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1 Numbers, arithmetic and basic algebra

1.1 Natural Numbers

The positive integers are called natural numbers.

These numbers can be added, multiplied together and so forth.

Notation: N= {1,2,3,4, ....}

Subtraction and division are not defined on these numbers.

An arbitrary element of N is most commonly denoted by i, j, n,or m, but any symbol
can be used.

1.1.1 Details

Definition 1.1. The set of positive integers is usually denoted by N, i.e. N =
{1,2,3,4, ....} and is called the set of natural numbers. In some cases the number
zero is included as a natural number, but here we will use the symbol N0 to denote the
integers 0, 1, 2 and up.

Within this set of numbers it is possible to add and multiply numbers together. Arithmetic
operations are denoted by + for addition and · (or ×) for multiplication. A natural number
can also be raised to the power of a natural number, e.g. 35 = 3 · 3 · 3 · 3 · 3 or in general
mn = m ·m · . . . ·m (n times).

When stating general properties of the natural numbers one needs to use symbols to indica-
te that the property holds for an arbitrary number. It is not enough to just write the property
for a few numbers. For example, to declare that one can interchange numbers in a sum, it
is not enough to say 4+3 = 3+4 but one must explicitly state "the addition operator has
the property that any two natural numbers, n, m ∈ N satisfy n+m = m+n".

An arbitrary element of N is most commonly denoted by i, j, n,or m, but any symbol,
a, b, c, . . ., can be used.

Several rules of arithmetic apply (some by definition, others can be derived) such as

ab = ba

a+b = b+a

a+bc = a+(bc)

a(b+ c) = ab+ac

(a+b)+ c = a+(b+ c)

(ab)c = a(bc)

Subtraction and division are not generally defined. In addition, we define one integer, n, to
the power of another, m, to mean n multiplied by itself m times: nm = n ·n · . . . ·n

︸ ︷︷ ︸
m.
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Definition 1.2. The power is an operator just like addition and multiplication, and is
defined to have higher priority than the other two.

1.1.2 Examples

Example 1.1. If we have x = 4 and y = 2 and want to evaluate

xy + yx

then we replace the values of x and y in the expression, and evaluate it, taking care to
observe the correct order of operations:

42 +24 = 16+16 = 32.

1.2 Starting with R

Download R from the R website: http://www.r-project.org/
Look at on-line information on R, and take the tutor-web R tutorial:
http://tutor-web.net/stats/stats240.1
Simple R commands:

• Assignment: x<-2

• Arithmetic: 2*5+4

1.2.1 Details

To assign values to a variable in R one can use "<-" or "="; however, these are NOT
equivalent. Using the equals sign is confusing and therefore not recommended.

1.2.2 Examples

Example 1.2. Assigning values to a variable:

x<-2

y<-3

z<-x+y

Example 1.3. Viewing assigned values:
Type the name,i.e. "z", to view the assigned value.

z

[1℄ 5

14
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1.3 The Integers

The set of positive and negative integers:
Z= {.., ..,−2,−1,0,1,2, ......}

1.3.1 Details

Definition 1.3. The set of all integers is denoted by Z, i.e.

Z= {.., ..,−2,−1,0,1,2, ......}.

Note 1.1. Note that within this set it is possible to subtract as well as add and multiply.
Within this set we cannot, however, in general, perform division.

When preforming multiple mathematical operations within the same equation, i.e. 79−8 ·
3, there is a conventional order for which the operations must be performed.

Definition 1.4. The conventional order of operations for equations with multiple mat-
hematical operations is referred to as an operator precedence.

1.3.2 Examples

Example 1.4. To compute 79−8 ·3 start by multiplying and then subtracting:
79−8 ·3 = 79−24 = 55

Example 1.5. To compute 15− (24+ 36) we first note that the parentheses (brackets)
imply a precedence; anything inside brackets should be evaluated first.
Thus, we first add 36 to 24 and then we subtract that from 15.
15 - (24+36) = 15 - 60 = - 45

Note that the answer is a negative number.

Example 1.6. Simple arithmetic in R is easily done at the command prompt.

79-8*3

[1℄ 55

15-(24+36)

[1℄ -45

1.4 Rational numbers

Rational numbers are fractions denoted p/q, where p and q are integers. We can
simplify fractions if the numerator and denominator contain common terms.
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1.4.1 Details

0 1/6 1/2 3/4 1 2

Definition 1.5. Rational numbers are fractions denoted p/q, where p and q are integers.
The set of all rational numbers is usually denoted Q.

Note 1.2. Note that every integer is a rational number (obtained by taking q = 1).

We can simplify fractions if the numerator and denominator contain common terms.

When the rationals are ordered on to a line there are points missing, i.e. there are "gaps",
for example there is no rational number p/q such that (p/q)2 = 2.

1.4.2 Examples

Example 1.7. 2
6= 2

2·3=1
3

The rational numbers can be put in order along a line as in the figure.

Example 1.8. As an elaborate example of a fraction, consider the evaluation of the quan-
tity

2
3 +

2
5

1
3 +

1
2

Example 1.9. Evaluate
2
3 +

2
5

1
3 +

1
2

Solution: We can either start by calculating the numerator
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2
3
+

2
5

or the denominator

1
3
+

1
2

.
Here we choose to start with the numerator. The first step is to make the two fractions in
the numerator have a common denominator.
We can either find the least common denominator or use the product of the two denom-
inators. Here they are the same number, 15.
So the first step is:

2
3
· 5

5
+

2
5
· 3

3
=

2 ·5
3 ·5 +

2 ·3
5 ·3 =

10
15

+
6

15
.
Now it is possible to add the two fractions, which is the second step:

10+6
15

=
16
15

Next, the same process has to be performed for the original denominator.
With the same method (LCM - least common multiple) we get:

1 ·2
3 ·2 +

1 ·3
2 ·3 =

2
6
+

3
6
=

5
6

Then the total answer is:

16
15
5
6

=
16
15

· 6
5
=

96
75

=
96/3
75/3

=
32
25

We can see that in the last step of the equation, the factor has been simplified. To do this
we use factoring. Here we obtain:

96
75

=
3 ·32
3 ·25

We can now remove "3", or the multiplier, as it is on both sides of the fraction. So we
have:

32
25

=
25
25

+
7

25
= 1

7
25

In step 1 above we used Cross-Multiplication.

Definition 1.6. Cross-Multiplication is when we multiple the numerator by the
reciprocal of the denominator.
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So in this case we rewrite
16
15
5
6

or
16
15

÷ 5
6

as
16
15

· 6
5

As you can see all we are doing is turning

5
6

upside down: and multiplying it with
16
15

This gives:

96
75

In some cases it is possible to draw a square root of a fraction s = p
q

, i.e. find a number

r ∈Q such that r2 = s. The square root is denoted
√

r.

Example 1.10. Consider the expression

(

…

1
9
×24)+(

1
5
×
√

25)

.
To evaluate this expression, first consider separately the two parts on each side of the plus
symbol.
The first part is

(

…

1
9
×24)

and the second part is

(
1
5
×
√

25)

.
In addition, by definition of root,

…

1
9
=

1
3

.
First part:

(

…

1
9
×24) =

1
3
×16 =

16
3

Second part:

(
1
5
×
√

25) =
1
5
×5 = 1
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Finally, add the first part and the second part:

16
3
+1 =

19
3

Example 1.11. Consider the following fraction example, to be solved step by step:

4
2 +(1

4 · 5
3)

2
6 ÷ 1

5

First we need to be aware of operator precedence, sometimes called BODMAS (brackets,
multiplication/division, then addition/subtraction).

(
1
4
· 5

3
) =

5
12

After solving the bracket we can proceed with adding

4
2

to
5

12
as there is no other action left for the nominator of the main fraction. So:

4
2
+

5
12

When adding fractions together we first have to find a common denominator, in this case
12 would work as

2 ·6 = 12

So we multiply both the numerator and the denominator of that fraction by 6 and then
add the two numerators of the fractions together, keeping the same denominator.

4
2
+

5
12

=
4 ·6
2 ·6 +

5
12

=
24
12

+
5

12
=

29
12

Now we have the top half of the fraction solved. We then proceed with dividing the
two fractions of the bottom half. When dividing fractions we use the so called cross
multiplication technique. This arithmetic trick is derived from the fact that if you divide
a fraction by its duplicate you get 1. If you multiple a fraction by its reciprocal (it’s
reverse) you also get 1. Like so:

1
2
÷ 1

2
= 1

and
1
2
· 2

1
= 1

These functions always provide the same result and therefore we can turn the fraction
we are dividing by upside down and multiply it to the other fraction as that is usually
much easier.
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We can therefore rewrite
2
6
÷ 1

5
as

2
6
· 5

1
=

10
6

We’ve now solved both halves of the original fraction and can therefore proceed to solve
it, again with the cross multiplication technique as fractions are after all just divisions:

29
12

÷ 10
6

=
29
12

· 6
10

=
174
120

Now
174
120

is a pretty bad looking fraction and we’d preferably like to simplify it.

To do this we use factoring.

Definition 1.7. Factoring essentially means to break a number done into it’s smallest
factors or multipliable prime numbers.

In this case we get
2 ·3 ·29
2 ·3 ·20

These are the smallest prime numbers that can multiply together into 174 and 120
respectively.

A way of doing this in your head is by first dividing both numbers (174,120) by two.
Which gives us:

2 ·87
2 ·60

and then dividing those numbers (87,60) by 3, since they can’t be divided by 2. Dividing
by 3 gives you

3 ·29
3 ·20

=
29
20

which is a lot nicer than
174
120

The reasoning behind this factoring simplification is that we can remove multipliers if
they are on both sides of a fraction. This is because the result of a fraction where the
numerator and the denominator are the same is always 1. Like so:

1
1
= 1

or
2
2
= 1

or
3
3
= 1
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The final answer therefore is

4
2 +(1

4 · 5
3)

2
6 ÷ 1

5

=
29
20

1.5 The real line

Some obvious numbers are not fractions.
The set of numbers making up the real line is denoted
by the symbol R.

21

1

The
diagonal of a rectangle with unit side lengths of

√
2,

Note that
√

2 ia not a fraction.

1.5.1 Details

Some obvious numbers, which commonly occur, are not fractions. These are in between
the rational numbers (fractions). Filling in the missing points to obtain a continuum results
in the set of "real numbers".

Denoted by R the entire set of "real numbers"which corresponds to "filling in"the "missing
piecesǫf the line.

1.5.2 Examples

Example 1.12. If C is the circumference of a circle and D is the diameter and we define
π = C

D
then π is not a fraction.

Example 1.13. One example of a non fraction is the number e (Euler’s number) which
can be defined by

e =
∞

∑
n=0

1
n!
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Example 1.14. If you have a right triangle with unit side length, what is the length of its
hypotenuse and what class of numbers does it belong to?
An isosceles triangle is defined as having adjacent and opposite sides of same length,
connected by a 90◦ angle. Unit side length of these, refers to a side length of

1

.
As we have a 90◦ angle, we can use Pythagoras’ theorem:

a2 +b2 = c2

With
a = ad jacent

b = opposite

c = hypotenuse

So with
a,b = 1

:

c2 = 12 +12

c2 = 1+1

c2 = 2

We take the square root to get
c

c =
√

2

Now that we answered the first part of the question, it needs to be defined, which class of
number √

2

belongs to. √
2

is an irrational number, and belongs thereby to the set of real numbers

R

Real numbers can be imagined as points on an infinitely long line, which is also called
the real line.

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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2 Data vectors

2.1 The plane

Pairs of numbers can be depicted as points on a plane.
The plane is normally denoted by R2.

2.1.1 Details

Pairs of numbers can be depicted as points on a plane.

Definition 2.1. A plane is a perfectly flat surface with no thickness and no end, it can
extend forever in all directions. It has two-dimensions, length and width. We need two
values to find a point on the plane.

Normally we talk about "the plane"as the collection of all pairs of numbers and denoted it
by

R2 = {(x,y) : x,y ∈ R}
, giving coordinates to each point.

2.1.2 Examples

Example 2.1. Plotting the point (2,4) in the x-y plane using R.

plot(2,4,xlim=
(0,6),ylim=
(0,6),xlab="x",ylab="y",
ex=2)

text(2,4,"(2,4)",pos=4,
ex=2)

Additional points can be added using the points function:

points(3,5, 
ex = 0.5) ## a point at (3,5)

If you have 2 sets of coordinates on a plane you can calculate the distance between the 2
points and graph the line connecting the points

Example 2.2. What is the distance between the 2 points (3,9) and (5,1)?
We will use the Pythagorean theorem:

d =
»

(x2 − x1)2 +(y2 − y1)2

We insert our values into the formula:

d =
»

(5−3)2 +(1−9)2

When we combine inside the parenthesis we get:

d =
»

(2)2 +(−8)2
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Squaring both terms:
d =

√
4+64

Then we take the square root:
d =

√
68

The result:
d = 8.2462

2.2 Simple plots in R

Graphing functions in R

• plot - plots a scatter plot (as a line plot)

• points - adds points to a plot

• text - adds text to a plot

• lines - adds lines to a plot
0 1 2 3 4 5

0
1

2
3

4
5

x

y

(1,2)

(3,1)

Points
on a plane, drawn with R.

2.2.1 Examples

Example 2.3. plot(2,3)

gives a single plot and

plot(2,3, xlim=
(0,5), ylim=
(0,5))

gives a single plot but forces both axes to range from 0 to 5.

Example 2.4. The following R commands can be used to generate a plot with two points:

plot(1,2,xlim=
(0,5),ylim=
(0,5),xlab="x",ylab="y")

points(3,1)

text(1,2,"(1,2)",pos=4, 
ex=2)

text(3,1,"(3,1)",pos=4, 
ex=2)

Example 2.5. In this example, we plot 3 points. The first two points are by including
vectors with a length of 2 as the x and y arguments of the plot function. The third plot
was added with the points function. The second and third points were labeled using the
text function and a line was drawn between them using the lines function.
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Note 2.1. Note that if you are unsure of what format the arguments of an R function
needs to be, you can call a help file by typing "?"before the function name (e.g. "?lines")

plot(
(2,3),
(3,4),xlim=
(2,6),ylim=
(1,5),xlab="x",ylab="y")

points(4,2)

text(3,4,"(3,4)",pos=4, 
ex=2)

text(4,2,"(4,2)",pos=4, 
ex=2)

lines(
(3,4), 
(4,2))

2.3 Data

Data are usually a sequence of numbers, typically called a vector.

2.3.1 Details

When we collect data these are one or more sequences of numbers, collected into data
vectors. We commonly think of these data vectors as columns in a table.

2.3.2 Examples

Example 2.6. In R, if the command

x <- 
(4,5,3,7)

is given, then x contains a vector of numbers.

Example 2.7. Create a function in R, give it a name "Myfunction"which takes the sum
of x,y.

Myfun
tion<- fun
tion(x,y) {

sum(x,y)

}

If you input the vectors 1:3 and 4:7 into the function it will calculate the sum of
x<-(1+2+3) and y<-(4+5+6+7) as follows

> Myfun
tion(1:3,4:7)

28

2.4 Indices for a data vector

If data are in a vector x, then we use indices to refer to individual elements.
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2.4.1 Details

If i is an integer then xi denotes the i’th element of x.

Note that although we do not distinguish (much) between row- and column vectors, usually
a vector is thought of as a column. If we need to specify the type of vector, row or column,
then for vector x, the column vector would be referred to as x′ and the row vector as xT (the
transpose of the original).

2.4.2 Examples

Example 2.8. If x = (4,5,3,7) then x1 = 4 and x4 = 7

Example 2.9. How to remove all indices below a certain value in R

x <- 
(1,5,8,9,4,16,12,7,11)

x

[1℄ 1 5 8 9 4 16 12 7 11

y <- x[x>10℄

y

[1℄ 16 12 11

Example 2.10. Consider a function that takes to vectors

a ∈ Rn,b ∈ Nm

as arguments with
n ≥ m

and
1 ≤ b1, ...,bm ≤ n

. The function returns the sum
m

∑
i=1

abi (1)

Long version:
fN <- function(a,b)
result <- sum(a[b])
return(result)

Short version:
|fN <- function(a,b) sum(a[b])|

2.5 Summation

We use the symbol Σ to denote sums.
In R, the sum function adds numbers.
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2.5.1 Examples

Example 2.11. If x = (4,5,3,7)
then

4

∑
i=1

xi = x1 + x2 + x3 + x4 = 4+5+3+7 = 19

and

4

∑
i=2

xi = x2 + x3 + x4 = 5+3+7 = 15.

Within R one can give the corresponding commands:

x<-
(4,5,3,7)

x

[1℄ 4 5 3 7

sum(x)

[1℄ 19

sum(x[2:4℄)

[1℄ 15

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
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3 More on algebra

3.1 Some Squares

If a and b are real numbers, then

(a+b)2 = a2 +2ab+b2

3.1.1 Details

If a, b are real numbers, then:
(a+b)2 = a2 +2ab+b2

This can be proven formally with the following argument:

(a+b)2 = (a+b)(a+b)

= (a+b)a+(a+b)b

= a2 +ba+ba+b2

= a2 +2ab+b2

3.2 Pascal’s Triangle

Pascal’s triangle is a geometric arrangement of the binomial coefficients in a triangle

1
1 1

1 2 1
...

...
...

...
...

3.2.1 Details

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

To build Pascal’s triangle, start with "1"at the top, and then continue placing numbers below
it in a triangular pattern. Each number is just the two numbers above it added together
(except for the edges, which are all "1").

3.2.2 Examples

Example 3.1. The following function in R gives you the Pascal’s triangle for n = 0 to
n = 10.

fN <- fun
tion(n) formatC(n, width=2)

for (n in 0:10) {


at(fN(n),":", fN(
hoose(n, k = -2:max(3, n+2))))
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at("\n")

}

0 : 0 0 1 0 0 0

1 : 0 0 1 1 0 0

2 : 0 0 1 2 1 0 0

3 : 0 0 1 3 3 1 0 0

4 : 0 0 1 4 6 4 1 0 0

5 : 0 0 1 5 10 10 5 1 0 0

6 : 0 0 1 6 15 20 15 6 1 0 0

7 : 0 0 1 7 21 35 35 21 7 1 0 0

8 : 0 0 1 8 28 56 70 56 28 8 1 0 0

9 : 0 0 1 9 36 84 126 126 84 36 9 1 0 0

10 : 0 0 1 10 45 120 210 252 210 120 45 10 1 0 0

Changing the numbers in the line for(n in 0:10) will give different portions of the
triangle.

3.3 Factorials

We define the factorial of an integer n as
n! = n · (n−1) · (n−2) · . . . ·3 ·2 ·1

3.3.1 Details

Definition 3.1. We define the factorial of an integer n as

n! = n · (n−1) · (n−2) · · ·. . . ·3 ·2 ·1.

3.3.2 Examples

Example 3.2. Suppose you have 6 apples, {a,b,c,d,e, f} and you want to put each one
into a different apple basket, {1,2,3,4,5,6}.

For the first basket you can choose from 6 apples {a,b,c,d,e, f}, and for the second
basket you have then 5 apples to choose from and so it goes for the rest of the baskets,
so for the last one you only have 1 apple to choose from.

The end result would then be: 6! = 6 ·5 ·4 ·3 ·2 ·1= 720 possible allocations.

This could also be calculated in R with the factorial function:

fa
torial(6)

[1℄ 720
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3.4 Combinations

The number of different ways one can choose a subset of size x from a set of n elements
is determined using the following calculation:

Ç

n

x

å

=
n!

x!(n− x)!

3.4.1 Details

Definition 3.2. A combination is an un-ordered collection of distinct elements

Suppose we want to toss a coin n times. In each toss we obtain head (H) or tail (T) resulting
in a sequence of H,T,T,H, ... T.

How many of these possible sequences contain exactly x tails? There are n positions in the
sequence, we can choose x of these in

(
n
x

)
ways and put our "Ts"in those positions. If the

probability of landing tails is p then each one of these sequences with exactly x tails has
probability px(1− p)n−x so the total probability of landing exactly x tails in n independent
tosses is

Ç

n

x

å

=
n!

x!(n− x)!
.

For convenience we define 0! to be 1.

3.4.2 Examples

Example 3.3. Consider tossing a coin four times.

(a) How many times will this experiment result in exactly two tails?

There are a total of 16 possible sequences of heads and tails from four tosses. These can
simply all be written down to answer a question like this.

We get two tails in 6 of these tosses. We can explicitly write the corresponding comb-
inations of two tails as follows

HHTT

HTHT

HTTH

THTH

TTHH

THHT

(b) How many times you will end up with 1 tail? The answer is 4 times and the output
can be written as;
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HHHT

HTHH

THHH

HHTH

The case of a single tail is easy: The single tail can come up in any one of four positions.

