

wherex> 0 for some constantsα, β > 0, thenX is said to have a gamma distribution.

31.1.1 Details

The functionΓ is basically chosen so thatf integrates to one, i.e.

Γ(α) =
∫ ∞

0
tα−1e−tdt

It is not too hard to see thatΓ(n) = (n−1)! if n∈N. Also,Γ(α+1) = αΓ(α) for all α > 0.

31.2 The mean, variance and mgf of the gamma distribution

SupposeX ∼ G(α,β) i.e. X has density

f (x) =
xα−1e−x/β

Γ(α)βα ,x> 0

Then,
E[X] = αβ

M(t) = (1−βt)−α

V[X] = αβ2
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31.2.1 Details

The expected value ofX can be computed as follows:

E[X] =
∫ ∞

−∞
x f(x)dx

=
∫ ∞

0
x
xα−1e−x/β

Γ(α)βα dx

=
Γ(α+1)βα+1

Γ(α)βα

∫ ∞

0

x(α+1)−1e−x/β

Γ(α+1)βα+1 dx

=
αΓ(α)βα+1

Γ(α)βα

soE[X] = αβ.

Next, the m.g.f.is given by

E[etX] =
∫ ∞

0
etxxα−1e−x/β

Γ(α)βα dx

=
1

Γ(α)βα

∫ ∞

0
xα−1etx−x/βdx

=
Γ(α)φα

Γ(α)βα

∫ ∞

0

x(α−1)e−x/φ

Γ(α)φα dx

if we chooseφ so that−x
φ = tx−x/β i.e. −1

φ = t − 1
β i.e. φ =− 1

t−1/β = β
1−βt then we have

M(t) =

Ç

φ
β

åα

=

Ç

β/(1−βt)
β

åα

=
1

(1−βt)α

or M(t) = (1−βt)−α. It follows that

M′(t) = (−α)(1−βt)−α−1(−β) = αβ(1−βt)−α−1

soM′(0) = αβ. Further,

M′′(t) = αβ(−α−1)(1−βt)−α−2(−β)
= αβ2(α+1)(1−βt)−α−2

E[X2] = M′′(0)

= αβ2(α+1)

= α2β2+αβ2

Hence,
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V[X] = E[X]2−E[X]2

= α2β2+αβ2− (αβ)2

= αβ2

31.3 Special cases of the gamma distribution: The exponential and
chi-squared distributions

Consider the gamma density,

f (x) =
xα−1e

−x
β

Γ(α)βα ,x> 0

For parametersα,β > 0.

If α = 1 then

f (x) =
1
β

e
−x
β ,x> 0

and this is the density of exponential distribution.

Consider next the caseα = v
2 andβ = 2 wherev is an integer, so the density becomes,

f (x) =
x

v
2−1e

−x
2

Γ( v
2)Z

v
2
,x> 0

This is the density of a chi-squared random variable withv degrees of freedom.

31.3.1 Details

Consider,α = v
2 andβ = 2 wherev is an integer, so the density becomes,

f (x) =
x

v
2−1e

−x
2

Γ( v
2)Z

v
2
,x> 0

This is the density of a chi - squared random variable withv degrees of freedom.

This is easy to see by starting withZ ∼ n(0,1) and definingW = Z2 so that the c.d.f. is:

H(w) = P[W ≤ w] = P[Z2 ≤ w]

= P[−
√

w≤ Z ≤
√

w]

= 1−P[|Z|>
√

w]

= 1−2p[Z <−
√

w]

= 1−2
∫ √

w

−α

e−t2

2√
2w

dt = 1−2φ(
√

w)

164



The p.d.f. ofw is therefore,

h(w) = H ′(w)

= 0−2φ′(
√

w)
1
2

w
1
2−1

but

φ(x) =
∫ x

−α

e−t2

2

2Π
dt;φ′(x) =

d
dx

∫ x

α

e−t2

2

2Π
dt =

e−x2

2

2Π
So

h[w] =−2
e−w

2

2Π
.
1
2
.w

1
2−1

h[w] =
w

−1
2 −1e−w

2

2Π
,w> 0

We see that we must haveh = f with v = 1. We have also shownΓ(1
2)2

1
2 =

√
2Π, i.e

Γ(1
2) =

√
Π. Hence we have shown theχ2 distribution on 1 df to beG(α = v

2,β = 2) when
v = 1.

31.4 The sum of gamma variables

In the general case ifX1 . . .Xn ∼ G(α,β) are i.i.d. thenX1+X2+ . . .Xn ∼ G(nα,β).

In particular, ifX1,X2, . . . ,Xv ∼ χ2 i.i.d. then
∑v

i=1Xi ∼ χ2
v.