3.5 The binomial theorem

(a+b)n =
n

∑
x=0

Ç

n

x

å

axbn−x

3.5.1 Details

If a and b are real numbers and n is an integer then the expression (a+b)n can be expanded
as:
(a+b)n = an +

(
n
1

)
an−1b+

(
n
2

)
an−2b+ . . .+

(
n

n−1

)
abn−1 +bn

(a+b)n = ∑n
i=1

(
n
x

)
axbn−x

This can be seen by looking at (a+b)n as a product of n parentheses and multiply these by
picking one item (a or b) from each. If we picked a from x parentheses and b from (n−x),
then the product is axbn−x. We can choose the x a’s in a total of

(
n
x

)
ways so the coefficient

of axbn−x is
(

n
x

)
.

3.5.2 Examples

Example 3.4. Since

(a+b)n =
n

∑
x=0

Ç

n

x

å

axbn−x,

it follows that

2n = (1+1)n =
n

∑
x=0

Ç

n

x

å

i.e.

2n =

Ç

n

0

å

+

Ç

n

1

å

+

Ç

n

2

å

. . .+

Ç

n

n

å
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4 Discrete random variables and the binomial distributi-
on

4.1 Simple probabilities

4.1.1 Details

Of all the possible 3-digit strings,
(3

x

)
of them have x heads. So the probability of landing x

heads is
(3

x

)
px(1− p)3−x.

4.1.2 Examples

Example 4.1. Consider a biased coin which has probability p of landing heads up. If we
toss this coin 3 independent times the possible outcomes are:

sequence probability Numbero f heads

HHH p · p · p = p3 3
HHT p2(1− p) 2
HT H p2(1− p) 2
HTT p(1− p)2 1
T HH p2(1− p) 2
T HT p(1− p)2 1
T T H p(1− p)2 1
T T T (1− p)3 0

Example 4.2. It is also possible to aggregate these values into a table and describe only
the number of heads obtained:

heads probability p(x)

0 (1− p)3

1 3p(1− p)2

2 3p2(1− p)
3 p3

If we are only interested in the number of heads, then this table describes a probability
mass function p, namely the probability p(x) of every possible outcome x of the experi-
ment.

Example 4.3. Given that a year is 365 days and each day has the same probability of
being someone’s birthday. What’s the probability of at least 2 people sharing a birthday
in a group of 25 people?

Now, calculating each of the possible outcomes could become very tedious. That is
calculating the odds that 2 people share a birthday, 3 people, 4 people, etc. So instead
we try to find out the odds that no one in the group shares a birthday and subtract those
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odds from 1 (100%).

First, let’s look at the odds of only two people having distinct birthdays.

365
365

· 364
365

= 0.9973

Person one can be born on any day and the odds of having a distinct birthday are
therefore 1. The next person can be born on everyday but the 1 the other person was
born on, so 364 days.

Now let’s say we add the 3rd person and calculate his/her odds of having a distinct birt-
hday.

365
365

· 364
365

· 363
365

= 0.9918

This can also be rewritten as

365 ·364 ·363
3653

And we can do this on and on for all the 25 people we are interested in. But that may
also become a bit tedious. So we use factorials instead. So instead of doing

365 ·364 ·363... ·341
36525

we do

365!
340!

36525 = 0.4313

Essentially the division of factorials here removes all the values < 341, leaving 340, 339,
338 ... 1
Now remember this is the probability that no one shares a birthday. So when we subtract
this from 1 we get

1−0.4313 = 0.5687

or roughly 57% odds of at least 2 people in a group of 25 sharing the same birthday.

4.2 Random variables

A random variable is a concept used to denote the outcome of an experiment before it is
conducted.

4.2.1 Examples

Example 4.4. Let X denote the number of heads in a coin tossing experiment. We can
then talk about the probabilities of certain events such as obtaining two heads, i.e. X = 2.
We write this as

P[X = 2] =

Ç

n

2

å

p2(1− p)n−2
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In general:

P[X = x] =

Ç

n

x

å

px(1− p)n−x

where x = 0,1, .....,n

4.2.2 Handout

Definition 4.1. A random variable, X , is a function defined on a sample space, with
outcomes in the set of real numbers.

It is simpler to think of a random variable as a symbol used to denote the outcome of an
experiment before it is conducted.

Note 4.1. Note that it is essential to distinguish between upper case and lower case letters
when writing these probabilities - it makes no sense to write P[x = x].

Note 4.2. Random variables are generally denoted by upper case letters such as X , Y and
so on.

Note 4.3. To see how a random variable is a function, it is useful to consider the actual
outcomes of two coin tosses. These outcomes can be denoted {HH,HT,TH,T T}. Now
consider a random variable X which describes the number of heads obtained. This random
variable attributed 2 to the outcome HH and 0 to T T , i.e. X is a function with X(HH) = 2,
X(HT ) = X(TH) = 1 and X(TT ) = 0.

4.3 Simple surveys with replacement

If we randomly draw individuals (with replacement) and ask a question with two possible
answers (positive or negative), then the number of positive answers will come from a
binomial distribution.

4.3.1 Examples

Example 4.5. Suppose we are participating in a lottery. We pick a number from a lottery
bowl (a simple random sample). We can put the number aside, or we can put it back into
the bowl. If we put the number back in the bowl, it may be selected more than once; if
we put it aside, it can be selected only one time.

Definition 4.2. When an element can be selected more than one time, we are sampling
with replacement.

Definition 4.3. When an element can be selected only one time, we are sampling wit-
hout replacement.
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4.4 The binomial distribution

If we toss a biased coin n independent times, each with probability p of landing heads
up, then the probability of obtaining x heads is

Ç

n

x

å

px(1− p)n−x

4.4.1 Examples

Example 4.6. Suppose we toss a coin, with probability p of landing on heads n times
obtaining a sequence of Hs (when it lands heads) and Ts (when it lands tails). Any
sequence,

HT H...HTHHH

which has x heads (H) and n− x tails (T ), has the probability px(1− p)n−x. There are
exactly

(
n
x

)
such sequences, so the total probability of landing x heads in n tosses is

Ç

n

x

å

px(1− p)n−x.

Example 4.7. Let the probability that a certain football club wins a match be equal to
0.4.If the total number of matches played in the season is 30, what is the probability that
the football club wins the match 10% of the time?

We first calculate the number of times a match was played and won by multiplying the
percentage of wins by the number of matches played.

10% of 30 times = 3 times

We can now proceed to calculate the probability that they will win the match given
that their probability of a winning is 0.4 if they play 3 times in a season. This can be
computed as follows:

Ç

30
3

å

× (0.4)3× (1−0.4)30−3

= 0.000265

This can be calculated in R using the code below:

dbinom(3,30,0.4)

[1℄ 0.0002659437

This is equal to the manual calculation using the binomial theorem.
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Example 4.8. Suppose a youngster puts his shirt on by himself every day for five days.
The probability that he puts it on the right way each time is p = 0.2. We let X be a
random variable that describes the number of times the youngster puts his shirt on the
right way. The youngster can either put the shirt on the wrong or the right way so
X follows the binomial distribution with the parameters p = 0.2 (the probability of a
successful trial) and n = 5 (number of trials). We can now calculate for example the
probability that the youngster will put it on the right way for at least 4 days.

Putting the shirt on the right way for at least 4 days means that the youngster will either
put it on the right way for either four or five days (at least four or more days of five days
total). We thus have to calculate the probability that the youngster will put his shirt on
the right way for 4 and 5 days separately and then we add it together. We can write this
process as follows:

P(X ≥ 4) = P(X = 4)+P(X = 5)

=

Ç

5
4

å

×0.24 × (1−0.2)5−4+

Ç

5
5

å

×0.25× (1−0.2)5−5

= 5×0.24×0.81 +1×0.25 ×0.80

= 5×0.24×0.8+0.25×1

= 5×0.8×0.24+0.25

= 4×0.24 +0.25

= 4×0.0016+0.00032

= 0.00672

The probability that the youngster will put his shirt on the right way for at least four out
of five is thus 0,7%.

This is possible to calculate in R in a several ways, either using the command dbinom or
pbinom. The command dbinom calculates

P(X = k)

and the command pbinom calculates

P(X ≤ k)

where k is the number of successful trials. If n is the number of trials and p is the
probability of a successful trials then the commands are used by writing: dbinom(k,n,p)
and pbinom(k,n,p).

To calculate the probability that the youngster will put his shirt on the right way for at
least four days of five we thus write the command:
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dbinom(4,5,0.2) + dbinom(5,5,0.2)

which gives 0.00672.

This is the same as writing:

dbinom(
(4,5),5,0.2)

or

dbinom(4:5,5,0.2)

which give two separate numbers: 0.00640 and 0.00032 which can be added together to
get 0.00672.

There is also a command to add them together for us:

sum(dbinom(
(4,5),5,0.2))

or

sum(dbinom(4:5,5,0.2))

They give the answer 0.00672.

The fourth way of calculating this in R is to use pbinom. As said before pbinom calculates

P(X ≤ k)

where k is the number of successful trials. Here we want to calculate the probability that
the youngster will put his shirt on the right way in 4 or 5 times (of 5 total) so the number
of successful trials is 4 or greater. That means we want to calculate

P(X ≥ 4)

which equals
1−P(X ≤ 3)

. We thus put k as 3 and the R command will be:

1 - pbinom(3,5,0.2)

which also gives 0.00672.

Example 4.9. In a certain degree program, the chance of passing an examination is
20%. What is the chance of passing at most 2 exams if the student takes five exams?

Solution:
In this problem, we compute the chance of a student passing, 0, 1 or 2 exams. This is
given by,

p(X = 0 or 1 or 2) =

Ç

5
0

å

0.200.85 +

Ç

5
1

å

0.210.84 +

Ç

5
2

å

0.220.83

= 1×0.200.85 +5×0.210.84+10×0.220.83
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= 0.32768+0.4096+0.2048

= 0.94208

In the R console, we can use the command, sum(dbinom(
(0:2),5,0.2)), which also
gives

0.94208.

The same answer is obtained with

dbinom(0,5,0.2)+dbinorm(1,5,0.2)+dbinom(2,5,0.2)

and with

pbinom(2,5,0.2)

Example 4.10. Consider the probability of someone jumping off a cliff is 0.35. Suppose
we randomly selected four individuals to participate in the cliff jumping activity. What
is the chance that exactly one of them will jump off the cliff?

Consider a scenario where one person jumps:
P (A =jump , B = refuse, C = refuse, D = refuse)
= P (A =jump) P (B = refuse) P (C = refuse) P (D = refuse)
= (0.35)(0.65)(0.65)(0.65)= (0.35)1(0.65)3 = 0.096

But there are three other scenarios( B, C, or D) in which one only person decides to jump.
In each of these cases, the probability is again 0.096. These four scenarios exhaust all the
possible ways that exactly one of the four people jumps:
4 · (0.35)1(0.65)3 = 0.38.

In the R console we can use the command: dbinom(1,4,0.35) which gives the answer
as 0.384475.

4.5 General discrete probability distributions

A general discrete probability distribution can be described by a list of all possible
outcomes and associated probabilities.

4.5.1 Details

A general discrete probability distribution is described by the possible outcomes

x1,x2, . . .

and associated probabilities, denoted by p1, p2, . . . or p(x1), p(x2), . . .

If a random variable X has this distribution, then we can write

P[X = xi] = p(xi) = pi
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or in general

P[X = x] = p(x)

where it is understood that p(x) = 0 if x is not one of these xi.

4.5.2 Examples

Example 4.11. If X is the number of heads (H) before obtaining the first tail (T ) when
tossing an unbiased coin 4 independent times, then the possible basic outcomes are:

Toss
In binary 1 2 3 4 #H before T

0000 H H H H 4
0001 H H H T 3
0010 H H T H 2
0011 H H T T 2
0100 H T H H 1
0101 H T H T 1
0110 H T T H 1
0111 H T T T 1
1000 T H H H 0
1001 T H H T 0
1010 T H T H 0
1011 T H T T 0
1100 T T H H 0
1101 T T H T 0
1110 T T T H 0
1111 T T T T 0

Since the coin is unbiased, each of these has the same probability of occurring. We can
now count sequences to find the number of possibilities of a particular number of heads,
H, before a tail in 4 coin tosses and thus obtain the corresponding probabilities as:

Number of tosses before a heads Probability
x p(x)

0 8
16 = 1

2
1 4

16 = 1
4

2 2
16 = 1

8
3 1

16
4 1

16

4.6 The expected value or population mean

The expected value is the sum of the possible outcomes, weighted with the respective
probabilities (discrete variable). Think of this in terms of an urn full of marbles, each
labelled with number.

4.6.1 Details

If the possible outcomes are x1,x2... with probabilities p1, p2... then the expected value is
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µ = x1 · p1 + x2 · p2 + . . . .

The fact that this is the only sensible definition of an expected value follows from consi-
dering random draws from a finite population where there are ni possibilities of obtaining
the value xi. If we set n = ∑xi and pi = ni/n then the expected value above is the simple
average of all the numbers in the original population.
In the case of the binomial distribution with n trials and success probability p it turns out
that

µ = n · p

If X is the corresponding random variable, we denote this quantity by E[X ].

4.6.2 Examples

Example 4.12. If we toss a fair coin 10 independent times, we expect on average np =
10 · 1

2 = 5 heads.

Example 4.13. Toss a fair die and pay $60 if a six comes up and nothing otherwise. The
expected outcome is

5
6
·$0+

1
6
·$60 = $10.

Example 4.14. In Las Vegas, a particular sports bet has about a 30% chance of winning.
If the bet wins, the bettor will win 15 dollars. If the bet loses, the bettor will lose 10
dollars. The expected return of placing one of these bets is -2.50 dollars.
Detailed calculation:

$15 ·0.3−$10 ·0.7=−$2.5

Example 4.15. Class starts at 8:00 and the last bus that will get you to class on time
leaves at 7:30. The teacher has a policy that if you are late to class 6 of the 30 classes,
then she drops your final grade by 1/10 points. You know that if you set your alarm for
7:15, you miss the 7:30 bus approximately every fourth time, but if you set it for 7:10,
you’ll only miss the bus approximately every eighth time. If you set it for 7:00, you’ll
only miss the bus every one hundredth time.

Part A: Assuming you try to go to class every time, can you expect to have your grade
dropped in the following scenarios?
1 - You set your alarm for 7:15 throughout the duration of the class.
2 - You set your alarm for 7:15 until you reach 5 missed classes, then switch to 7:10.
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3 - You set your alarm for 7:15 until you reach 5 missed classes, then switch to 7:00.

Part B: What is your expected grade in the course, assuming you would have had a 7/10
without the late penalty, and:
1 - You would never choose the first alarm-clock strategy and you would most likely
choose scenario 2 (let’s say 9/10 times), but there’s a small chance you might choose the
3rd strategy (let’s say 1/10 times).
2 - You would never choose the first alarm-clock strategy and you would most likely
choose scenario 3 (let’s say 9/10 times), but there’s a small chance you might choose the
2nd strategy (let’s say 1/10 times).

Answers:
A1 - Let’s call X our random variable, which we want to be the number of times we make
it to class on-time. With the alarm set to 7:15 we expect to make it to class on-time:

E[X ] = 30× (1− 1
4
) = 22

1
2

You’re grade would most likely be dropped.

A2 - First we need to see how many classes we go to before we reach the 5-late-classes
threshhold:

E[X ] = n× (1− 1
4
) = n−5

E[X ] = n((1− 1
4
)−1) =−5

E[X ] = n =
−5

−1
4

E[X ] = n =
20
1

= 20

So, the night before our 21st class, you get worried and change alarm-clock strategies. If
you set it at 7:15 for the rest of the course (10 classes), you will be on time:

E[X ] = 15+10× (1− 1
8
) = 23

3
4

You’re grade would most likely be dropped.

A3: If you instead start setting the alarm clock for 7:00 for the rest of the course, you
will be on time:

E[X ] = 15+10× (1− 1
100

) = 24
1
9

You’re grade would most likely NOT be dropped.

Part B: This seems to contain errors In Part A, we calculated the mean of several bin-
omial distributions that described the expected number of days that you will arrive on-
time to class. Each distribution corresponded to a different alarm-setting scenario. In this
part, we are describing a different binomial distribution. It describes your expected gra-
de. Therefore, the grade is the outcome n, weighted by the probability of you choosing
the particular alarm-clock setting procedure:
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1−E[X ] = 0×6+0.9×6+0.1×7 = 6.1

1−E[X ] = 0×6+0.1×6+0.9×7 = 6.9

Note that the probabilities of these three choices (0 + 0.9 + 0.1) must equal 1, since these
are the only three choices defined.

4.7 The population variance

The (population) variance, for a discrete distribution, is

σ2 = E
î

(X −µ)2
ó

= (x1 −µ)2p1 +(x2 −µ)2 p2 + ...

where it is understood that the random variable X has this distribution and µ is the
expected value.

In the case of the binomial distribution, it turns out that:
σ2 = np(1− p)

4.7.1 Details

Definition 4.4. If µ is the expected value, then the variance of a discrete distribution
is defined as

σ2 = (x1 −µ)2p1 +(x2 −µ)2p2 + . . . .

If a random variable X has associated probabilities, pi = P[X = xi], then one can equi-
valently write

σ2 =V [X ] = E
î

(X −µ)2
ó

.

4.7.2 Examples

Example 4.16. In the case of the binomial distribution, it turns out that:

σ2 = np(1− p).
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5 Functions

5.1 Functions of a single variable

A function describes the relationship between varia-
bles.
Examples:
f (x) = x2

y = 2+3 · x4

−2 −1 0 1 2

0
1

2
3

4

x

x
^2

5.1.1 Details

Functions are commonly used in statistical applications, to describe relationships.

Definition 5.1. A function describes the relationship between variables. A variable y is
described as a function of a variable x by completely specifying how y can be computed
for any given value of x.

An example could be the relationship between a dose level and the response to the dose.

The relationship is commonly expressed by writing either f (x) = x2 or y = x2.

Usually names are given to functions, i.e. to the relationship itself. For example, f might
be the function and f (x) could be its value for a given number x. Typically f (x) is a number
but f is the function, but the sloppy phrase "the function f (x) = 2x+4"is also common.

5.1.2 Examples

Example 5.1. f (x) = x2 or y = x2 specifies that the computed value of y should always
be x2, for any given value of x.

5.2 Functions in R

A function can be defined in R using the "functi-
on"command

0 2 4 6 8 10

5
1

0
1

5
2

0
2

5
3

0

x

y
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5.3 Ranges and plots in R

Functions in R can commonly accept a range of values and will return a corresponding
vector with the outcome.

5.3.1 Examples

ERROR: Unknown s
ript MIME type text/x-tex

Tra
eba
k (most re
ent 
all last):

File "/srv/sites/tutor-web-2/sr
/tutorweb.
ontent/tutorweb/
ontent/transforms/s
ript_to_html.py", line 179, in 
onvert

raise ValueError("Unknown s
ript MIME type %s" % kwargs['mimetype'℄)

ValueError: Unknown s
ript MIME type text/x-tex

Example 5.2. f <- fun
tion(x) {return(x*12)}

x <- seq (-5,5,0,1)

y <- f(x)

plot {(x,y) type= 'l'}

5.4 Plotting functions

In statistics, the function of interest is commonly cal-
led the response function. If we write Y=f(x), the
outcome Y is usually called the response variable
and x is the explanatory variable. Function values
are plotted on vertical axis while x values are plotted
on horizontal axis. This plots Y against x.

5.4.1 Examples

ERROR: Unknown s
ript MIME type text/x-tex

Tra
eba
k (most re
ent 
all last):

File "/srv/sites/tutor-web-2/sr
/tutorweb.
ontent/tutorweb/
ontent/transforms/s
ript_to_html.py", line 179, in 
onvert

raise ValueError("Unknown s
ript MIME type %s" % kwargs['mimetype'℄)

ValueError: Unknown s
ript MIME type text/x-tex

Example 5.3. The following R commands can be used to generate a plot for function;
Y= 2+3x

x<- seq(0:10)

g <- fun
tion(x){

+ yhat <- 2+3*x

+ return(yhat)

+ }
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x<-seq(0,10,0.1)

y<- g(x)

plot(x,y,type="l", xlab="x",ylab="y")

5.5 Functions of several variables

5.5.1 Examples

Example 5.4.

z = 2x+3y+4 (2)

v = t2+3x (3)

w = t2+3b∗ x (4)

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

45



6 Polynomials

6.1 The general polynomial

The general polynomial:
p(x) = a0 +a1x+a2x2 + ...+anxn

The simplest: p(x) = a

6.1.1 Details

Definition 6.1. A polynomial describes a specific function consisting of linear comb-
inations of positive integer powers of the explanatory variable.

The general form of a polynomial is:
p(x) = a0 +a1x+a2x2 + ...+anxn

The simplest of these is the constant polynomial p(x) = a.

6.2 The quadratic

The general form of the quadratic (parabola) is
p(x) = ax2 +bx+ c.
The simplest quadratic is p(x) = x2
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=−x^2+4x−4

x

−
(x

 −
 2

)^
2

Para-
bolas: Quadratic functions.

6.2.1 Details

The quadratic polynomial of the form p(x) = ax2+bx+c describes a parabola when points
(x,y) with y = p(x) are plotted.

The simplest parabola is p(x) = x2 (Fig. a) which is always non-negative p(x) ≥ 0 and
p(x) = 0 only when x = 0.

Note 6.1. Note that p(−x) = p(x) since (−x)2 = x2.

If the coefficient at the highest power is negative, then the parabola is "upside down"(Fig.
b).

This is sometimes used to describe a response function.
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6.3 The cubic

The general form of a cubic polynomial is:
p(x) = ax3 +bx2 + cx+d
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6.4 The Quartic

The general form of the quartic polynomial is p(x) =
ax4 +bx3 + cx2 +dx+ e
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general shape. Here we used the following equation
y = x4 − x3 −7x2 + x+6

6.5 Solving the linear equation

If the value of y is given and we know that x and y are on a specific line so that y = a+bx,
then we can find the value of x

6.5.1 Details

If a value of y is given and we know that x and y lie on a specific straight line so that
y = a+bx, then we can find the value of x by considering y = a+bx as an equation to be
solved for x, since y, a and b are all known.

The general solution is found through the following steps:

• Equation: y = a+bx

• Subtract a from both sides

– y−a = bx

– bx = y−a

• Divide by b on both sides if b is not equal to 0.

– x = 1
b
(y−a).
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6.6 Roots of the quadratic equation

The general solution of ax2 +bx+ c = 0 is given by x = −b±
√

b2−4ac
2a

.

6.6.1 Details

Suppose we want to solve ax2 +bx+ c = 0, where a 6= 0.
The general solution is given by the formula

x =
−b±

√
b2 −4ac

2a
,

if b2 − 4ac ≥ 0. On the other hand, if b2 − 4ac < 0, the quadratic equation has no real
solution.

6.6.2 Examples

Example 6.1. Solve x2 −3x+2 = 0
Putting this into the context of the formulation ax2 +bx+ c = 0, the constants are;
a = 1,b =−3,c = 2
Inserting this into the formula for the roots gives:

x =
−(−3)±

√

(−3)2 −4(1)(2)
2(1)

x =
3±

√
9−8

2

x =
3±

√
1

2

x =
3+1

2
,
3−1

2

x =
4
2
,
2
2

x = 2,1

Example 6.2. Find the roots of the following polynomial

3x4 +14x2 +15

We can use the quadratic equation to solve for the roots of this polynomial if we substitute
a variable for

x2

Let’s use the letter
a

3a2 +14a+15

We then plug the constants in to the quadratic equation.
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x =
−(14)±

√

142 − (4)(3)(15)
(2)(3)

which simplifies to

−(14)±
√

196−180
6

which equals

−1
2
3

and
−3

.
Then, since we substituted a for

x2

we need to take the square root of these values to get the roots of the polynomial.
So,

x1,2 =±
…

−1
2
3

and
x3,4 =±

√
3
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7 Simple data analysis in R

7.1 Entering data; dataframes

Several methods exist to enter data into R:

1. Enter directly: x<-c(4,3,6,7,8)

2. Read in a single vector: x<-scan("filename")

3. Use: x<-read.table("file address")

7.1.1 Details

The most direct method will not work if there are a lot numbers; therefore, the second met-
hod is to read in a single vector by x<-scan("filename"), "filename- text string, either a full
path name or refers to a file in the working directory.

The scan() command returns a vector, but the read.table() command returns a dataframe,
which is a rectangular table of data whose columns have names. A column can be extracted
from a data frame, e.g., with x<- dat$a where"dat"is the name of the data frame and "a"is
the name of a column.

Note 7.1. Note that for read.table("file address"), "file address"refers to the location of the
file. Thus, it can be the URL or the complete file directory depending on where the table is
stored.

7.1.2 Examples

Example 7.1. Below are three examples using R code to enter data

1. x<-c(4,3,6,7,8)

2. x<-scan("lecture 70.txt")

3. x<-read.table("http://notendur.hi.is/ gunnar/kennsla/alsm/data/set115.dat", hea-
der=T)

7.2 Histograms

A histogram is a graphical display of tabulated frequ-
encies, shown as bars.
In R use the command: hist()
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7.2.1 Examples

A histogram is a graphical display of tabulated frequencies, shown as bars.

Example 7.2. If we toss a fair die 100 times and record the number of sixes, then we
can view that as the outcome of a random variable X , which is binomial with n = 100
and p = 1

6 , i.e X ∼ b(n = 100, p = 1
6)

Now this can be done e.g. 1000 times to obtain numbers, x1, ...,x1000. Within R this can
be simulated using

x <- rbinom(1000,100,1/6)

We would typically plot these using a histogram, e.g.
hist(x)
or
hist(x,nclass=50);l

7.3 Bar Charts

The bars in a bar chart usually correspond to frequ-
encies in categories and are therefore kept apart.
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7.3.1 Details

A bar chart is similar to the histogram but is used for categorical data.

7.4 Mean, standard error, standard deviations

7.4.1 Details

The most familiar measure of central tendency is the arithmetic mean.

Definition 7.1. An arithmetic mean is the sum of the values divided by the number
values, typically expressed as:

ȳ =
∑n

i=1 yi

n
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Definition 7.2. The sample variance is a measure of the spread of a set of values from
the mean value:

s2 =
1

n−1

n

∑
i=1

(xi − x̄)2

The sample standard deviation is more commonly used as a measure of the spread of a set
of values from the mean value.

Definition 7.3. The standard deviation is the square root of the variance and may be
expressed as:

s =

√

1
n−1

n

∑
i=1

(xi − x̄)2

Definition 7.4. The standard error is a method used to indicate the reliability of the
sample mean:

SEȳ =

 

s2

n

If a vector x in R contains an array of numbers then:
mean(x) returns the average, x̄

sd(x) returns the standard deviation,s
var(x) returns the variance, s2

We may also want to use several other related operations in R:
median(x), the median value in vector x
range(x), which list the range: max(x)-\verbmin(x);
If the variable x contains discrete categories, table(x) returns counts of the frequency in
each category.
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7.5 Scatter plots and correlations

If we have paired explanatory and response data we
are often interested in seeing if a relationship exists
between them. To do this, we first plot the data in a
scatter plot.
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Figure: Scatter plot showing the length-weight
relationship of fish species "X". Data source :
Marine Resource Institution - Iceland.

7.5.1 Details

A first step in analyzing data is to prepare different plots. The type of variable will determ-
ine the type of plot. For example, when using a scatter plot both the explanatory and
response data should be continuous variables.

The equation for the Pearson correlation coefficient is:

rx,y =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2 ,

where x̄ and ȳ are the sample means of the x- and y-values.
The correlation is always between -1 and 1.

7.5.2 Examples

The following R commands can be used to generate a scatter plot for vectors x and y

Example 7.3. plot(x,y)
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8 Indices and the apply commands in R

8.1 Giving names to elements

We can name elements of vectors and data frames in R using the "names"command.

8.1.1 Examples

Example 8.1. X<-
(41, 3, 73)

names(X)<-
("One", "Two", "Three")

View the results by simply typing "X"and the output of "X"is given as follows:

X

One Two Three

41 3 73

With this we can refer to the elements by name as well as locations using...

X[1℄

One

X["Three"℄

Three

73

8.2 Regular matrix indices and naming

A matrix is a table of numbers. Typical matrix indexing: mat[i,j], mat[1:2,] etc

A matrix can have row and column names Indexing with row and column names:
mat["a","B"]

8.2.1 Details

Definition 8.1. A matrix is a (two-dimensional) table of numbers, indexed by row and
column numbers.

Note 8.1. Note that a matrix can also have row and column names so that the matrix can
be indexed by its names rather than numbers.

8.2.2 Examples

Example 8.2. Consider a matrix with 2 rows and 3 columns. Consider extracting first
element (1,2), then all of line 2 and then columns 2-3 in an R session:
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mat<-matrix(1:6,n
ol=3)

mat

[,1℄ [,2℄ [,3℄

[1,℄ 1 3 5

[2,℄ 2 4 6

mat[1,2℄

[1℄ 3

mat[2,℄

[1℄ 2 4 6

mat[,2:3℄

[,1℄ [,2℄

[1,℄ 3 5

[2,℄ 4 6

Next, consider the same matrix, but give names to the rows and columns. The rows will
get the names "a"and "b"and the columns will be named "A", "B"and "C".
The entire R session could look like this:

mat<-matrix(1:6,n
ol=3)

dimnames(mat)<-list(
("a","b"),
("A","B","C"))

mat

A B C

a 1 3 5

b 2 4 6

mat["b",
("B","C")℄

B C

4 6

8.3 The apply command

The apply command...
apply(mat,2,sum) – applies the sum function within each column
apply(mat,1,mean) – computes the mean within each row

8.4 The tapply command

Commonly one has a data vector and another vector of the same length giving categories
for the measurements. In this case one often wants to compute the mean or variance (or
median etc) within each category. To do this we use the tapply command in R.

8.4.1 Examples

Example 8.3. z<-
(5,7,2,9,3,4,8)

i<-
("m","f","m","m","f","m","f")
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A. Find the sum within each group

tapply(z,i,sum)

f m

18 20

B.Find the sample sizes

tapply(z,i,length)

f m

3 4

C.Store outputs and use names

n<-tapply(z,i,length)

n

f m

3 4

n["m"℄

m

4

8.5 Logical indexing

A logical vector consists of T RUE (1) or FALSE (0) values. These can be used to index
vectors or matrices.

8.5.1 Examples

Example 8.4. i<-
("m","f","m","m","f","m","f")

z<-
(5,7,2,9,3,4,8)

i=="m"

[1℄ TRUE FALSE TRUE TRUE FALSE TRUE FALSE

z[i=="m"℄

[1℄ 5 2 9 4

z[
(T,F,T,T,F,T,F)℄

[1℄ 5 2 9 4

8.6 Lists, indexing lists

A list is a collection of objects. Thus, data frames are lists.

8.6.1 Examples
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Example 8.5. x<-list(y=2,z=
(2,3),w=
("a","b","
"))

x[["z"℄℄

[1℄ 2 3

names(x)

[1℄ "y" "z" "w"

x["w"℄

$w

[1℄ "a" "b" "
"

x$w

[1℄ "a" "b" "
"
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9 Functions of functions and the exponential function

9.1 Exponential growth and decline

Exponential growth is typically expressed as:
y(t) = Aekt

0 2 4 6 8 10

0
.0

e
+

0
0

5
.0

e
+

0
6

1
.0

e
+

0
7

1
.5

e
+

0
7

2
.0

e
+

0
7

2
.5

e
+

0
7

3
.0

e
+

0
7

x

p
e

rt
(2

0
0

, 
1

.2
, 

t 
=

 x
)
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9.1.1 Details

Definition 9.1. Exponential growth is the rate of population increase across time when
a population is devoid of limiting factors (i.e. competition, resources, etc.) and
experiences a constant growth rate.

Exponential growth is typically expressed as:
y(t) = Aekt

where
A (sometimes denoted P)=initial population size
k= growth rate
t =number of time intervals

Note 9.1. Note that exponential growth occurs when k > 0 and exponential decline occurs
when k < 0.

9.2 The exponential function

An exponential function is a function with the form: f (x) = bx

9.2.1 Details

For the exponential function f (x) = bx, x is a positive integer and b is a fixed positive real
number. The equation can be rewritten as:

f (x) = bx = b ·b ·b...b

.
When the exponential function is written as f (x) = ex then, it has a growth rate at time x

equivalent to the value of ex for the function at x.
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9.3 Properties of the exponential function

Recall that the methods of the basic arithmetic implies that:

ea+b = eaeb

for any real numbers a and b.

9.4 Functions of functions

9.4.1 Details

Consider two functions, f and g, each defined for some set of real numbers. Where x can be
solved in function f using Y = f (x) when g(Y ) exists for all such resulting Y . If Y = f (x)
and g(Y ) exist then we can compute g( f (x)) for any x.
If
f (x) = x2 and
g(y) = ey then
g( f (x)) = e f (x) = ex2

If we call the resulting function h;
h(x) = g( f (x))
Then h is commonly written as
h = g◦ f

9.4.2 Examples

Example 9.1. If
g(x) = 3+2x and
f (x) = 5x2

Then
g( f (x)) = 3+2 f (x)
g( f (x)) = 3+10x2

f (g(x)) = 5(g(x))2

f (g(x)) = 5(3+2x)2

f (g(x)) = 45+60x+20x2

9.5 Storing and using R code

As R code gets more complex (more lines) it is usually stored in files. Functions are
typically stored in separate files.

9.5.1 Examples
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Example 9.2. Save the following file (test.r):

x=4

y=8


at("x+y is", x+y, "\n")$

To read the file use:

sour
e("test.r")

and the outcome of the equation is displayed in R

9.6 Storing and calling functions in R

To save a function in a separate file use a command of the form "function.r".

9.6.1 Examples

Example 9.3. f<-fun
tion(x) {

return (exp(sum(x)))

}

can be stored in a file function.r and subsequently read using the source command.
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10 Inverse functions and the logarithm

10.1 Inverse Function

If f is a function, then the function g is the inverse function of f if

g( f (x)) = x

for all x in which f (x) can be calculated

10.1.1 Details

The inverse of a function f is denoted by f−1, i.e.

f−1( f (x)) = x

10.1.2 Examples

Example 10.1. If f (x) = x2 for x < 0 then the function g, defined as g(y) =
√

y for y > 0,

is not the inverse of f since g( f (x)) =
√

x2 = |x|=−x for x < 0.

10.2 When the inverse exists: The domain question

Inverses do not always exist. For an inverse of f to
exist, f must be one-to-one, i.e. for each x, f (x) must
be unique.

x

x
^2

f(x) = x
2

− 1 1

The
function f (x) = x2 does not have an inverse since
f(x)=1 has two possible solutions -1 and 1.

10.2.1 Examples

Example 10.2. f (x)= x2 does not have an inverse since f (x)= 1 has two possible soluti-
ons -1 and 1.

Note 10.1. Note that iff f is a function, then the function g is the inverse function of f , if
g( f (x)) = x for all calculated values of x in f (x).

The inverse function of f is denoted by f−1, i.e. f−1( f (x)) = x.
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Example 10.3. What is the inverse function, f−1, of f if f (x) = 5+4x.

The simplest approach is to write y = f (x) and solve for x:
With

f (x) = 5+4x

we write
y = 5+4x

which we can now rewrite as
y−5 = 4x

and this implies
y−5

4
= x

And there we have it, very simple:

f−1( f (x)) =
y−5

4

10.3 The base 10 logarithm

When x is a positive real number in x = 10y, y is referred to as the base 10 logarithm of
x and is written as:

y = log10(x)

or
y = log(x)

10.3.1 Details

If log(x) = a and log(y) = b, then x = 10a and y = 10b, and

x · y = 10a ·10b = 10a+b

so that
log(xy) = a+b

10.3.2 Examples

Example 10.4.

log(100) = 2

log(1000) = 3
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Example 10.5. If
log(2)≈ 0.3

then
10y = 2

Note 10.2. Note that
210 = 1024 ≈ 1000 = 103

therefore
2 ≈ 103/10

so
log(2)≈ 0.3

10.4 The natural logarithm

A logarithm with e as a base is referred to as the
natural logarithm and is denoted as ln :

y = ln(x)

if
x = ey = exp(y)

Note that ln is the inverse of exp.

y = ln(x)

10 x

The
curve depicts the fuction y = ln(x) and shows that
ln is the inverse of exp. Note that ln(1) = 0 and
when y = 0 then e0 = 1.

10.5 Properties of logarithm(s)

Logarithms transform multiplicative models into additive models, i.e.

ln(a ·b) = lna+ lnb

10.5.1 Details

This implies that any statistical model, which is multiplicative becomes additive on a log
scale, e.g.

y = a ·wb · xc

lny = (lna)+ ln(wb)+ ln(xc)

Next, note that
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ln(x2) = ln(x · x)
= lnx+ lnx

= 2 · lnx

and similarly ln(xn) = n · lnx for any integer n.
In general ln(xc) = c · lnx for any real number c (for x>0).
Thus the multiplicative model (from above)

y = a ·wb · xc

becomes
y = (lna)+b · lnw+ c · lnx

which is a linear model with parameters (lna), b and c.
In addition, the log-transform is often variance-stabilizing.

10.6 The exponential function and the logarithm

The exponential function and the logarithms are inverses of each other

x = ey ⇔ y = lnx

10.6.1 Details

Note 10.3. Note the properties:

ln(x · y) = ln(x)+ ln(y)

and
ea · eb = ea+b

10.6.2 Examples

Example 10.6. Solve the equation

10e1/3x +3 = 24

for x.
First, get the 3 out of the way.

10e1/3x = 21

Then the 10.

e1/3x = 2.1

Next, we can take the natural log of 2.1. Since ln is an inverse function of e this would
result in

1
3

x = ln(2.1)
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This yields
x = ln(2.1) ·3

which is
≈ 2.23
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11 Continuity and limits

11.1 The concept of continuity

A function is continuous if it has no jumps. Thus,
small changes in each x0, the input, correspond to
small changes in the output, f (x0).
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above figure is an example of linear growth. Thom-
as Robert Malthus (1766-1834) warned about the
dangers of uninhibited population growth.

11.1.1 Details

A function is said to be discontinuous if it has jumps. The function is continuous if it has
no jumps. Thus, for a continuous function, small changes in each x0, the input, correspond
to small changes in the output, f (x0).

Note 11.1. Note that polynomials are continuous as are logarithms (for positive numbers).

11.2 Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete
random variable is discontinuous.

x

y

11.2.1 Details

Definition 11.1. If X is a random variable with a discrete probability distribution and the
probability mass function of

p(x) = P[X = x]

then the cumulative distribution function, defined by

F(X) = P[X ≤ x]

is discontinuous, i.e. it jumps at points in which a positive probability occurs.
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Note 11.2. When drawing discontinuous functions it is common practice to use a filled
circle at (x, f (x)) to clarify what the function value is at a point x of discontinuity.

11.2.2 Examples

Example 11.1. If a coin is tossed 3 independent times and X denotes the number of
heads, then X can only take on the values 0, 1, 2 and 3. The probability of landing
exactly x heads, P(X = x), is p(x) =

(
n
x

)
pn(1− p)n−x. The probabilities are

x | p(x) | F(x)

----------------

0 | 1/8 | 1/8

1 | 3/8 | 4/8

2 | 3/8 | 7/8

3 | 1/8 | 1

The cumulative distribution function, F(x) = P[X ≤ x] = ∑t≤x p(t) has jumps and is
therefore discontinuous.

Note 11.3. Notice on the above figure how the circles are filled in, the solid circles indica-
te where the function value is.

11.3 Notes on discontinuous function

A function is discontinuous for values or ranges of
the variable that do not vary continuously as the
variable increases. In other words, breaks or jumps.
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f (x) = 1
x

, where x 6= 0

11.3.1 Details

A function can be discontinuous in a number of different ways. Most commonly, it may
jump at certain points or increase without bound in certain places.

Consider the function f , defined by f (x) = 1/x when x 6= 0. Naturally, 1/x is not defined
for x = 0. This function increases towards +∞ as x goes to zero from the right but decreases
to −∞ as x goes to zero from the left. Since the function does not have the same limit from
the right and the left, it can not be made continuous at x = 0 even if one tries to define f (0)
as some number.
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11.4 Continuity of polynomials

All polynomials, p(x) = a0+a1x+a2x2+ . . .+anxn,
are continuous.
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11.4.1 Details

It is easy to show that simple polynomials such as p(x) = x, p(x) = a+bx, p(x) = ax2 +
bx+ c are continuous functions.

It is generally true that a polynomial of the form

p(x) = a0 +a1x+a2x2 + . . .+anxn

is a continuous function.

11.5 Simple Limits

A "limit"is used to describe the value that a function
or sequence "approaches"as the input or index app-
roaches some value. Limits are used to define cont-
inuity, derivatives and integrals.
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Example of Limit

X
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f (x) = xx, for x > 0

11.5.1 Details

Definition 11.2. A limit describes the value that a function or sequence approaches as
the input or index approaches some value.

Limits are essential to calculus (and mathematical analysis in general) and are used to
define continuity, derivatives and integrals.