31.4.1 Details

If X andY are i.i.d.G(α,β), then

MX(t) = MY(t) =
1

(1−βt)α

and

MX+Y(t) = MX(t)MY(t) =
1

(1−βt)2α

So
X+Y ∼ G(2α,β)

In the general case ifX1 . . .Xn ∼ G(α,β) are i.i.d. thenX1+X2+ . . .Xn ∼ G(nα,β). In
particular, ifX1,X2, . . . ,Xv ∼ χ2 i.i.d., then

∑v
i=1Xi ∼ χ2

v
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32 Notes and examples: The linear model

32.1 Simple linear regression in R

To test the effect of one variable on another, simple
linear regression may be applied. The fitted model
may be expressed asy = α + β̂x, where α is a
constant,̂β is the estimated coefficient, andx is the
explanatory variable.
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Example taken from R of a fitted model using
linear regression.

32.1.1 Details

Below is the linear regression output using the R’s data set "car". Notice that the output
from the model may be divided into two main categories:

1. output that assesses the model as a whole, and

2. output that relates to the estimated coefficients for the model

Call:

lm(formula = dist ~ speed, data = 
ars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

---

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statisti
: 89.57 on 1 and 48 DF, p-value: 1.490e-12

Notice that there are four different sets of output (Call, Residuals, Coefficients, andResults)
for both the constantα and the estimated coefficientβ̂ speed variable.

The estimated coefficients describe the change in the dependent variable when there is a
single unit increase in the explanatory variable given thateverything else is held constant.

The standard error is a measure of accuracy and is used to construct the confidence interval.
Confidence intervals provide a range of values for which there is a set level of confidence
that the true population mean will be within the given range.For example, if the CI is set
at 95% percent then the probability of observing a value outside the given CI range is less

166



than 0.05.

The p-value is represented as a percentage. Specifically, the p-value indicates the percenta-
ge of time, given that your null hypothesis is true, that you would find an outcome at least
as extreme as the observed value. If your calculated p-valueis 0.02 then 2
In the overall model assessment the R-squared is the explained variance over the total vari-
ance. Generally, a higherR2 is better but data with very little variance makes it easy to
achieve a higherR2, which is why the adjustedR2 is presented.

Lastly, the F-statistic is given. Since the t-Statistic is not appropriate to compare two
or more coefficients, the F-statistic must be applied. The basic methodology is that it
compares a restricted model where the coefficients have beenset to a certain fixed level to
a model which is unrestricted. The most common is the sum of squared residuals F-test.

32.2 Multiple linear regression

Multiple linear regression attempts to model the relationship between two or more
explanatory variables and a response variable by fitting a linear equation to observed
data. Formally, the model for multiple linear regression, given n observations, is
yi = 0+1xi1+2xi2+ ...pxip+ i f ori = 1,2, ...n.

The definition above was taken from: http://www.stat.yale.edu/Courses/1997-
98/101/linmult.htm

32.3 The one-way model

The one-way ANOVA model is of the form:

Yi j = µi + εi j

or
Yi j = µ+αi + εi j

32.3.1 Details

The one-way ANOVA model is of the form:

Yi j = µi + εi j

whereYi j is observationj in treatment groupi andµi are the parameters of the model and
are means of treatment groupi. Theεi j are independent and follow a normal distribution
with mean zero and constant varianceσ2 often written asε ∼ N(0,σ2).

The ANOVA model can also be written in the form:

Yi j = µ+αi + εi j

whereµ is the overall mean of all treatment groups andαi is the deviation of mean of
treatment groupi from the overall mean. Theεi j follow a normal distribution as before.

The expected value ofYi j is µi as the expected value of the errors is zero, often written as
E[Yi j ] = µi .

167



32.3.2 Examples

Example 32.1. In the rat diet experiment the model would be of the form:

yi j = µi + εi j

whereyi j is the weight gain for ratj in diet groupi, µi would be the mean weight gain in
diet groupi andεi j would be the deviation of ratj from the mean of its diet group.

32.4 Random effects in the one-way layout

The random effects model is written as:yi j = µ+α1+ εi j

where

j = 1, . . . ,J

i = 1, . . . , I

and assumesεi j ∼ n(0,σ2
A), αi ∼ n(0,σ2

A), and that they are all independent.