Consider a function and a point x0. If f (x) gets steadily closer to some number c as x gets
closer to a number x0, then c is called the limit of f (x) as x goes to x0 and is written as:

c = lim
x→x0

f (x)

If c = f (x0) then f is continuous at x0.
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11.5.2 Examples

Example 11.2. A simple example of limits:
Evaluate the limit of f (x) = x2−16

x−4 when x → 4, or

lim
x→4

x2 −16
x−4

.

Notice that in principle we can not simply stick in the value x = 4 since we would then
get 0/0 which is not defined. However we can look at the numerator and try to factor it.
This gives us:

x2 −16
x−4

=
(x−4)(x+4)

x−4
= x+4

and the result has the obvious limit of 4+4 = 8 as x → 4.

Example 11.3. Consider the function

g(x) =
1
x

where x is a positive real number. As x increases, g(x) decreases, approaching 0 but never
getting there since 1

x
= 0 has no solution. One can therefore say, “The limit of g(x), as x

approaches infinity, is 0,” and write

lim
x→∞

g(x) = 0.

11.6 More on limits

Limits impose a certain range of values that may be
applied to the function.
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The
function f (x) = 1

1+e−x .

11.6.1 Examples

Example 11.4. The Beverton-Holt stock recruitment curve is given by:

R =
αS

1+ S
K
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where α,K > 0 are constants and S = biomass and R= recruitment.

The behavior of this curve as S increases S → ∞ is

lim
S→∞

αS

1+ S
K

= αK.

This is seen by rewriting the formula as follows:

lim
S→∞

αS

1+ S
K

= lim
S→∞

α
1
S
+ 1

K

= αK.

Example 11.5. A popular model for proportions is:

f (x) =
1

1+ e−x

As x increases, e−x decreases which implies that the term 1+ e−x decreases and hence
1

1+e−x increases, from which it follows that f is an increasing function.

Notice that f (0) = 1
2 and further,

lim
x→∞

f (x) = 1.

This is seen from considering the components:
Since e−x = 1

ex and the exponential function goes to infinity as x → ∞, e−x goes to 0 and
hence f (x) goes to 1.

Through a similar analysis one finds that

lim
x→−∞

f (x) = 0,

since, as x → ∞, first −x → ∞ and second e−x → ∞.

Example 11.6. Evaluate the limit of

f (x) =

√
x+4−2

x

as
x → 0

lim
x→0

√
x+4−2

x

Since the square root is present we cannot just direct substitute the 0 as x. This will give
us 0

0 , which is an indeterminate form. We must perform some algebra first. The way to
get rid of the radical is to multiply the numerator by the conjugate.
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√
x+4−2

x
·
√

x+4+2√
x+4+2

This gives us
(
√

x+4)2 +2(
√

x+4)−2(
√

x+4)−4

x(
√

x+4+2)

The numerator reduces to x, and the xs will cancel out leaving us with

1√
x+4+2

At this point we can direct substitute 0 for x, which will give us

1√
0+4+2

Therefore,

lim
x→0

√
x+4−2

x
=

1
4

11.7 One-sided limits

f (x) may tend towards different numbers depending
on whether x → x0:
from the right (x → x0+)
or from the left (x → x0−).

x

y

11.7.1 Details

Sometimes a function is such that f (x) tends to different numbers depending on whether
x → x0 from the right (x → x0+) or from the left (x → x0−).

If
lim

x→x0+
f (x) = f (x0)

then we say that f is continuous from the right at x0.
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12 Sequences and series

12.1 Sequences

A sequence is a string of indexed numbers a1,a2,a3, . . .. We denote this sequence with
(an)n≥1.

12.1.1 Details

In a sequence the same number can appear several times in different places.

12.1.2 Examples

Example 12.1. (1
n
)n≥1 is the sequence 1, 1

2 ,
1
3 ,

1
4 , . . ..

Example 12.2. (n)n≥1 is the sequence 1,2,3,4,5, . . ..

Example 12.3. (2nn)n≥1 is the sequence 2,8,24,64, . . ..

12.2 Convergent sequences

A sequence an is said to converge to the number b if for every ε > 0 we can find an
N ∈N such that |an−b|< ε for all n ≥ N. We denote this with limn→∞ an = b or an → b,
as n → ∞.

12.2.1 Details

A sequence an is said to converge to the number b if for every ε > 0 we can find an N ∈ N

such that |an−b|< ε for all n ≥N. We denote this with limn→∞ an = b or an → b, as n→∞.
If x is a number then,
(1+ x

n
)n → ex as n → ∞

12.2.2 Examples

Example 12.4. The sequence (1
n
)n≥∞ converges to 0 as n → ∞

Example 12.5. If x is a number then,
(1+ x

n
)n → ex as n → ∞
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12.3 Infinite sums (series)

We are interested in, whether infinite sums of sequences can be defined.

12.3.1 Details

Consider a sequence of numbers, (an)n→∞.
Now define another sequence (sn)n→∞, where

sn =
n

∑
k=1

ak.

If (sn)n→∞ is convergent to S = limn→∞ sn, then we write

S =
∞

∑
n=1

an.

12.3.2 Examples

Example 12.6. If
ak = xk,k = 0,1, .....

then

sn =
n

∑
k=0

xk = x0 + x1 + ......+ xn

Note also that
xsn = x(x0 + x1 + ......+ xn) = x+ x2 + .....+ xn+1

We have
sn = 1+ x+ x2 + ....+ xn

xsn = x+ x2 + .....+ xn+ xn+1

sn˘xsn = 1− xn+1

i.e.
sn(1− x) = 1− xn+1

and we have

sn =
1− xn+1

1− x

if x 6= 1. If 0 < x < 1 then xn+1 → 0 as n → ∞ and we obtain sn → 1
1−x

so ∑∞
n=0 xn = 1

1−x
.
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12.4 The exponential function and the Poisson distribution

The exponential function can be written as a series (infinite sum):

ex =
∞

∑
n=0

xn

n!
.

The Poisson distribution is defined by the probabilities

p(x) = e−λ λx

x!
for x = 0, 1, 2, . . .

12.4.1 Details

The exponential function can be written as a series (infinite sum):

ex =
∞

∑
n=0

xn

n!
.

Knowing this we can see why the Poisson probabilities

p(x) = e−λ λx

x!
add to one:

∞

∑
x=0

p(x) =
∞

∑
x=0

e−λ λx

x!
= e−λ

∞

∑
x=0

λx

x!
= e−λeλ = 1.

12.5 Relation to expected values

The expected value for the Poisson is given by

∞

∑
x=0

xp(x) =
∞

∑
x=0

xe−λ λx

x!

= λ

12.5.1 Details

The expected value for the Poisson is given by

∞

∑
x=0

xp(x) =
∞

∑
x=0

xe−λ λx

x!

= e−λ
∞

∑
x=1

xλx

x!

= e−λ
∞

∑
x=1

λx

(x−1)!

= e−λλ
∞

∑
x=1

λ(x−1)

(x−1)!

= e−λλ
∞

∑
x=0

λx

x!

= e−λλeλ

= λ
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13 Slopes of lines and curves

13.1 The slope of a line

Linear functions produce straight-line graphs. In
general, a straight line follows the following equati-
on:

y = a+bx,

where a and b are fixed numbers.

The line on the graph is the set of points:

{(x,y) : x,y ∈ R,y = a+bx} . 2 4 6 8 10

5
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0
1

5
2

0

x

y

13.1.1 Details

The slope of a straight line represents the change in the y coordinate corresponding to a
unit change in the x coordinate.

13.2 Segment slopes

Let’s assume we have a more general function
y = f (x).

To find the slope of a line segment, consider 2 x-
coordinates, x0 and x1, and look at the slope between
(x0, f (x0)) and (x1, f (x1)).
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13.2.1 Details

Consider two points, (x0,y0) and (x1,y1). The slope of the straight line that goes through
these points is

y1 − y0

x1 − x0
.

Thus, the slope of a line segment passing throught the points (x0, f (x0)) and (x1, f (x1)),
for some function, f , is

f (x1)− f (x0)

x1 − x0

If we let x1 = x0 +h then the slope of the segment is

f (x0 +h)− f (x0)

h
.
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13.3 The slope of y = x2

Consider the task of computing the slope of the
function y = x2 at a given point.
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13.3.1 Examples

Consider the function y = f (x) = x2.

In order to find the slope at a given point (x0), we look at

y =
f (x0 +h)− f (x0)

h

for small values of h.

For this particular function, f (x) = x2, and hence

f (x0 +h) = (x0 +h)2 = x2 +2hx0 +h2.

The slope of a line segment is therefore given by

f (x0 +h)− f (x0)

h
=

2hx0 +h2

h
= 2x0 +h.

As we make h steadily smaller, the segment slope, 2x0 + h, tends towards 2x0. It follows
that the slope, y′, of the curve at a general point x is given by y′ = 2x.

13.4 The tangent to a curve

A tangent to a curve is a line that intersects the curve
at exactly one point. The slope of a tangent for the
function y = f (x) at the point (x0, f (x0)) is

lim
h→0

f (x0 +h)− f (x0)

h
.
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13.4.1 Details

To find the slope of the tangent to a curve at a point, we look at the slope of a line segment
between the points (x0, f (x0)) and (x0 +h, f (x0 +h)), which is

f (x0 +h)− f (x0)

h
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and then we take h to be closer and closer to 0. Thus the slope is

lim
h→0

f (x0 +h)− f (x0)

h

when this limit exists.

13.4.2 Examples

Example 13.1. We wish to find tangent line for the function f (x) = x2 at the point (1,1).
First we need to find the slope of this tangent, it is given as

lim
h→0

(1+h)2 −12

h
= lim

h→0

2h+h2

h
= lim

h→0
(2+h) = 2.

Then, since we know the tangent goes through the point (1,1) the line is y = 2x−1.

13.5 The slope of a general curve
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13.5.1 Details

Imagine a nonlinear function whose graph is a curve described by the equation,
y = f (x).

Here we want to find the slope of a line tangent to the curve at a specific point (x0).

The slope of the line segment is given by the equation f (x0+h)− f (x0)
h

.

Reducing h towards zero, gives the slope of this curve if it exists.
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14 Derivatives

14.1 The derivative as a limit

The derivative of the function f at the point x is defined as

lim
h→0

f (x+h)− f (x)

h

if this limit exists.

14.1.1 Details

Definition 14.1. The derivative of the function f at the point x is defined as

lim
h→0

f (x+h)− f (x)

h

if this limit exists.

When we write y = f (x), we commonly use the notation dy
dx

or f ′(x) for this limit.

14.2 The derivative of f (x) = a+bx

If f (x) = a+bx then f (x+h) = a+b(x+h) = a+
bx+bh and thus

lim
h→0

f (x+h)− f (x)

h
= lim

h→0

bh

h
= b
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f(x)=3+2x

14.2.1 Details

If f (x) = a+bx then f (x+h) = a+b(x+h) = a+bx+bh and thus

lim
h→0

f (x+h)− f (x)

h
= lim

h→0

bh

h
= b.

Thus f ′(x) = b.

14.3 The derivative of f (x) = xn

If f (x) = xn, then f ′(x) = nxn−1.
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14.3.1 Details

Let f (x) = xn, where n is a positive integer. To calculate f ′ we use the binomial theorem in
the third step:

f (x+h)− f (x)

h
=

(x+h)n − xn

h

=
∑

n−1
q=0

(
n
q

)
xqhn−q

h

=
n−1

∑
q=0

Ç

n

q

å

xqhn−q−1 →
Ç

n

n−1

å

xn−1 = nxn−1

Thus, we obtain f ′(x) = nxn−1.

14.4 The derivative of ln and exp

If
f (x) = ex

then
f ′(x) = ex

If
g(x) = ln(x)

then

g′(x) =
1
x

14.4.1 Details

The derivatives of the exponential function is the exponential function itself i.e.
if

f (x) = ex

then
f ′(x) = ex

The derivatives of the natural logarithm, ln(x), is 1
x
, i.e. if

g(x) = ln(x)

then

g′(x) =
1
x

14.5 The derivative of a sum and linear combination

If f and g are functions then the derivative of f +g is given by f ′+g′.

14.5.1 Details

Similarly, the derivative of a linear combination is the linear combination of the derivatives.
If f and g are functions and k(x) = a f (x)+bg(x) then k′(x) = a f ′(x)+bg′(x).

80



14.5.2 Examples

Example 14.1. If f (x) = 2+3x and g(x)+ x3

then we know that
f ′(x) = 3, g(x) = 3x2 and if we write

h(x) = f (x)+g(x) = 2+3x+ x3

then
h′(x) = 3+3x2

14.6 The derivative of a polynomial

The derivative of a polynomial is the sum of the derivatives of the terms of the po-
lynomial.

14.6.1 Details

If
p(x) = a0 +a1x+ ...+anxn

then
p′(x) = a1 +2a2x+3a3x2 +4a4x3 + ...+nanx(n−1)

14.6.2 Examples

Example 14.2. If
p(x) = 2x4 + x3

then
p′(x) = 2dx4

dx
+ dx3

dx
= 2 ·4x3 +3x2 = 8x3 +3x2

14.7 The derivative of a product

If
h(x) = f (x) ·g(x)

then
h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x)

14.7.1 Details

Consider two functions, f and g and their product, h:

h(x) = f (x) ·g(x).

The derivative of the product is given by

h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x).
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14.7.2 Examples

Example 14.3. Suppose the function f is given by

f (x) = xex + x2 lnx.

Then the derivative can be computed step by step as

f (x) =
dx

dx
ex + x

dex

dx
+

dx2

dx
lnx+ x2 d lnx

dx

= 1 · ex + x · ex +2x · lnx+ x2 · 1
x

= ex (1+ x)+2x lnx+ x

14.8 Derivatives of composite functions

If f and g are functions and h = f ◦g so that

h(x) = f (g(x)) then

h′(x) = dh(x)
dx

= f ′(g(x))g′(x)

14.8.1 Examples

Example 14.4. For fixed x consider:

f (p) = ln(px(1− p)n−x)

= ln px + ln(1− p)n−x

= x ln p+(n− x) ln(1− p)

f ′(p) = x
1
p
+

n− x

1− p
(−1)

=
x

p
− n− x

1− p

Example 14.5. f (b) = (y−bx)2 (y,x fixed)
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f ′(b) = 2(y−bx)(−x)

= −2x(y−bx)

= (−2xy)+(2x2)b
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15 Applications of differentiation

15.1 Tracking the sign of the derivative

If f is a function, then the sign of its derivative, f ′, indicates whether f is increasing
( f ′ > 0), decreasing ( f ′ < 0), or zero. f ′ can be zero at points where f has a maximum,
minimum, or a saddle point.

15.1.1 Details

If f is a function, then the sign of its derivative, f ′, indicates whether f is increasing
( f ′ > 0), decreasing ( f ′ < 0), or zero. f ′ can be zero at points where f has a maximum,
minimum, or a saddle point.

If f ′(x)> 0 for x < x0, f ′(x0) = 0 and f ′(x)< 0 for x > x0 then f has a maximum at x0

If f ′(x)< 0 for x < x0, f ′(x0) = 0 and f ′(x)> 0 for x > x0 then f has a minimum at x0

If f ′(x)> 0 for x < x0, f ′(x0) = 0 and f ′(x)> 0 for x < x0 then f has a saddle point at x0

If f ′(x)< 0 for x < x0, f ′(x0) = 0 and f ′(x)< 0 for x < x0 then f has a saddle point at x0

15.1.2 Examples

Example 15.1. If f is a function such that its derivative is given by

f ′(x) = (x−1)(x−2)(x−3)(x−4),

then applying the above criteria for maxima and minima, we see that f has maxima at 1
and 3 and f has minima at 2 and 4.

15.2 Describing extrema using f ′′

x0 with f ′(x0) = 0 corresponds to a maximum if f ′′(x0)< 0
x0 with f ′(x0) = 0 corresponds to a minimum if f ′′(x0)> 0

15.2.1 Details

If f ′(x0) = 0 corresponds to a maximum, then the derivative is decreasing and the second
derivative can not be positive, (i.e. f ′′(x0) ≤ 0). In particular, if the second derivative is
strictly negative, ( f ′′(x0)< 0), then we are assured that the point is indeed a maximum, and
not a saddle point.

If f ′(x0) = 0 corresponds to a minimum, then the derivative is increasing and the second
derivative can not be negative, (i.e. f ′′(x0)≥ 0).

If the second derivative is zero, then the point may be a saddle point, as happens with
f (x) = x3 at x = 0.
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15.3 The likelihood function

If p is the probability mass function (p.m.f.):

p(x) = P[X = x]

then the joint probability of obtaining a sequence of outcomes from independent
sampling is

p(x1) · p(x2) · p(x3) . . . p(xn)

Suppose each probability includes some parameter θ, this is written,

pθ(x1), . . . pθ(xn)

If the experiment gives x1,x2 . . . ,xn we can write the probability as a function of the
parameters:

Lx(θ) = pθ(x1), . . . pθ(xn).

This is the likelihood function.

15.3.1 Details

Definition 15.1. Recall that the probability mass function (p.m.f) is a function giving
the probability of outcomes of an experiment.

We typically denote the p.m.f. by p so p(x) gives the probability of a given outcome, x, of
an experiment. The p.m.f. commonly depends on some parameter. We often write,

p(x) = P[X = x].

If we take a sample of independent measurements, from p, then the joint probability of a
given set of numbers is,

p(x1) · p(x2) · p(x3) . . . p(xn)

Suppose each probability includes the same parameter θ, then this is typically written,

pθ(x1), . . . pθ(xn)

Now consider the set of outcomes x1,x2 . . . ,xn from the experiment. We can now take the
probability of this outcome as a function of the parameters.

Definition 15.2. Lx(θ) = pθ(x1), . . . pθ(xn)
This is the likelihood function and we often seek to maximize it to estimate the unknown
parameters.
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15.3.2 Examples

Example 15.2. Suppose we toss a biased coin n independent times and obtain x heads,
we know the probability of obtaining x heads is,

Ç

n

x

å

px(1− p)n−x

The parameter of interest is p and the likelihood function is,

L(p) =

Ç

n

x

å

px(1− p)n−x

If p is unknown we sometimes wish to maximize this function with respect to p in order
to estimate the true probability p.

15.4 Plotting the likelihood

missing slide – want to give a numeric example and plot L

15.4.1 Examples

missing example – want to give a numeric example and plot L

15.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.f. pθ, then the value θ̂ which gives the maximum
of L:

L(θ̂) = max
θ

(Lθ)

is the maximum likelihood estimator (MLE) of θ

15.5.1 Details

Definition 15.3. If L is a likelihood function for a p.m.f. pθ, then the value θ̂ which gives
the maximum of L:

L(θ̂) = max
θ

(Lθ)

is the maximum likelihood estimator of θ

15.5.2 Examples

Example 15.3. If x is the number of heads from n independent tosses of a coin, the
likelihood function is:

Lx(p) =

Ç

n

x

å

px(1− p)n−x
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Maximizing this is equivalent to maximizing the logarithm of the likelihood, since loga-
rithmic functions are increasing. The log-likelihood can be written as:

ln(L(p)) = ln

Ç

n

x

å

+ x ln(p)+(n− x) ln(1− p).

To find possible maxima , we need to differentiate this formula and set the derivative to
zero

0 =
dl(p)

dp
= 0+

x

p
+

n− x

1− p
(−1)

0 = p(1− p)
(x)

p
− p(1− p)

n− x

1− p

0 = (1− p)x− p(n− x)

0 = x− px− pn+ px = x− pn

So,

0 = x− pn

p =
x

n

is the extreme and so we can write

p̂ =
x

n

for the MLE

15.6 Least squares estimation

Least squares: Estimate the parameters θ by minimizing

n

∑
i=1

(yi −gi(θ))
2

15.6.1 Details

Suppose we have a model linking data to parameters. In general we are predicting yi as gi

(θ).
In this case it makes sense to estimate parameters θ by minimizing

n

∑
i=1

(yi −gi(θ))
2.

15.6.2 Examples
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Example 15.4. One may predict numbers, xi, as a mean, µ, plus error. Consider the
simple model xi = µ+ εi, where µ is an unknown parameter (constant) and εi is the error
in measurement when obtaining the i’th observations, xi, i = 1, . . . ,n.

A natural method to estimate the parameter is to minimize the squared deviations

min
µ

n

∑
i=1

(x−µ)2 .

It is not hard to see that the µ̂ that minimizes this is the mean:

µ̂ = x̄.

Example 15.5. One also commonly predicts data y1, · · · ,yn with values on a straight
line, i.e. with α+βxi, where x1, . . . ,xn are fixed numbers.