32.4.1 Details

Note that this is considerably different from the fixed effect model

Eyi j = µ

Vyi j = σ2
A+σ2

we have

cov(yi j ,yi′ j ′) = cov(αi + εi j ,αi′ + εi′ j ′)

= E[(αi + εi j )(αi′ + εi′ j ′)]

= E[αiαi′]+E[εi jαi′]+E[αiεi′ j ′ ]+E[εi j εi′ j ′]

Note 32.1.Note thatE[UW] = E[U ]E[W] if U,W are independent

So,
E[εi j αi′] = E[αiεi′ j ′] = EαiEεi′ j ′ = 0

Further,

E[εi j εi′ j ′] =
®

σ2 if i = i′, j = j ′

0 otherwise

and

E[αiαi′] =
®

σ2
A if i = i′

0 if i 6= i′

so

Cov(yi j ,yi′ j ′) =







σ2
A+σ2 if i = i′, j = j ′

σ′
A if i = i′, j 6= j ′

0 otherwise
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It follows that the correlation between measurementsyi j andyi j ′ (within the same group)
are

cor(yi j ,yi j ′ =
Cov(yi j ,yi j ′)
»

v[yi j ]v[yi j ′]

=
σ2

A
»

(σ2
A+σ2)2

⇒Cor(yi j ,yi j ′) =
σ2

A
σ2

A+σ2

This is the intra-class correlation.

32.5 Linear mixed effects models (lmm)

The simplest mixed effects model is

yi j = µ+αi +β j + εi j

whereµ,α1,α2, . . . ,αi are unknown constants,
β j ∼ n(0,σ2

β)

εi j ∼ n(0,σ2)
(β j andεi j independent).

32.5.1 Details

Theµ andαi are the fixed effects andβ j is the random effects.

Recall that in the simple one-way layout withyi j = µ+αi + εi j , we can write the model in
matrix formy= Xβ+ ε whereβ = (µ,α1, . . . ,αI)

′ andX is appropriately chosen.

The same applies to the simplest random effects modelyi j = µ+ β j + εi j where we can
write y= µ·1+ZU+ ε where 1= (1,1, . . . ,1)′, U = (β1, . . . ,βJ)

′.

In general, we write the mixed effects models in matrix form with y= Xβ+ZU+ε, where
β contains the fixed effects andU contains the random effects.

32.5.2 Examples

Example 32.2. 1. yi = β1+β2xi + εi (SLR)

2. yi j = µ+αi +βixi j + εi j only fixed effects (ANCOVA)

3. yi jk = µ+αi +b j + εi jk whereαi are fixed butb j are random.

4. yi jk = µ+αi +b jxi j + εi jk whereαi are fixed butb j are random slopes.
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32.6 Maximum likelihood estimation in lmm

The likelihood function for the unknown parametersL(β,σ2
A,σ2) is

1

(2π)n/2
∣
∣
∣Σy

∣
∣
∣
n/2

e−1/2(y−Xβ)′Σ−1
y (y−Xβ)

whereΣy = σ2
AZZ′+σ2I .

MaximisingL overβ,σ2
A,σ2 gives the variance components and the fixed effects. May

also need̂u, this is normally done using BLUP.

32.6.1 Details

Recall that ifW is a random variable vector withEW= µ andVW= Σ then

E[AW] = Aµ

V[AW] = AΣA′

In particular, ifW ∼ n(µ,Σ( thenAW∼ n(Aµ,AΣA′).

Now consider the lmm with

y= Xβ+Zu+ ε
where

u= (u1, . . . ,um)
′

ε = (ε1, . . . ,εm)
′

and the random variablesUi ∼ n(0,σ2
A), εi ∼ n(0,σ2) are all independent so thatu ∼

n(0,σ2
AI) andε ∼ n(0,σ2I).

ThenEy= Xβ and

Vy = Σy

= V[Zu+V[ε]
= Z(σ2

AI)Z′+σ2I

= σ2
AZZ′+σ2I

and hencey∼ n(Xβ,σ2
AZZ′+σ2I).

Therefore the likelihood function for the unknown parameters L(β,σ2
A,σ2) is

=
1

(2π)n/2
∣
∣
∣Σy

∣
∣
∣
n/2

e−1/2(y−Xβ)′Σ−1
y (y−Xβ)

whereΣy = σ2
AZZ′+σ2I . MaximizingL overβ,σ2

A,σ2 gives the variance components and
the fixed effects. May also need ˆu, which is normally done using BLUP.

33 Some regression topics

33.1 Poisson regression

Datayi are from a Poisson distribution with meanµi and lnµi = β1+β2xi . A likelihood
function can be written and the parameters can be estimated using maximum likelihood.
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33.2 The generalized linear model (GLM)

Datayi are from a distribution within the exponential family, withmeanµi andg(µi) =
xiβ′ for some link function,g. A likelihood function can now be written and the para-
meters can be estimated using maximum likelihood.

33.2.1 Details

Datayi are from a distribution within the exponential family, withmeanµi andg(µi) = xiβ′

for some link function,g.

The exponential family includes distributions such as the Gaussian, binomial, Poisson, and
gamma (and thus exponential and chi-squared).

The link functions are typically

• identity(with the Gaussian)

• log (with the Poisson and the gamma)

• logistic (with the binomial)

A likelihood function can be written and the parameters can be estimated using maximum
likelihood.
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