This leads to the regression problem of finding parameter values for α̂ and β̂ which gives
the best fitting straight line in relation to least squares:

min
α,β

∑(yi − (α+βxi))
2

Example 15.6. As a general exercise in finding the extreme of a function, let’s look at
the function f (θ) = ∑n

i=1(xiθ− 3)2 where xi are some constants. We wish to find the θ
that minimizes this sum. We simply differentiate θ to obtain f ′(θ) = ∑n

i=1 2(xiθ−3)x1 =
2∑n

i=1 x2
i θ−2∑n

i=1 3xi. Thus,

f ′(θ) = 2θ
n

∑
i=1

x2
i −2

n

∑
i=1

3xi = 0

⇔ θ =
∑n

i=1 3xi

∑n
i=1 x2

i

.
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16 Integrals and probability density functions

16.1 Area under a curve

The area under a curve between x=a and x=b (for a
positive function) is called the integral of the functi-
on.

x

y

a b

f(x)=c

area=c*(b−a)

x

y

a

a f(x)=x

area=1/2 a
2

x

y

a b

f(x)=x

area=1/2 b
2

−1/2 a
2

Example 1, 2 and 3

16.1.1 Details

Definition 16.1. The area under a curve between x=a and x=b (for a positive function)
is called the integral of the function and is denoted:

∫ b
a f (x)dx when it exists.

16.2 The antiderivative

Given a function f , if there is another function F such that F ′ = f , we say that F is the
antiderivative of f . For a function f the antiderivative is denoted by

∫
f dx.

Note that if F is one antiderivative of f and C is a constant, then G = F +C is also an
antiderivative. It is therefore customary to always include the constant, e.g.

∫
xdx =

1
2x2 +C.

16.2.1 Examples

Example 16.1. The antiderivative of x to a power raises the power.
∫

xndx = 1
n+1xn+1 +

C.

Example 16.2.
∫

exdx = ex +C.

Example 16.3.
∫ 1

x
dx = ln(x)+C.
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Example 16.4.
∫

2xex2
dx = ex2

+C.

16.3 The fundamental theorem of calculus

If f is a continuous function, and F ′(x) = f (x) for x ∈ [a,b], then
∫ b

a f (x)dx = F(b)−
F(a)

16.3.1 Detail

It is not too hard to see that the area under the graph of a positive function f on the interval
[a,b] must be equal to the difference of the values of its antiderivative at a and b. This also
holds for functions which take on negative values and is formally stated below.

Definition 16.2. Fundamental theorem of calculus: If F is the antiderivative of the
continuous function f , i.e. F ′ = f for x ∈ [a,b], then

∫ b
a f (x)dx = F(b)−F(a).

This difference is often written as
∫ b

a f dx or [F(x)]ba.

16.3.2 Examples

Example 16.5. The area under the graph of xn between 0 and 3 is
∫ 3

0 xndx= [ 1
n+1xn+1]30 =

1
n+13n+1 − 1

n+10n+1 = 3n+1

n+1

Example 16.6. The area under the graph of ex between 3 and 4 is
∫ 4

3 exdx = [ex]43 =
e4 − e3

Example 16.7. The area under the graph of 1
x

between 1 and a is
∫ a

1
1
x
dx = [ln(x)]a1 =

ln(a)− ln(1) = ln(a).

90



16.4 Density functions

The probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.).

x

f(
x
)

1

1x

16.4.1 Details

Definition 16.3. If X is a random variable such that

P(a ≤ X ≤ b) =

b∫

a

f (x)dx,

for some function f which satisfies f (x)≥ 0 for all x and

∞∫

−∞

f (x)dx = 1

then f is said to be a probability density function (p.d.f.) for X .

Definition 16.4. The function

F(x) =

x∫

−∞

f (t)dt

is the cumulative distribution function (c.d.f.).

16.4.2 Examples

Example 16.8. Consider a random variable X from the uniform distribution, denoted by
X ∼U(0,1). This distribution has density

f (x) =

ß

1 if 0 ≤ x ≤ 1
0 e.w.

The cumulative distribution function is given by

P[X ≤ x] =

x∫

−∞

f (t)dt =







0 if x < 0
x if 0 ≤ x ≤ 1
1
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Example 16.9. Suppose X ∼ P(λ), where X may denote the number of events per unit
time. The p.m.f. of X is described by p(x)=P[X = x] = e−λ λx

x! for x= 0,1,2, .... Consider
now the waiting time, T, between events, or simply until the first event. Consider the
event T > t for some number t>0. If X ∼ p(λ) denotes the number of events per unit
time, then let Xt denote the number of events during the time period for 0 through t. Then
it is natural to assume
Xt ∼ P(λt) and it follows that T > t if and only if Xt = 0 and we obtain P[T > t] = P[Xt =
0] = e−λt . It follows that the c.d.f. of T is FT (t) = P[T ≤ t] = 1−P[T > t] = 1−e−λt for
t > 0.

The p.d.f. of T is therefore fT (t) = F ′
T (t) =

d
dt

FT (t) =
d
dt
(1− e−λt = 0− e−λt ∗ (−λ) =

λe−λt for t ≥ 0 and fT (t) = 0 for t = 0.

The resulting density

f (t) =

ß

λe−λt for t ≥ 0
0 for t < 0

describes the exponential distribution.
This distribution has the expected value

E[T ] =

∞∫

−∞

t f (t)dt =

∞∫

0

tλe−λtdt.

the stuff below is all messed up...
We set u = λt and du = λdt to obtain

∫
ue−udu =

1
λ

∞∫

0

ue−udu =
1
λ
=

∞∫

0

1 · e−udu

=
[
−ue−u

]∞

0

=

ï

1
λ
(−e−u)

ò∞

0
−0 =

1
λ
.

16.5 Probabilities in R: The normal distribution

R has functions to compute values of probability density functions (p.d.f.) and cumulati-
ve distribution functions (c.m.d.) for most common distributions.

16.5.1 Details

The p.d.f. for the normal distribution is

p(t) =
1√
2π

e−
t2
2

The c.d.f. for the normal distribution is
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Φ(x) =

x∫

−∞

1√
2π

e−
t2
2 dt

16.5.2 Examples

Example 16.10. dnorm() gives the value of the normal p.d.f.

Example 16.11. pnorm() gives the value of the normal c.d.f.

16.6 Some rules of integration

16.6.1 Examples

Example 16.12. Using integration by parts we obtain

∫
ln(x)xdx =

1
2

x2 ln(x)−
∫

1
2

x2 · 1
x

dx =
1
2

x2 ln(x)−
∫

1
2

xdx =
1
2

x2 ln(x)− 1
4

x2.

Example 16.13. Consider
∫ 2

1 2xex2
dx. By setting x = g(t) =

√
t we obtain

∫ 2

1
2xex2

dx =

∫ 4

1
2
√

tet 1

2
√

t
dt =

∫ 4

1
etdt = e4 − e.

16.6.2 Handout

The two most common "tricks"applied in integration are a) integration by parts and b) in-
tegration by substitution.

a) Integration by parts

( f g)′ = f ′g+ f g′

by integrating both sides of the equation we obtain:

f g =

∫
f ′gdx+

∫
f g′dx ⇔

∫
f g′dx = f g−

∫
f ′gdx
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b) Integration by substitution

Consider the definite integral
∫ b

a f (x)dx and let g be a one-to-one differential function for
the interval (c,d) to (a,b). Then

∫ b

a
f (x)dx =

∫ d

c
f (g(y))g′(y)dy

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
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17 Principles of programming

17.1 Modularity

Modularity involves designing a system that is divided into a set of functional units
(named modules) that can be composed into a larger application.

Any programming project should be split into logical module pieces of code which are
combined into a complete program.

17.1.1 Details

Typically input, initialization, analysis, and output commands are grouped into separate
parts.

17.1.2 Examples

Example 17.1. Input

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/

set115.dat", header=T)


ols<- 
("le", "osl")

Analysis

Mn<-mean(dat[, 
ols[1℄℄)

Output

print (Mn)

17.2 Modularity and functions

In many cases groups of commands can be collected together into a function.

17.2.1 Details

Typically a project has several such functions.

17.2.2 Examples

Example 17.2. Suppose you want to plot the weight vs. length for several datasets in

http://hi.is/~gunnar/kennsla/alsm/data

A function can then be set up with the file number as an argument:

plotwtle<-fun
tion (fnum){

fname<-paste(

"http://hi.is/~gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")


at("The URL B", fname,"\n")
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dat<-read.table(fname,header=T)

ttl<-paste("Data from file number", fnum)

plot(dat$le,dat$osl,main=ttl)

}

Now call this with

plotwtle(105)

17.3 Modularity and files

It is advisable to split larger projects into several manageable files.

17.3.1 Details

Once a project reaches more than five lines of code, it should be stored in one or more
separate files. In order to combine these files a single “source” command file can be crea-
ted.

Typically function definitions are stored in separate files, so one may have several separate
files like:

"input.r"
"function.r"
"analysis.r"

ǫutput.r"

While developing the analysis, the data would only be read once with

source(“input.r”)

The goal of this practice is to end up with a set of files which are completely self-contained,
so one can start with an empty R session and give only the commands like:

source (“input.r”)
source (“functions.r”)
source (“analysis.r”)

Furthermore, this ensures repeatability.

17.3.2 Examples

Example 17.3. For a given project “input”, “functions” “analysis” and “output” files can
be created as below.
input.r

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/

set115.dat", header=T)
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functions.r

plotwtle<-fun
tion(fnum){

fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",

fnum,".dat",sep="")


at("The URL is",fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("My data set was",fnum)

plot(dat$le,dat$osl,main=ttl,xlab="Length(
m)",ylab="Live weight (

g)")

}

output.r

sour
e("fun
tions.r")

for(i in 101:150){

fnam<-paste("plot",i,".pdf",sep="")

pdf(fnam)

plotwtle(i)

dev.off()

}

These files can be executed with source commands as below:

source (“input.r”)

source (“functions.r”)

source (“output.r”)

17.4 Structuring an R project

17.4.1 Details

We already covered how to split code into different functions and linking them together
with the help of one executable file that is "sourcing"the others. However, when you und-
ertake a larger project, there will be a lot of different data and files and it is very advisable
to have a consistent structure throughout the project.

A common project layout is to allocate all project files into a folder, something along the
lines of:

/proje
t

/data

/sr


/do


/figs (or /out)

Such a structure is quite normal in programming languages such as C, Matlab, and R.

Purpose of the different folders:

/data: Contains all important data to the project, which you will use. This folder should be
read-only! No function is allowed to write anything into this folder.
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/src: (abbreviation for "source(-code)") Here you will store all the functions that you
programmed. You can decide to store the executable function here as well or, alternati-
vely, have that one in the root project folder.

/doc: Contains further documentation material about your project. This could be, for
example, readme files for other people who use your functions, or the paper you wrote
about the project, or the latex files while you’re writing.

/figs or /out: Here your functions are allowed to write and can produce the different results,
like graphs, figures or anything else.

Finally, a large programming project should at some stage be split into packages and stored
on dedicated servers such as github or CRAN.

17.4.2 Examples

Example 17.4. Consider first the issue of maintaining the code itself. It is common for
R beginners to only work interactively within the command-line interface. However, it
is essential that the code be kept in one or more files.

For large projects these will be several different files, each with its own purpose. To run
a complete analysis one would typically set up one file to run all the tasks by reading in
data through analyses to outputs.

For example, a file named "run.r"could contain the sequence of commands:

source("setup.r")

source("analysis.r")

source("plot.r")

17.5 Loops, for

If a piece of code is to be run repeatedly, the for-loop is normally used.

17.5.1 Details

If a piece of code is to be run repeatedly, the for-loop is normally used. The R code form
is:

for(index in sequen
e){


ommands

}

17.5.2 Examples
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Example 17.5. To add numbers we can use

tot <- 100

for(i in 1:100){

tot <- tot + i

}


at ("the sum is ", tot, "\n")

Example 17.6. Define the plot function

plotwtle <- AS BEFORE

To plot several of these we can use a sequence:

plotwtle(101)

plotwtle(102)

.

.

.

or a loop

for (i in 101:150){

fname<- paste("plot", i, ".pdf", sep="")

pdf(fname)

plotwtle(i)

dev.off()

}

17.6 The if and ifelse commands

The "if"statement is used to conditionally execute statements.
The "ifelse"statement conditionally replaces elements of a structure.

17.6.1 Examples

Example 17.7. If we want to compute xx for x-values in the range 0 through 5, we can
use

xlist<-seq(0,5,0.01)

y<-NULL

for(x in xlist){

if(x==0){

y<-
(y,1)
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}else{

y<-
(y,x**x)

}

}

Example 17.8. x<-seq(0,5,0.01)

y<-ifelse(x==0,1,x^x)

Example 17.9. dat<-read.table ("file")

dat<-ifelse (dat==0,0.01,dat)

Example 17.10. x<-ifelse (is.na(x),0,x)

17.7 Indenting

Code should be properly indented!

17.7.1 Details

fFunctions, for-loops, and if-statements should always be indented.

17.8 Comments

All code should contain informative comments. Comments are separated out from code
using the pound symbol (#).

17.8.1 Examples

Example 17.11. ####################
####SETUP DATA####
####################

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length

100



y<-log(dat$wt) #log-transformation of weight

######################
####THE ANALYSIS####
######################

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
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18 The Central Limit Theorem and related topics

18.1 The Central Limit Theorem

If measurements are obtained independently and
come from a process with finite variance, then the
distribution of their mean tends towards a Gaussian
(normal) distribution as the sample size increases.
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18.1.1 Details

Theorem 18.1 The Central Limit Theorem states that if X1,X2, . . . are independent and
identically distributed random variables with mean µ and (finite) variance σ2, then the
distribution of X̄n := X1+···+Xn

n
tends towards a normal distribution.

It follows that for a large enough sample size n, the distribution random variable X̄n can be
approximated by n(µ,σ2/n).
The standard normal distribution is given by the p.d.f.

ϕ(z) =
1√
2π

e
−z2

2

for z ∈ R.

The standard normal distribution has an expected value of zero,

µ =

∫
zϕ(z)dz = 0

and a variance of
σ2 =

∫
(z−µ)2ϕ(z)dz = 1

If a random variable Z has the standard normal (or Gaussian) distribution, we write Z ∼
n(0,1).
If we define a new random variable, Y , by writing Y = σZ+µ, then Y has an expected value
of µ, a variance of σ2 and a density (p.d.f.) given by the formula:

f (y) =
1√
2πσ

e
−(y−µ)2

2σ2 .

This is general normal (or Gaussian) density, with mean µ and variance σ2.
The Central Limit Theorem states that if you take the mean of several independent random
variables, the distribution of that mean will look more and more like a Gaussian distribution
(if the variance of the original random variables is finite).
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More precisely, the cumulative distribution function of

X̄n−µ

σ/
√

n

converges to Φ, the n(0,1) cumulative distribution function.

18.1.2 Examples

Example 18.1. If we collect measurements on waiting times, these are typically assumed
to come from an exponential distribution with density

f (t) = λe−λt , for t > 0

The Central Limit Theorem states that the mean of several such waiting times will tend
to have a normal distribution.

Example 18.2. We are often interested in computing

w =
x̄−µ0

s√
n

which comes from a t-distribution (see below), if the xi are independent outcomes from
a normal distribution.
However, if n is large and σ2 is finite then w values will look as though they came from a
normal distribution. This is in part a consequence of the Central Limit Theorem, but also
of the fact that s will become close to σ as n increases.

18.2 Properties of the binomial and Poisson distributions

The binomial distribution is really a sum of 0 and 1 values (counts of failures = 0 and
successes =1). So, a simple, single binomial outcome will correspond to coming from a
normal distribution if the count is large enough.

18.2.1 Details

Consider the binomial probabilities:

p(x) =

Ç

n

x

å

px(1− p)n−x

for x = 0,1,2,3, · · · ,n where n is a non-negative integer. Suppose p is a small positive
number, specifically consider a sequence of decreasing p-values, specified with pn =

λ
n

and
consider the behavior of the probability as n → ∞. We obtain:
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Ç

n

x

å

px
n(1− pn)

n−x =
n!

x!(n− x!)

Å

λ

n

ãxÅ

1− λ

n

ãn−x

(5)

=
n(n−1)(n−2) · · ·(n− x+1)

x!

λ
n

x

Ä

1− λ
n

äx

Å

1− λ

n

ãn

(6)

=
n(n−1)(n−2) · · ·(n− x+1)

x!nx

λx

Ä

1− λ
n

äx

Å

1− λ

n

ãn

(7)

(8)

Note 18.1. Notice that n(n−1)(n−2)···(n−x+1)
nx → 1 as n → ∞. Also notice that (1− λ

n
)x → 1

as n → ∞. Also

lim
n→∞

Å

1− λ

n

ã

= e−λ

and it follows that

lim
n→∞

Ç

n

x

å

px
n(1− pn)

n−x =
e−λλx

x!
,x = 0,1,2, · · · ,n

and hence the binomial probabilities may be approximated with the corresponding Poisson.

18.2.2 Examples

Example 18.3. The mean of a binomial (n,p) variable is µ = n · p and the variance is
σ2 = np(1− p).

The R command dbinom(q,n, p) calculates the probability of q successes in n trials
assuming that the probability of a success is p in each trial (binomial distribution), and the
R command pbinom(q,n, p) calculates the probability of obtaining q or fewer successes
in n trials.
The normal approximation of this distribution can be calculated with
pnorm(q,mu,sigma) which becomes pnorm(q,n ∗ p,sqrt(n ∗ p(1 − p)). Three nu-
merical examples (note that pbinom and pnorm give similar values for large n):

pbinom(3,10,0.2)

[1℄ 0.8791261

pnorm(3,10*0.2,sqrt(10*0.2*(1-0.2)))

[1℄ 0.7854023

pbinom(3,20,0.2)

[1℄ 0.4114489

pnorm(3,20*0.2,sqrt(20*0.2*(1-0.2)))

[1℄ 0.2880751

pbinom(30,200,0.2)

[1℄ 0.04302156

pnorm(30,200*0.2,sqrt(200*0.2*(1-0.2)))

[1℄ 0.03854994
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Example 18.4. We are often interested in computing w= x̄−µ

s/
√

n
which has a t-distribution

if the xi are independent outcomes from a normal distribution. If n is large and σ2 is
finite, this will look as if it comes from a normal distribution.

The numerical examples below demonstrate how the t-distribution approaches the normal
distribution.

qnorm(0.7)

[1℄ 0.5244005

#This is the value whi
h gives the 
umulative probability of p=0.7

for a n~(0,1)

qt(0.7,2)

[1℄ 0.6172134

#The value, whi
h gives the 
umulative probability of p=0.7 with n=2

for the t-distribution.

qt(0.7,5)

[1℄ 0.5594296

qt(0.7,10)

[1℄ 0.541528

qt(0.7,20)

[1℄ 0.5328628

qt(0.7,100)

[1℄ 0.5260763

18.3 Monte Carlo simulation

If we know an underlying process we can simulate
data from the process and evaluate the distribution
of any quantity based on such data.

−40 −30 −20 −10 0 10

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

tvec A
simulated set of t-values based on data from an
exponential distribution.

18.3.1 Examples

Example 18.5. Suppose our measurements come from an exponential distribution and
we want to compute

t =
x−µ

s/
√

n
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but we want to know the distribution of those when µ is the true mean.

For instance, n = 5 and µ = 1, we can simulate (repeatedly) x1, . . . ,x5 and compute a
t-value for each. The following R commands can be used for this:

library(MASS)

n<-5

mu<-1

lambda<-1

tve
<-NULL

for(sim in 1:10000){

x<-rexp(n,lambda)

xbar<-mean(x)

s<-sd(x)

t<-(xbar-mu)/(s/sqrt(n))

tve
<-
(tve
,t)

}

#then do...

truehist(tve
) #truehist gives a better histogram

sort(tve
)[9750℄

sort(tve
)[250℄

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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19 Miscellanea

19.1 Simple probabilities in R

R has functions to compute probabilities based on most common distributions.

If X is a random variable with a known distribution, then R can typically compute values
of the cumulative distribution function or:

F(x) = P[X ≤ x]

19.1.1 Examples

Example 19.1. If X ∼ b(n, p) has binomial distribution, i.e.

P(X = x) =

Ç

n

x

å

px(1− p)n−x,

then cumulative probabilities can be computed with pbinom, e.g.

pbinom(5,10,0.5)

gives
P[X ≤ 5] = 0.623

where

X ∼ b(n = 10, p =
1
2
).

This can also be computed by hand. Here we have n = 10, p = 1/2 and the probability
P[X ≤ 5] is obtained by adding up the individual probabilities, P[X = 0] +P[X = 1] +
P[X = 2]+P[X = 3]+P[X = 4]+P[X = 5]

P[X ≤ 5] =
5

∑
x=0

Ç

10
x

å

1
2

x 1
2

10−x

.

This becomes

P[X ≤ 5] =

Ç

10
0

å

1
2

0 1
2

10−0

+

Ç

10
1

å

1
2

1 1
2

10−1

+

Ç

10
1

å

1
2

2 1
2

10−2

+

Ç

10
3

å

1
2

3 1
2

10−3

+

Ç

10
4

å

1
2

4 1
2

10−4

+

Ç

10
5

å

1
2

5 1
2

or

P[X ≤ 5] =

Ç

10
0

å

1
2

10

+

Ç

10
1

å

1
2

10

+

Ç

10
1

å

1
2

10

+

Ç

10
3

å

1
2

10

+

Ç

10
4

å

1
2

10

+

Ç

10
5

å

1
2

10

=
1
2

10

[1+10+45+ ...] .

Furthermore,

pbinom(10,10,0.5)

[1℄ 1

and

pbinom(0,10,0.5)

[1℄ 0.0009765625
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It is sometimes of interest to compute P[X = x] in this case, and this is given by the
dbinom function, e.g.

dbinom(1,10,0.5)

[1℄ 0.009765625

or 10
1024

Example 19.2. Suppose X has a uniform distribution between 0 and 1, i.e. X ∼U(0,1).
Then the puni f function will return probabilities of the form

P[X ≤ x] =
∫ x

−∞
f (t)dt =

∫ x

0
f (t)dt

where f (t) = 1 if 0 ≤ t ≤ 1 and f (t) = 0. For example:

punif(0.75)

[1℄ 0.75

To obtain P[a ≤ X ≤ b], we use puni f twice, e.g.

punif(0.75)-punif(0.25)

[1℄ 0.5

19.2 Computing normal probabilities in R

To compute probabilities X ∼ n(µ,σ2) is usually transformed, since we know that

Z :=
X −µ

σ
∼ (0,1)

The probabilities can then be computed for either X or Z with the pnorm function in R.

19.2.1 Details

Suppose X has a normal distribution with mean µ and variance

X ∼ n(µ,σ2)

then to compute probabilities, X is usually transformed, since we know that

Z =
X −µ

σ
∼ (0,1)

and the probabilities can be computed for either X or Z with the pnorm function.

19.2.2 Examples
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Example 19.3. If Z ∼ n(0,1) then we can e.g. obtain P[Z ≤ 1.96] with

pnorm(1.96)

[1℄ 0.9750021

pnorm(0)

[1℄ 0.5

pnorm(1.96)-pnorm(1.96)

[1℄ 0

pnorm(1.96)-pnorm(-1.96)

[1℄ 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 19.4. If X ∼ n(42,32) then we can compute probabilites either by transforming

P[X ≤ x] = P[
X −µ

σ
≤ x−µ

σ
]

= P[Z ≤ x−µ

σ
]

and calling pnorm with the computed value z = x−µ
σ , or call pnorm with x and specify µ

and σ.

To compute P[X ≤ 48], either set z = (48−42)/3 = 2 and obtain

pnorm(2)

[1℄ 0.9772499

or specify µ and σ

pnorm(42,42,3)

[1℄ 0.5

19.3 Introduction to hypothesis testing

19.3.1 Details

If we have a random sample x1, . . . ,xn from a normal distribution, then we consider them
to be outcomes of independent random variables X1, . . . ,Xn where Xi ∼ n(µ,σ2). Typically,
µ and σ2 are unknown but assume for now that σ2 is known.

Consider the hypothesis:

H0 : µ = µ0 vs. H1 : µ > µ0
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where µ0 is a specified number.

Under the assumption of independence, the sample mean

x =
1
n

n

∑
i=1

xi

is also an observation from a normal distribution, with mean µ but a smaller variance.Specifically,
x is the outcome of

X =
1
n

n

∑
i=1

Xi

and

X ∼ n(µ,
σ2

n
)

so the standard deviation of X is σ√
n
, so the appropriate error measure for x is f racσ

√
n,

when σ is unknown.

If H0 is true, then

z :=
x−µ0

σ/
√

n

is an observation from an n ∼ n(0,1) distribution, i.e. an outcome of

Z =
X −µ0

σ/
√

n

where Z ∼ n(0,1) when H0 is correct. It follows that e.g. P[|Z| > 1.96] = 0.05 and if we
observe |Z|> 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is a quantile of the normal distribution and we can obtain
other quantiles with the pnorm function, e.g. pnorm(0.975) gives 1.96.
Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

110



20 Multivariate probability distributions

20.1 Joint probability distribution

If
X1, . . . ,Xn are discrete random variables with
P[X1 = x1,X2 = x2, . . . ,Xn = xn] = p(x1, . . . ,xn), where x1, . . . ,xn are numbers, then
the function p is the joint probability mass function (p.m.f.) for the random variables
X1, . . . ,Xn.

For continuous random variables Y1, . . . ,Yn, a function f is called the joint probability
density function if,
P[Y ∈ A] =

∫ ∫
. . .

∫
f (y1, . . .yn)dy1dy2 · · ·dyn.

20.1.1 Details

Definition 20.1. If X1, . . . ,Xn are discrete random variables with P[X1 = x1,X2 =
x2, . . . ,Xn = xn] = p(x1, . . . ,xn) where x1 . . .xn are numbers, then the function p is the
joint probability mass function (p.m.f.) for the random variables X1, . . . ,Xn.

Definition 20.2. For continuous random variables Y1, . . . ,Yn, a function f is called the
joint probability density function if,

P[Y ∈ A] =
∫ ∫

. . .
∫

︸ ︷︷ ︸

A

f (y1, . . .yn)dy1dy2 · · ·dyn.

Note 20.1. Note that if X1, . . . ,Xn are independent and identically distributed, each with
p.m.f. p, then p(x1,x2, . . . ,xn) = q(x1)q(x2) . . .q(xn), i.e, P[X1 = x1,X2 = x2, . . . ,Xn = xn] =
P[X1 = x1]P[X2 = x2] . . .P[Xn = xn].

Note 20.2. Note also that if A is a set of possible outcomes (A ⊆ Rn), then we have

P[X ∈ A] = ∑
(x1,...,xn)∈A

p(x1, . . . ,xn).

20.1.2 Examples

Example 20.1. An urn contains blue and red marbles, which are either light or heavy.
Let X denote the color and Y the weight of a marble, chosen at random

X/Y L H TT

B 5 6 11
R 7 2 9

TT 12 8 20
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We have P[X = “b“,Y = ”l“] = 5
20 .

The joint p.m.f. is:

X/Y L H TT

B 5
20

6
20

11
20

R 7
20

2
20

9
20

TT 12
20

8
20 1

20.2 The random sample

A set of random variables X1, . . . ,Xn is a random
sample if they are independent and identically
distributed (i.i.d.).

A set of numbers x1, . . . ,xn are called a random
sample if they can be viewed as an outcome of such
random variables.

x1

f(
x
)

1

1

20.2.1 Details

Samples from populations can be obtained in a number of ways. However, to draw valid
conclusions about populations, the samples need to obtained randomly.

Definition 20.3. In random sampling, each item or element of the population has an
equal and independent chance of being selected.

A set of random variables; X1 . . .Xn is a random sample if they are independent and identically
distributed (i.i.d.).

Definition 20.4. If a set of numbers x1 . . .xn can be viewed as an outcome of random
variables, these are called a random sample.

20.2.2 Examples
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Example 20.2. If X1, . . . ,Xn ∼ U(0,1), i.i.d., i.e. X1 and Xn are independent and each
have a uniform distribution between 0 and 1. Then they have a joint density which is the
product of the densities of X1 and Xn.

Given the data in the above figure and if x1,x2 ∈ R

f (x1,x2) = f1(x1) f2(x2) =

ß

1 if 0 ≤ x1,x2 ≤ 1
0 elsewhere

Example 20.3. Toss two dice independently, and let X1,X2 denote the two (future)
outcomes.

Then

P[X1 = x1,X2 = x2] =

ß 1
36 if 1 ≤ x1,x2 ≤ 6
0 elsewhere

is the joint p.m.f.

20.3 The sum of discrete random variables

20.3.1 Details

Suppose X and Y are discrete random values with a probability mass function p. Let Z =
X +Y . Then

P(Z = z) = ∑
{(x,y):x+y=z}

p(x,y)

20.3.2 Examples

Example 20.4. X ,Y = outcomes,

[,1℄ [,2℄ [,3℄ [,4℄ [,5℄ [,6℄

[1,℄ 2 3 4 5 6 7

[2,℄ 3 4 5 6 7 8

[3,℄ 4 5 6 7 8 9

[4,℄ 5 6 7 8 9 10

[5,℄ 6 7 8 9 10 11

[6,℄ 7 8 9 10 11 12

P[X +Y = 7] =
6

36
=

1
6
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Because there are a total of 36 equally likely outcomes and 7 occurs six times this means
that P[X +Y = 7] = 1

6 .
Also

P[X +Y = 4] =
3
36

=
1

12

20.4 The sum of two continuous random variables

If X and Y are continuous random variables with jo-
int p.d.f. f and Z = X +Y , then we can find the
density of Z by calculating the cumulative distributi-
on function.

x

y

1

1

z1−1

z1−1

2−z2

{(x,y):x+y=1/2} {(x,y):x+y=3/2}

P[X+Y leq 1]=1/2

P[X+Y leq 1/2]=1/8

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

z

20.4.1 Details

If X and Y are c.r.v. with joint p.d.f. f and Z = X +Y , then we can find the density of Z by
first finding the cumulative distribution function

P[Z ≤ z] = P[X +Y ≤ z] =

∫ ∫
{(x,y):x+y≤z}

f (x,y)dxdy.

20.4.2 Examples

Example 20.5. If X and Y ∼ U(0,1), independent and Z = X +Y then

P[Z ≤ z] =







0 for z ≤ 0
z2

2 for 0 < z < 1
1 for z > 2

1− (2−z)2

2 for 1 < z < 2
the density of z becomes

g(z) =







z for 0 < z ≤ 1
2− z for 1 < z ≤ 2

0 for elsewhere

Example 20.6. To approximate the distribution of Z = X +Y where X ,Y ∼U(0,1) i.i.d.,
we can use Monte Carlo simulation. So, generate 10.000 pairs, set them up in a matrix
and compute the sum.
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20.5 Means and variances of linear combinations of independent random
variables

If X and Y are random variables and a,b ∈ R, then

E[aX +bY ] = aE[X ]+bE[Y ].

20.5.1 Details

If X and Y are random variables, then

E[X +Y ] = E[X ]+E[Y ]

i.e. the expected value of the sum is just the sum of the expected values. The same applies
to a finite sum, and more generally

E[
n

∑
i=1

aiXi] =
n

∑
i=1

aiE[Xi]

when Xi, ...,Xn are random variables and a1, ...,an are numbers (if the expectations exist).
If the random variables are independent, then the variance also add

V [X +Y ] =V [X ]+V [Y ]

and

V [
n

∑
i=1

aiXi] =
n

∑
i=1

a2
i V [Xi]

20.5.2 Examples

Example 20.7. X ,Y ∼U(0,1), i.i.d. then

E[X +Y ] = E[X ]+E[Y ] =
∫ 1

0
x ·1dx+

∫ 1

0
x ·1dx = [

1
2

x2]10 +[
1
2

x2]10 = 1.

Example 20.8. Let X ,Y ∼ N(0,1). Then E[X2+Y 2] = 1+1 = 2.
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20.6 Means and variances of linear combinations of measurements

If x1, ....,xn and y1, ....,yn are numbers, and we set

zi = xi + yi

wi = axi

where a>0, then

z =
1
n

n

∑
i=1

zi = x+ y

w = ax

s2
w =

1
n−1

n

∑
i=1

(wi −w)2

=
1

n−1

n

∑
i=1

(axi −ax)2

= a2s2
x

and
sw = asx

20.6.1 Examples

Example 20.9. We set:

a<-3

x<-
(1:5)

y<-
(6:10)

Then:

z<-x+y

w<-a*x

n<-length(x)

Then z is:

(sum(x)+sum(y))/n

[1℄ 11

mean(z)

[1℄ 11

and w becomes:

a*mean(x)

[1℄ 9

mean(w)

[1℄ 9

and s2
w equals:

sum((w-mean(w))^2))/(n-1)

[1℄ 22.5

sum((a*x - a*mean(x))^2)/(n-1)

[1℄ 22.5
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a^2*var(x)

[1℄ 22.5

and sw equals:

a*sd(x)

[1℄ 4.743416

sd(w)

[1℄ 4.743416

20.7 The joint density of independent normal random variables

If Z1,Z2 ∼ n(0,1) are independent then they each have density

φ(x) =
1√
2π

e−
x2
2 ,x ∈ R

and the joint density is the product f (z1,z2) = φ(z1)φ(z2) or

f (z1,z2) =
1

(
√

2π)2
e
−z2

1
2 − z2

2
2 .

20.7.1 Details

If X ∼ n(µ1,σ
2
1) and Y ∼ n(µ2,σ

2
2) are independent, then their densities are

fX(x) =
1√

2πσ1
e

−(x−µ1)
2

2σ2
1

and

fY (y) =
1√

2πσ2
e

−(y−µ2)
2

2σ2
2

and the joint density becomes

1
2πσ1σ2

e
− (x−µ1)

2

2σ2
1

− (y−µ2)
2

2σ2
2

Now, suppose X1, . . . ,Xn ∼ n(µ,σ2) are i.i.d., then

f (x) =
1

(2π)
n
2 σn

e

−
n

∑
i=1

(xi −µ)2

aσ2

is the multivariate normal density in the case of i.i.d. variables.

20.8 More general multivariate probability density functions

20.8.1 Examples
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Example 20.10. Suppose X and Y have the joint density

f (x,y) =

®

2 0 ≤ y ≤ x ≤ 1

0 otherwise

First notice that
∫
R

∫
R f (x,y)dxdy =

∫ 1
x=0

∫ x
y=0 2dydx =

∫ 1
0 2xdx = 1, so f is indeed a

density function.
Now, to find the density of X we first find the c.d.f. of X , first note that for a < 0 we have
P[X ≤ a] = 0 but if a ≥ 0, we obtain

FX(a) = P[X ≤ a] =
∫ a

x0

∫ x

y=0
2dydx = [x2]a0 = a2.

The density of X is therefore

fX(x) =
dF(x)

dx

®

2x 0 ≤ x ≤ 1

0 otherwise
.

20.8.2 Handout

If
f : Rn → R

is such that
P[X ∈ A] =

∫
A . . .

∫
f (x1, . . . ,xn)dx1 · · ·dxn

and f (x)≥ 0 for all x ∈ Rn

then f is the joint density of

X =

Ö

X1
...

Xn

è

If we have the joint density of some multidimensional random variable X = (X1, . . . ,Xn)
given in this manner, then we can find the individual density functions of the Xi’s by in-
tegrating the other variables.
Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
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21 Some distributions related to the normal

21.1 The normal and sums of normals

The sum of independent normally distributed random variables is also normally distri-
buted.

21.1.1 Details

The sum of independent normally distributed random variables is also normally distribu-
ted. More specifically, if X1 ∼ n(µ1,σ

2
1) and X2 ∼ n(µ2,σ

2
2) are independent then X1+X2 ∼

n(µ,σ2) since µ = E [X1 +X2] = µ1 +µ2 and
σ2 =V [X1 +X2] with σ2 = σ2

1 +σ2
2

if X1 and X2 are independent.

Similarly
n

∑
i=1

Xi

is normal if X1, . . . ,Xn are normal and independent.

21.1.2 Examples

Example 21.1. Simulating and plotting a single normal distribution. Y ∼ n(0,1)

library(MASS) # for truehist

par(mf
ol=
(2,2))

y<-rnorm(1000) # generating 1000 n(0,1)

mn<-mean(y)

vr<-var(y)

truehist(y,ymax=0.5) # plot the histogram

xve
<-seq(-4,4,0.01) # generate the x-axis

yve
<-dnorm(xve
) # theoreti
al n(0,1) density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("Simulation and theory n(0,1)\n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

Example 21.2. Sum of two normal distributions.

Y1 ∼ n(2,22)

and
Y2 ∼ n(3,32)

119



y1<-rnorm(10000,2,2) # n(2,2^2)

y2<-rnorm(10000,3,3) # n(3, 3^2)

y<-y1+y2

truehist(y)

xve
<-seq(-10,20,0.01)

# 
he
k

mn<-mean(y)

vr<-var(y)


at("The mean is",mn,"\n")


at("The varian
e is ",vr,"\n")


at("The standard deviation is",sd(y),"\n")

yve
<-dnorm(xve
,mean=5,sd=sqrt(13)) # n() density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("The sum of n(2,2^2) and n(3,3^2)\n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

Example 21.3. Sum of nine normal distributions, all with µ = 42 and σ2 = 22

ymat<-matrix(rnorm(10000*9,42,2),n
ol=9)

y<-apply(ymat,1,mean)

truehist(y)

# 
he
k

mn<-mean(y)

vr<-var(y)


at("The mean is",mn,"\n")


at("The varian
e is ",vr,"\n")


at("The standard deviation is",sd(y),"\n")

# plot the theoreti
al 
urve

xve
<-seq(39,45,0.01)

yve
<-dnorm(xve
,mean=5,sd=sqrt(13)) # n() density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("The sum of nine n(42^2) \n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)
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21.2 The Chi-square distribution

If X ∼ n (0,1),then Y = X2 has a distribution which
is called the Chi - square distribution (χ2) on one
degree of freedom. This can be written as:

Y ∼ χ2

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

21.2.1 Details

Definition 21.1. If X1,X2, . . . ,Xn are i.i.d. N(0,1) then the distribution of
Y = X2

1 +X2
1 + . . .+X2

n has a Chi square (χ2)distribution.

21.3 Sum of Chi square Distributions

Let Y1 and Y2 be independent variables. If Y1 = χ2
ν1

and Y2 = χ2
ν2

,
then the sum of these two variables also follows a
chi-squared (χ2)distribution

Y1 +Y2 = χ2
ν1+ν2
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X

21.3.1 Details

Note 21.1. Recall that if
X1, . . . ,Xn ∼ n(µ,σ2)

are i.i.d., then

n

∑
i=1

Å

X̄ −µ

σ

ã2

=
n

∑
i=1

(X̄ −µ)
2

σ
∼ χ2
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21.4 Sum of squared deviation

If X1, · · · ,Xn ∼ n(µ,σ2) i.i.d, then

n

∑
i=1

Å

Xi −µ

σ

ã2

∼ χ2
n,

but we are often interested in

1
n−1

n

∑
i=1

(Xi − X̄)2 ∼ χ2
n−1.

21.4.1 Details

Consider a random sample of Gaussian random variables, i.e. X1, · · · ,Xn ∼ n(µ,σ2) i.i.d.
Such a collection of random variables have properties which can be used in a number of
ways.

n

∑
i=1

Å

Xi −µ

σ

ã2

∼ χ2
n,

but we are often interested in

1
n−1

n

∑
i=1

(Xi − X̄)2 ∼ χ2
n−1.

Note 21.2. A degree of freedom is lost because of subtracting the estimator of the mean as
opposed to the true mean.

The correct notation is:
µ = population mean
X̄ = sample mean (a random variable)
x̄ = sample mean (a number)

21.5 The t-distribution

If U ∼ n(0,1) and W ∼ χ2
ν are independent, then the random variable

T =
U
√

w
ν

has a distribution which we call the t-distribution on ν degrees of freedom denoted T ∼
tν.

21.5.1 Details

Definition 21.2. If U ∼ n(0,1) and W ∼ χ2
ν are independent, then the random variable

T :=
U
√

w
ν

has a distribution which we call the t-distribution on ν degrees of freedom, denoted
T ∼ tν.
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It turns out that if X1, . . . ,Xn ∼ n(µ,σ2) and we set

X̄ =
1
n

n

∑
i=1

Xi

and

S =

√

1
1−n

n

∑
i=1

(Xi −X)2

then
X̄ −µ

S/
√

n
∼ tn−1.

This follows from X̄ and ∑n
i=1(Xi− X̄)2 being independent and X̄−µ

σ/
√

n
∼ n(0,1), ∑

(Xi−X̄)2

σ2 ∼
χ2

n−1.
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22 Estimation, estimates and estimators

22.1 Ordinary least squares for a single mean

If µ is unknown and xi, . . . ,xn are data, we can estimate µ by finding

min
µ

n

∑
i=1

(xi −µ)2

In this case the resulting estimate is simply

µ = x

and can easily be derived by setting the derivative to zero.

22.1.1 Examples

Example 22.1. Consider the numbers x1, . . . ,x5 to be

13,7,4,16 and 9

We can plot ∑(xi −µ)2 vs. µ and find the minimum.

22.2 Maximum likelihood estimation

If (Y1, . . . ,Yn)
′ is a random vector from a density fθ where θ is an unknown parameter,

and y is a vector of observations then we define the likelihood function to be

Ly(θ) = fθ(y).

22.2.1 Examples

Example 22.2. If, x1, . . . ,xn are assumed to be observations of independent random
variables with a normal distributions and mean of µ and variance of σ2, then the joint
density is

f (x1) · f (x2) · . . . · f (xn)

=
1√
2πσ

e
− (x1−µ)2

2σ2 · . . . · 1√
2πσ

e
− (xn−µ)2

2σ2

= Πn
i=1

1√
2πσ

e
− (xi−µ)2

2σ2

=
1

(2π)n/2σn
e
− 1

2σ2 ∑n
i=1(xi−µ)2

and if we assume σ2 is known then the likelihood function is

L(µ) =
1

(2π)n/2σn
e
− 1

2σ2 ∑n
i=1(xi−µ)2
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Maximizing this is done by maximizing the log, i.e. finding the µ for which:

d

dµ
lnL(µ) = 0,

which again results in the estimate
µ̂ = x

22.2.2 Detail

Definition 22.1. If (Y1, . . . ,Yn)
′ is a random vector from a density fθ where θ is an

unknown parameter, and y is a vector of observations then we define the likelihood
function to be

Ly(θ) = fθ(y).

22.3 Ordinary least squares

Consider the regression problem where we fit a line
through (xi,yi) pairs with x1, . . . ,xn fixed numbers
but where yi is measured with error.

0 10 20 30 40

−
2

−
1

0
1

2

x

y

Regression line through data pairs.

22.3.1 Details

The ordinary least squares (OLS) estimates of the parameters α and β in the model yi =
α+βxi + εi are obtained by minimizing the sum of squares

∑
i

(yi − (α+βxi))
2

a = y−bx

b =

n

∑
i=1

(xi − x)(yi − y)

n

∑
i=1

(xi − x)2
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22.4 Random variables and outcomes

22.4.1 Details

Recall that X1, . . . ,Xn are random varibles (reflecting the population distribution) and x1, . . . ,xn

are numerical outcomes of these distributions. We use upper case letters to denote random
variables and lower case letters to denote outcome or data.

22.4.2 Examples

Example 22.3. Let the mean of a population be zero and the σ = 4. Then draw three
samples from this population with size, n, either 4, 16 or 64. The sample mean X̄ will
have a distribution with mean zero and standard deviation of σ√

n
where n= 4, 16 or 64.

22.5 Estimators and estimates

In OLS regression, note that the values of a and b

a = y−bx

b =
∑n

i=1(xi − x)(yi − y)

∑n
i=1(xi − x)2

are outcomes of random variables e.g. b is the
outcome of

β̂ =
∑n

i=1(xi − x)(Yi −Y )

∑n
i=1(xi − x)2

the estimator which has some distribution.

0.30 0.35 0.40 0.45 0.50
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betahat

Shows an example of the distribution of the
estimator β̂

22.5.1 Details

The following R commands can be used to generate a distribution for the estimator β̂

library(MASS)

nsim <- 1000 # repli
ates

betahat <- NULL

for (i in 1:nsim){

n <- 20

x <- seq(1:n) # Fixed x ve
tor

y <- 2 + 0.4*x + rnorm(n, 0, 1)

xbar <- mean(x)

ybar <- mean(y)

b <- sum((x-xbar)*(y-ybar))/sum((x-xbar)^2)

a <- ybar - b* xbar

betahat <- 
(betahat, b)

}

truehist(betahat)
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23 Test of hypothesis, P values and related concepts

23.1 The principle of the hypothesis test

The principle is to formulate a hypothesis and an alternative hypothesis, H0 and Ha

respectively, and then select a statistic with a given distribution when H0 is true and
select a rejection region which has a specified probability (α) when H0 is true.
The rejection region is chosen to reflect Ha, i.e to ensure a high probability of rejection
when Ha is true.

23.1.1 Examples

Example 23.1. Suppose we want to evaluate whether a coin is biased. We can plan an
experiment for this. Suppose we toss the coin 5 times and count the number of heads.
We can test the following hypothesis simply.

H0 : p = 1
2 where H0 is the null hypothesis

Ha; p > 1
2 where Ha is an alternative hypothesis

and p is probability of having a head.

We reject H0 if we get all heads. (Assuming the only interest is in a tendency towards
larger probabilities). So the probability of rejecting the null hypothesis H0 is:
P[reject H0]= P [ all heads in 5 trials] ≡ p5

If H0 is true, then P [reject H0] = 1
2

Need to choose 5 trials to ensure 1
25 =

1
32 < 1

32 < 0.05

i.e. The probability of incorrectly rejecting H0 is less than α = 0.05

Example 23.2. Flip a coin to test
H0 : P = 1

2 vs Ha : P 6= 1
2

Reject, if no heads or all heads are obtained in 6 trials, where the error rate is
P [reject H0 when true] = P [all heads or all tails]
= P[all heads] + P [all tails]
= 1

26 +
1
26 = 2 1

64 = 1
32 < 0.05

A variation of this test is called the sign test, which is used to test hypothesis of the form,
H0: true median = 0 using a count of the number of positive values.
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23.2 The one sided z test for normal mean

Consider testing

H0 : µ = µ0

vs

Ha : µ > µ0

Where data x1 . . .xn are collected as independent observations of X1 . . .Xn ∼ n(µ,σ2) and
σ2 is known. If H0 is true, then

x̄ ∼ n(µ0,
σ2

n
)

So,

Z =
x̄−µ0

σ√
n

∼ n(0,1)

It follows that,

P[Z > z∗] = α

Where

z∗= z1−α

So if the data x1 . . .xn are such that,

z =
x̄−µ0

σ√
n

> z∗

Then H0 is rejected.

23.2.1 Examples

Example 23.3. Consider the following data set:47, 42, 41, 45, 46.
Suppose we want to test the following hypothesis

H0 : µ = 42

vs

Ha : µ > 42

σ = 2 is given
The mean of the given data set can be calculated as

x̄ = 44.2

we can calculate z by using following equation

z =
x̄−µ

σ√
n

=
44.2−42

2√
5

129



z =
2.2

0.8944
= 2.459

z∗= 1.645

Here
z > z∗
So H0 is rejected with α = 0.05

23.3 The two-sided z test for a normal mean

z :=
x−µ0

s
√

n
∼ n(0,1)

23.3.1 Details

Consider testing H0 : µ = µ0 versus Ha : µ 6= µ0 based on observation from X1, ...,X ∼
n(µ,σ2) i.i.d. where σ2 is known. If H0 is true, then

Z :=
x−µ0

σ
√

n
∼ n(0,1)

and
P[|z|> z⋆] = α

with
z⋆ = z1

We reject H0 if |z|> z⋆. If |z|> z⋆ is not true, then we "Cannot reject the H0".

23.3.2 Examples

Example 23.4. In R, you may generate values to calculate the z value. The command
that is generally used is: quantile
To illustrate:

z<-rnorm(1000,0,1)

quantile(z,
(0.025,0.975))

2.5% 97.5%

-1.995806 2.009849

So, the z value for a two-sided normal mean is |−1.99|.

23.4 The one-sided t-test for a single normal mean

Recall that if X1, ...,Xn ∼ N(µ,σ2) i.i.d. then

X −µ

S/
√

n
∼ tn−1
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23.4.1 Details

Recall that if X1, . . . ,Xn ∼ N(µ,σ2) i.i.d. then

X −µ

S/
√

n
∼ tn−1

To test the hypothesis H0 : µ = µ0 vs H1 : µ > µ0 first note that if H0 is true, then

T =
X −µ0

S/
√

n
∼ tn−1

so
P[T > t∗] = α

if
t∗= tn−1,1−α

Hence, we reject H0 if the data x1, ...,xn results in a a value of t := x−µ0
S/

√
n

such that t>t*,
otherwise H0 can not be rejected.

23.4.2 Examples

Example 23.5. Suppose the following data set (12,19,17,23,15,27) comes independently
from a normal distribution and we need to test H0 : µ = µ0 vs Ha : µ > µ0. Here we have
n = 6,x = 18.83,s = 5.46,µ0 = 18 so we obtain

t =
x−µ0

s/
√

n
= 0.37

so H0 cannot be rejected.

In R, t* is found using qt(n-1,0.95) but the entire hypothesis can be tested using

t.test(x,alternative="greater",mu=<$\mu_0$>)

23.5 Comparing means from normal populations

Suppose data are gathered independently from two normal populations resulting in
x1, ....,xn and y1, ...ym

23.5.1 Details

We know that if

X1, ....,Xn ∼ n(µ1,σ)

Y1, ....,Ym ∼ n(µ2,σ)

are all independent then

X̄ − Ȳ ∼ n(µ1 −µ2,
σ2

n
+

σ2

m
)
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Further,
n

∑
i=1

(Xi − X̄)2

σ2 ∼ X2
n−1

and
m

∑
j=1

(Yj − Ȳ )2

σ2 ∼ X2
m−1

so
∑n

i=1(Xi− X̄)2 +∑m
j=1(Yj − Ȳ )2

σ2 ∼ X2
n+m−2

and it follows that
X̄ − Ȳ − (µ1 −µ2)

S
»

(1
n
+ 1

m
)

∼ tn+m−2

where

S =

 

∑n
i=1(X1− X̄)2 +∑m

j=1(Yj − Ȳ )2

n+m−2
consider testing H0 : µ1 = µ2 vs H1 = mu1 > µ2. Hence, if H0 is true then the observed
value

t =
x̄− ȳ

S
»

1
n
+ 1

m

comes from a t-test with n+m−2 df and we reject H0 if |t|> t∗. Here,

S =

 

∑i(xi − x̄)2 +∑ j(y j − ȳ)2

n+m−2

and t∗ = tn+m−2,1−α

23.6 Comparing means from large samples <Ól.B.M.>

If X1, ....Xn and Y1, .....Ym, are all independent (with finite variance) with expected values
of µ1 and µ2 respectively, and variances of σ2

1,and σ2
2 respectively, then

X −Y − (µ1 −µ2)
√

σ2
1

n
+

σ2
2

m

∼̇n(0,1)

if the sample sizes are large enough.

This is the central limit theorem.

23.6.1 Details

Another theorem (Slutzky) stakes that replacing σ2
1 and σ2

2 with S2
1 and S2

2 will result in the
same (limiting) distribution.

It follows that for large samples we can test

H0 : µ1 = µ2 vs. Ha : µ1 > µ2

by computing

z =
x− y

√
s2
1
n
+

s2
2

m

and reject H0 if z > z1−α.
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23.7 The P-value

The p-value of a test is an evaluation of the probability of obtaining results which are as
extreme as those observed in the context of the hypothesis.

23.7.1 Examples

Example 23.6. Consider a dataset and the following hypotheses

H0 : µ = 42

vs.
Ha : µ > 42

and suppose we obtain

z = 2.3

We reject H0 since
2.3 > 1.645+ z0.95

The p-value is
P[Z > 2.3] = 1−Φ(2.3)

obtained in R using

1-pnorm(2.3)

[1℄ 0.01072411

If this had been a two tailed test, then

P = P[|Z|> 2.3]

= P[Z <−2.3]+P[Z > 2.3]

= 2 ·P[Z > 2.3]

23.8 The concept of significance

23.8.1 Details

Two sample means are statistically signi f icantly di f f erent if their null hypothesis (µ1 =
µ2)can be re jected. In this case, one can make the following statements:

• The population means are different.

• The sample means are significantly different.

• µ1 6= µ2

• x̄ is significantly different from ȳ.

But one does not say:

• The sample means are different.

• The population means are different with probability 0.95.
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Similarly, if the hypothesis H0 : µ1 = µ2 can not be rejected, we can say:

• There is no significant difference between the sample means.

• We can not reject the equality of population means.

• We can not rule out...

But we can not say:

• The sample means are equal.

• The population means are equal.

• The population means are equal with probability 0.95.
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24 Power and sample sizes

24.1 The power of a test

Suppose we have a method to test a null hypothesis against an alternative hypothesis.
The test would be "controlled"at some level α, i.e. P[re ject H0]≤α whenever H0 is true.

On the other hand, when H0 is false one wants P[re ject H0] to be as high as possible.

If the parameter to be tested is θ and θ0 is a value within H0 and θa is in Ha then we
want Pθ0[re ject H0]≤ α and Pθa

[re ject H0] as large as possible.

For a general θ we write
β(θ) = Pθ[re ject H0]

for the power of the test

24.1.1 Details

Do not use the phrase "accept".

24.2 The power of tests for proportions
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24.2.1 Examples

Example 24.1. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 1: A student records a 0 if they toss an even number (2,4,6), and
records a 1 if they toss an odd number (1,3,5). After tossing the dice 9 times and
recording a 0 or 1 the student tabulates the number of 1s. This process is repeated 6
more times.

Data and outcomes: x = number of successes in n trials =∑n
i=1. Thus, x = num-

ber of odd numbers

Question:Test whether p = P[oddnumber] = 1
2 that is
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H0 : p = 1
2 vs. Ha : p 6= 1

2

Solution: Now, x is an outcome of X ∼ Bin(n, p). We know from the CLT that

X −np
√

np(1− p)
∼ Ṅ(0,1)

write p0 =
1
2 so if H0 : p = p0 is true then

Z :=
X −np0

√

np0(1− p0)
∼ Ṅ(0,1)

so we reject H0 if the observed value

z =
x−np0

√

np0(1− p0)

is such that |z|> z1−α
2

Outcomes from 21 trials
7 4 4
3 4 6
5 3 4
5 5 3
6 4 5
4 3 5
3 6 7

z =
7−9 · 1

2
»

9 · 1
2 · 1

2

=
7−4.5

3 · 1
2

=
14−9

3
=

5
3
< 1.96

So we do not reject the null hypothesis!

Note 24.1. Note that we can rewrite the test statistics slightly

z =
x− n

2
»

n · 1
2 · 1

2

=
x− 9

2

3 · 1
2

=
2x−9

3

Note 24.2. Note that we reject if 2x−9
3 > 1.96 i.e. if 2x > 9+3 ·1.96 ≈ 9+6 = 15

x > 7.5 [for x=8 or 9] or 2x < 9−3 ·1.96,x < 1.5 [for x=0 or 1].

Example 24.2. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 2: The procedure is the same as in experiment 1, but now the student records
0 for a 1 or 2 and a 1 for a 3,4,5,or 6.
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Data and outcomes:
x = number of successes in n trials =∑n

i=1 Thus, x = number of ’b’s

Solution: Outcomes from 21 experiments
5 4 3
8 5 7
5 7 3
7 6 5
7 8 8
5 6 4
2 5 7
This time our test is H0 : p = 2

3 vs Ha : p = 2
3 . Note that we reject H0 if 6x−4n

9 > 1,96
[for x=9] or if 6x−4n

9 <−1,96 [for x=0,1,2,3].

We reject H0 in 3 out of 21 trials.

Example 24.3. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 3: Same as experiment 1 except 0 is recorded for 1,2,3,4,5 and a 1 is
recorded for 6.

Data and outcomes:
x = number of successes in n trials =∑n

i=1 Thus, x = number of ’1’s

Solution: Outcomes from 21 experiments
0 1 2
1 2 1
1 4 2
1 1 1
1 3 1
1 1 2
0 2 0
With the same kind of calculations as above, we find that we reject the null hypothesis
H0 : p = 1

6 in 14 out of 21 trials.
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24.3 The Power of the one sided z test for the mean

The one sided z-test for the mean (µ) is based on a random sample where
X1 . . .Xn ∼ n(µ,σ2) are independent and σ2 is known.

The power of the test for an arbitrary µ can be computed as:

β(µ) = 1−Φ

(

µ0 −µ
σ√
n

+ z1−α

)

24.3.1 Details

The one sided z-test for the mean (µ) is based on a random sample where X1 . . .Xn ∼
n(µ,σ2) are independent and σ2 is known.

If the hypotheses are:
H0 : µ = µ0 vs
Ha : µ > µ0

Then we know that, if H0 is true

Z =
X̄ −µ0

σ√
n

∼ n(0,1)

Given data x1, . . .xn, the z-value is

z =
x̄−µ0

σ√
n

We reject H0 if z > z1−α

The level of this test is

Pµ0[Re jectH0] = Pµ0[
X̄ −µ0

σ√
n

> z1−α]

= P[z > z1−α] = α

since Z ∼ n(0,1) when µ0 is the true value.

The power of the test for an arbitrary µ can be computed as follows.

β(µ) = Pµ[re jectH0]

= Pµ[
X̄ −µ0

σ√
n

> z1−α]

= Pµ[X̄ > µ0 + z1−α
σ√
n
]

= Pµ[
X̄ −µ

σ√
n

>
µ0 −µ

σ√
n

+ z1−α]
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= P[Z >
µ0 −µ

σ√
n

+ z1−α]

We obtain

β(µ) = 1−Φ

(

µ0 −µ
σ√
n

+ z1−α

)

24.3.2 Examples

Example 24.4. Suppose we know σ = 2 and we will take a sample from n
(
µ,σ2

)

intending to test the hypothesis µ = 3 at level α = 0.05. We want to know the power
against a one-tailed alternative when the true mean is actually µ = 4 when the sample
size is n = 25.

We can set this up in R with:

alpha<-0.05

n<-25

sigma<-2

mu0<-3

mu<-4

z
rit<-qnorm(1-alpha)

Sticking the formula into R gives

1-pnorm((mu0-mu)/(sigma/sqrt(n))+z
rit)

[1℄ 0.803765

On the other hand, one can also use a simple simulation approach. First, decide how many
samples are to be simulated (Nsim). Then, generate all of these samples, arrange them in
a matrix and compute the mean of each sample. The z-value of each of these Nsim tests
are then computed and a check is made whether it exceeds the critical point (1) or not (0).

Nsim<-10000

m<-matrix(rnorm(Nsim*n,mu,sigma),n
ol=n)

mn<-apply(m,1,mean)

z<-(mn-mu0)/(sigma/sqrt(n))

i<-ifelse(z>z
rit,1,0)

sum(i/Nsim)

[1℄ 0.8081
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24.4 Power and sample size for the one-sided z-test for a single normal
mean

Suppose we want to test H0 : µ = µ0 vs Ha : µ > µ0. We will reject H0 if the observed
value

z =
x−µ0

σ/
√

n

is such that z > z1−α.

24.4.1 Details

Suppose we want to test H0 : µ = µ0 vs Ha : µ > µ0. So based on X1, ...,Xn ∼ n(µ,σ2) i.i.d.
with σ2 known we will reject H0 if the observed value

z =
x−µ0

σ/
√

n

is such that z > z1−α. The power is given by:

β(µ) = 1−Φ(
µ−µ0

σ/
√

n
+ z1−α)

and describes the probability of rejecting H0 when µ is the correct value of the parameter.
Suppose we want to reject H0 with a prespecified probability β1, when µ1 is the true value
of µ. For this, we need to select the sample size so that

β(µ1)≥ β1

i.e. find n which satisfies
1−Φ(

µ1 −µ0

σ/
√

n
+ z1−α)≥ β1

24.4.2 Examples

Example 24.5. mu0<-10

sigma<-2

mu1<-11

n<-50

d<-(mu1-mu0)

power.t.test(n=n,delta=d,sd=sigma,sig.level=0.05,type="one.sample",

alternative="one.sided",stri
t

+ = TRUE)

One-sample t test power 
al
ulation

n = 50

delta = 1

sd = 2

sig.level = 0.05

power = 0.9672067

alternative = one.sided
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24.5 The non central t - distribution

Recall that if Z ∼ n(0,1) and U ∼ χ2
v are independent then

Z
»

U
v

∼ tv

and it follows for a random sample X1 . . .Xn ∼ n(µ,σ2) independent; that

X̄ −µ
s√
n

=

X̄−µ
σ√
n

…

∑(Xi−X̄)2

σ2
n−1

∼ tn−1

24.5.1 Details

On the other hand, if W ∼ n(∆,1) and U ∼ χ2
v are independent, then W

»

U
v

has a non central

t-distribution with v degrees of freedom and non centrality parameter ∆. This distribution
arises, if X1 . . .Xn ∼ n(µ,σ2) independent and we want to consider the distribution of:

X̄ −µ
S√
n

=

X̄−µ
σ√
n

+ µ−µ0
σ√
n

S√
n

=
Z+ µ−µ0

σ√
n

»

U
v

Where µ 6= µ0 which is a non central t with non centrality parameters

∆ =
µ−µ0

σ√
n

with n−1 df. Here v = n−1d f since Z ∼ n(0,1) and U ∼ χ2
n−1 in this equation

24.6 The power of t-test for a normal mean (warning: errors)

24.6.1 Details

WARNING: This is all wrong and needs to be rewritten
Consider X1, . . . ,Xn ∼ n(µ,σ2) i.i.d. where σ2 is unknown and
we want to test H0 : µ = µ0 vs. Ha : µ > µ0. We know that

T :=
X −µ

s/
√

n
∼tn−1

and we will reject H0 if the computed value

t :=
x−µ0

s/
√

n

is such that
t > t⋆ = tn−1,1−α.
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The power of this test is:

B(µ) = Pµ[re ject H0] = Pµ[
x−µ0

s/
√

n
> t⋆]

= Pµ[x−µ0 > t⋆ · s/
√

n]

= Pµ[
x−µ

s/
√

n
> t⋆+

µ0−µ

s/
√

n
].

Which is the probability that a tn−1,1−α-variable exceed t⋆ +
µ0−µ

s/
√

n
.

WARNING: This is all wrong and needs to be rewritten (the
s in the above line is a random variable so this make no
sense at all)

24.7 Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test
for a single mean (one sample), this can easily be done in R
with the power.t.test command.

24.7.1 Details

△= µ1−µ2

δ = µ1−µ2
σ/

√
n

24.7.2 Examples

Example 24.6. For a one sided power analysis we wish to
test the following hypotheses:

For a one sample test:
H0 : µ = µ0 vs. Ha : µ > µ0
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For a two sample test:
H0 : µ1 = µ2 vs. Ha : µ1 > µ2

In R, the power.t.test command is useful to calculate how
many samples one needs to obtain a certain power of a test,
but also to calculate the power when we have a given number
of samples.

Example 24.7. How many samples do I need to get a power
of .9?

power.t.test(power = .95, delta=1.5,sd=2, type="

one.sample", alternative = "one.sided")

One-sample t test power 
al
ulation

n = 20.67702

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.95

alternative = one.sided

We would thus need a sample size of n = 31.15 or ≈ 32
samples to obtain a power of 0.9 for our analysis.

Example 24.8. With a sample size of n = 45, what will the
power of my test be?
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power.t.test(n=45,delta=1.5,sd=2,sig.level=0.05,

type="one.sample",alternative="one.sided")

One-sample t test power 
al
ulation

n = 45

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.9995287

alternative = one.sided

This is done the same way for two samples only by changing
the alternative to "two.sample". For two sided power analysis,
one only needs to change the alternative to "two.sided".

Example 24.9. If one is interested in doing a power analysis
for an ANOVA test, this is done in a fairly similar way.

With a given sample size of n=20:

power.anova.test(groups=4, n=20, between.var=1,

within.var=3)

Balanced one-way analysis of variance power calculation

groups = 4

n = 20

between.var = 1

within.var = 3

sig.level = 0.05

power = 0.9679022
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To calculate the sample size needed to obtain a power of 0.90
for a test:

power.anova.test(groups=4, between.var=1, within

.var=3, power=.9)

Balanced one-way analysis of variance power calculation

groups = 4

n = 15.18834

between.var = 1

within.var = 3

sig.level = 0.05

power = 0.9

24.8 The power of the 2-sided t-test

A power analysis on a two-sided t-test can be done in R using
the power.t.test command.

24.8.1 Details

For a one sample test:
H0 : µ = µ0 vs. Ha : µ 6= µ0

The power.t.test command is useful to provide information for
determining the minimum sample size one needs to obtain a
certain power of a test:

power.t.test(n= ,delta= ,sd= ,sig.level= ,power=

,type=
("two.sample","one.sample","paired"),

alternative=
("two.sided"))

where:
n=sample size
d=effect size
sd=standard deviation
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sig.level=significance level
power= normally 0.8, 0.9 or 0.95
type= two sample, one sample or paired (the type selected depends
on the research)
alternative= either one sided or two sided

24.8.2 Examples

Example 24.10. How many samples do I need in my research
to obtain a power of 0.8?

power.t.test(delta=1.5,sd=2,sig.level=0.05,power

=0.8,type=
("two.sample"),alternative=
("two.

sided"))

Two-sample t test power 
al
ulation

n = 28.89962

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.8

alternative = two.sided

So, one needs 29 samples (n=29) to obtain a power level of
0.8 for this analysis.
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24.9 The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computed
as follows:

β(µ1µ2) = Pµ1µ2

ñ

Z+∆
√

U/(n+m−2)
> t∗1−α,n+m−2

ô

and the power of a two sample, two-sided t-test is give by:

β(µ1µ2)=Pµ1µ2

ñ

Z+∆
√

U/(n+m−2)
> t∗1−α,n+m−2

ô

+Pµ1µ2

ñ

Z +∆
√

U/(n+m−2)
<

where ∆ = (µ1−µ2)

σ
√

1
n+

1
m

and U is the SSE.

24.9.1 Details

Two Sample, One-sided t-Test:
Suppose data are gathered independently from two normal pop-
ulations resulting in

X1, . . . ,Xn ∼ n(µ1,σ
2)

Y1, . . . ,Ym ∼ n(µ2,σ
2)

where all data are independent then

X −Y ∼ n(µ1−µ2,
σ2

n
+

σ2

m
)

The null hypothesis in question is Ho : µ1 = µ2 versus alternative
Ha : µ1 > µ2. If Ho is true then the observed value

t =
x− y

s
»

1
n
+ 1

m

comes from a t-distribution with n+m− 2 degrees of freedom
and we reject Ho if |t|> t∗1−α,n+m−2
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The power of the test can be computed as follows:

β(µ1µ2) = Pµ1µ2 [re ject Ho]

= Pµ1µ2




X −Y

S
»

1
n
+ 1

m

> t∗1−α,n+m−2





= Pµ1µ2






X−Y−(µ1−µ2)

σ
√

1
n+

1
m

+ (µ1−µ2)

σ
√

1
n+

1
m

S/σ
> t∗1−α,n+m−2






= Pµ1µ2






Z + (µ1−µ2)

σ
√

1
n+

1
m

S/
√

(n+m−2)
> t∗1−α,n+m−2






= Pµ1µ2

ñ

Z +∆
√

U/(n+m−2)
> t∗1−α,n+m−2

ô

where ∆ = (µ1−µ2)

σ
√

1
n+

1
m

and U is the SSE of the samples which is di-

vided by the appropriate degrees of freedom to give a χ2 distri-
bution.

This is the probability that a non-central t-variable exceeds t∗.

Two Sample, Two-sided t-Test:
In this case the null hypothesis is defined as Ho : µ1 = µ2 versus
alternative Ha : µ1 6= µ2.

The power of the test can be computed as follows:
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β(µ1µ2) = Pµ1µ2 [re ject Ho]

= Pµ1µ2





∣
∣
∣
∣
∣
∣

X −Y

S
»

1
n
+ 1

m

∣
∣
∣
∣
∣
∣

> t∗1−α,n+m−2





= Pµ1µ2




X −Y

S
»

1
n
+ 1

m

> t∗1−α,n+m−2





+Pµ1µ2




X −Y

S
»

1
n
+ 1

m

<−t∗1−α,n+m−2





= Pµ1µ2






X−Y−(µ1−µ2)

σ
√

1
n+

1
m

+ (µ1−µ2)

σ
√

1
n+

1
m

S/
√

(n+m−2)
> t∗1−α,n+m−2






+Pµ1µ2






X−Y−(µ1−µ2)

σ
√

1
n+

1
m

+ (µ1−µ2)

σ
√

1
n+

1
m

S/
√

(n+m−2)
<−t∗1−α,n+m−2






= Pµ1µ2

ñ

Z+∆
√

U/(n+m−2)
> t∗1−α,n+m−2

ô

+Pµ1µ2

ñ

Z +∆
√

U/(n+m−2)
<−t∗1−α,n+m−2

ô

where ∆ = (µ1−µ2)

σ
√

1
n+

1
m

and U is the SSE of the samples which is di-

vided by the appropriate degrees of freedom to give a χ2 distri-
bution.

Note 24.3. Note that the power of a test can be obtained using
the power.t.test function in R.

24.10 Sample sizes for two-sample one and two-sided t-tests

The sample size should always satisfy the desired power.
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24.10.1 Details

Suppose we want to reject the Ho with a pre-specified proba-
bility β1 when µ1 and µ2 are true values of µ. For this, we need
to select the sample size n and m so that β(µ1µ2) ≥ β1 i.e. find
n and m which satisfies

Pµ1µ2

ñ

Z +∆
√

U/(n+m−2)
> t∗1−α,n+m−2

ô

for a two sample, one-sided t-test.

Similarly for a two sample, two-sided t-test we need to find n

and m that satisfies

Pµ1µ2

ï

Z+∆√
U/(n+m−2)

> t∗1−α,n+m−2

ò

+ Pµ1µ2

ï

Z+∆√
U/(n+m−2)

<−t∗1−α,n+m−2

ò

24.11 A case study in power

Want to compute power in analysis of covariance:

yi j = µi+βxi j + εi j, i = 1,2, j = 1, . . .J,

where εi j ∼ n(0,σ2) are i.i.d.?

This can be done by simulation and can easily be expanded
to other cases.

24.11.1 Handout

Example 24.11. If you want to compute a power analysis in
analysis of covariance:

yi j = µi +βxi j + εi j, i = 1,2, j = 1, . . .J,

where εi j ∼ n(0,σ2) are i.i.d. then use simulation.
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To do this one needs to first define the task in more detail,
along with what exactly is known and what the assumptions
are.

Note 24.4. Note that there are only two groups, with in-
tercepts µ1 and µ2. The "power"will refer to the power of a
test for µ1 = µ2, i.e. we want to test whether the group means
are equal, correcting for the effect of the continuous variable
x.

In principle, the x-values will be either fixed a priori or
they may be a random part of the experiment. Here we will
assume that the x-values are randomly selected in the range
20-30 (could e.g. be the ages of patients).

Since this is in the planning stage of the experiment, we also
have a choice of the sample size within each group. For
convenience, the sample sizes are taken to be the same in
each group, J so the total number of measurements will be
n = 2J. We also need to decide at which levels of µ1 and µ2

the power is to be computed (but it is really only a function
of the difference, µ1−µ2).

The following pieces of R code can be saved into a file,
"ancovapow.r"and then command

sour
e("an
ovapow.r")

can be used to run the whole thing.

The beginning of the command sequence merely consists of
comments and definitions of parameter values. These need to
be changed for each case separately.

#

# an
ovapow.r - power 
omputations for analysis

of 
ovararian
e
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# - one fa
tor, two levels mu0, mu1

# - one 
ovariate x, x0 stores possible values

from whi
h a random set is 
hosen

#

# first set values of parameters

#

alpha<-0.05

sigma<-7.5 # the 
ommon standard deviation

x0<-20:30 # the set of x values

delta<-10 # the differen
e in the means

mu0<-0 # the first mean

mu1<-mu0+delta # the se
ond mean

slope<-2.5 # the slope in the an
ova

J<-10 # the 
ommon sample size per fa
tor level

n<-2*J # the total sample size

Nsim<- 40000 # the number of simulations for

power 
omputations

Rather than head straight for the ancova, start with a simpler
case, namely ignoring the covariate (x) and merely doing a
regular two-sample, two-tailed t-test. This should be reasona-
bly similar to the ancova power computations anyway.

#

# Next do the power 
omputations just for a

regular two-sided, two-sample t-test

# and use simulation

#

Y1<-matrix(rnorm(J*Nsim,mu0,sigma),n
ol=J) #

Simulate Nsim samples of size J, ea n(mu1,

sigma^2)

Y2<-matrix(rnorm(J*Nsim,mu1,sigma),n
ol=J) #

Simulate Nsim samples of size J, ea n(mu2,

sigma^2)
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y1mn<-apply(Y1,1,mean) # 
ompute all the

simulated y1-means

y2mn<-apply(Y2,1,mean) # 
ompute all the

simulated y2-means

sy1<-apply(Y1,1,sd) # 
ompute all the simulated

y1-std.devs

sy2<-apply(Y2,1,sd) # 
ompute all the simulated

y2-std.devs

s<-sqrt(((J-1)*sy1^2+(J-1)*sy2^2)/(n-2)) #


ompute all the pooled std.devs

t<-(y1mn-y2mn)/(s*sqrt(1/J+1/J)) # 
ompute all

the Nsim t-statisti
s

i<-ifelse(abs(t)>qt(1-alpha/2,n-2),1,0) # for ea

t, 
ompute 1=reje
t, 0=do not reje
t

powsim2<-sum(i)/Nsim # the simulated power


at("The simulated power is ",powsim2,"\n")

The above gave the simulated power. In R there is a function
to do the same computations and it is worth while to verify
the code (and approach) by checking whether these give the
same thing:

#

# Then 
ompute the exa
t power for the t-test

#

pow2<-power.t.test(delta=delta,sd=sigma,sig.

level=alpha,n=J ,type=
("two.sample"),

alternative=
("two.sided"))


at("The exa
t power:\n")

print(pow2)

Finally, start setting up the code to do the ancova simulati-
ons. Note that for this we need to generate the x-values. In
this example it is assumed that the x-values are not under the
control of the experimenter but arrive randomly, in the range
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from 20 to 30 (could e.g. be the age of participants in an
experiment).

#

# Finally 
ompute the power in the an
ova - note

we already have simulated Y1, Y2-values but

have not added the x-part yet

#

x1<-matrix(sample(x0,Nsim*J,repla
e=T),n
ol=J) #

simulate x-values for y1

x2<-matrix(sample(x0,Nsim*J,repla
e=T),n
ol=J) #

simulate x-values for y2

Y1<-Y1+slope*x1

Y2<-Y2+slope*x2

fulldat<-
bind(Y1,Y2,x1,x2) # a row now 
ontains

all y1, then all y2, then all x1, then all x2

; Nsim rows

Rather than try to write code to do an ancova, it is natural
to use the R function lm to do this. The “trick” below is to
extract the P-value from the summary command. By defining
a “wrapper” function which takes a single line as an argument,
it will subsequently be possible to use the “apply” function to
extract the P-values using a one-line R command.

an
ova.pval<-fun
tion(onerow){ # extra
t the

an
ova p-value for diff in means

J<-length(onerow)/4

n<-2*J

y<-onerow[1:n℄ # get the y-data from the row

x<-onerow[(n+1):(2*n)℄ # get the x-data from

the row

grps<-fa
tor(
(rep(1,J),rep(2,J))) # define the

groups

sm<-summary(lm(y~x+grps)) # fit the an
ova
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model

pval<-sm$
oeffi
ients[3,4℄ # extra
t exa
tly

the right thing from the summary 
ommand-the

P-value for H0:mu1=mu2

return(pval)

}

Everything has now been defined so it is possible to compute
all the P-values in a single command line:

pve
<-apply(fulldat,1,an
ova.pval)

i2<-ifelse(pve
<alpha,1,0) # for ea test,


ompute 1=reje
t, 0=do not reje
t

an
ovapow<-sum(i2)/Nsim # the simulated power


at("The simulated an
ova power is ",an
ovapow,"

\n")

When run, this script returns:

The simulated power is 0.803025

The exa
t power:

Two-sample t test power 
al
ulation

n = 10

delta = 10

sd = 7.5

sig.level = 0.05

power = 0.8049123

alternative = two.sided

NOTE: n is number in *ea
h* group

The simulated an
ova power is 0.775175

It is seen that when the x-values are not included in any way
(in particular, β = 0), the power is 80.5%. However, this is

155



not the correct model in the present situation. Using the above
value of β and taking this into account, the power is actually
a bit lower or 77.5%.

Copyright 2021, Gunnar Stefansson (editor) with contributi-
ons from very many students
This work is licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit http://creativecommons.or
sa/1.0/ or send a letter to Creative Commons, 559 Nathan Ab-
bott Way, Stanford, California 94305, USA.
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25 Vectors and Matrix Operations

25.1 Numbers, vectors, matrices

Recall that the set of real numbers is R and that a vector ,
v ∈ Rn is just an n-tuple of numbers.

Similarly, an nxm matrix is just a table of numbers, with n
rows and m columns and we can write

Amn ∈ Rmn

Note that a vector is normally considered equivalent to a n×1
matrix i.e. we view these as column vectors.

25.1.1 Examples

Example 25.1. In R, a vector can be generated with:

X<- 3:6

X

[1℄ 3 4 5 6

A matrix can be generated in R as follows,

matrix(X)

[,1℄

[1,℄ 3

[2,℄ 4

[3,℄ 5

[4,℄ 6

Note 25.1. We note that R distinguishes between vector and
matrices.
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25.2 Elementary Operations

We can define multiplication of a real number k and a
vector v = (v1, . . . ,vn) by k · v = (kv1, . . . ,kvn). The sum
of two vectors in Rn, v = (v1, . . . ,vn) and u = (u1, . . . ,un)

as the vector v+ u = (v1 + u1, . . . ,vn + un). We can define
multiplication of a number and a matrix and the sum of two
matrices (of the same sizes) similarly.

25.2.1 Examples

Example 25.2. A <- matrix(
(1,2,3,4), nr=2, n
=2)

A

[,1℄ [,2℄

[1,℄ 1 3

[2,℄ 2 4

B <- matrix(
(1,0,2,1), nr=2, n
=2)

B

[,1℄ [,2℄

[1,℄ 1 2

[2,℄ 0 1

A+B

[,1℄ [,2℄

[1,℄ 2 5

[2,℄ 2 5
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25.3 The tranpose of a matrix

In R, matrices may be constructed using the "matrix"function
and the transpose of A, A′, may be obtained in R by using the
"t"function:
A<-matrix(1:6, nrow=3)

t(A)

25.3.1 Details

If A is an n×m matrix with element ai j in row i and column j,
then A′ or AT is the m×n matrix with element ai j in row j and
column i.

25.3.2 Examples

Example 25.3. Consider a vector in R

x<-1:4

x

[1℄ 1 2 3 4

t(x)

[,1℄ [,2℄ [,3℄ [,4℄

[1,℄ 1 2 3 4

matrix(x)

[,1℄

[1,℄ 1

[2,℄ 2

[3,℄ 3

[4,℄ 4

t(matrix(x))

[,1℄ [,2℄ [,3℄ [,4℄

[1,℄ 1 2 3 4

Note 25.2. Note that the first solution gives a 1×n matrix and
the second solution gives a n×1 matrix.
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25.4 Matrix multiplication

Matrices A and B can be multiplied
together if A is an n× p matrix and
B is an p × m matrix. The gener-
al element ci j of n × m; C = AB

is found by pairing the ith row of
C with the jth column of B, and
computing the sum of products of
the paired terms.

25.4.1 Details

Matrices A and B can be multiplied together if A is a n× p

matrix and B is a p×m matrix. Given the general element ci j

of nxm matrix, C = AB is found by pairing the ith row of C with
the jth column of B, and computing the sum of products of the
paired terms.

25.4.2 Examples

Example 25.4. Matrices in R

A<-matrix(
(1,3,5,2,4,6),3,2)

A

[,1℄ [,2℄

[1,℄ 1 2

[2,℄ 3 4

[3,℄ 5 6

B<-matrix(1,1,2,3)2,2)

B<-matrix(
(1,1,2,3),2,2)

B

[,1℄ [,2℄

[1,℄ 1 2
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[2,℄ 1 3

A%*%B

[,1℄ [,2℄

[1,℄ 3 8

[2,℄ 7 18

[3,℄ 11 28

25.5 More on matrix multiplication

Let A, B, and C be m× n, n× l, and l × p matrices, respecti-
vely. Then we have

(AB)C = A(BC).

In general, matrix multiplication is not commutative, that is
AB 6= BA.
We also have

(AB)′ = B′A′.

In particular, (Av)′(Av) = v′A′Av, when v is a n× 1 column
vector.

More obvious are the rules

1. A+(B+C) = (A+B)+C

2. k(A+B)=kA+kB

3. A(B+C)=AB+AC,

where k ∈ R and when the dimensions of the matrices fit.

25.6 Linear equations

25.6.1 Details

Detail:
General linear equations can be written in the form Ax = b.
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25.6.2 Examples

Example 25.5. The set of equations

2x+3y = 4
3x+ y = 2

can be written in matrix formulation as

ñ

2 3
3 1

ôñ

x

y

ô

=

ñ

4
2

ô

i.e. Ax = b for an appropriate choice of of A,x and b

25.7 The unit matrix

The n x n matrix

I =








1 0 . . . 0
0 1 0 ...
... 0 . . . 0
0 . . . 0 1








is the identity matrix. This is because if a matrix A is n x n

then AI = A and IA = A
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25.8 The inverse of a matrix

If A is an n×n matrix and B is a matrix such that

BA = AB = I

Then B is said to be the inverse of A, written

B = A−1

Note that if A is an n× n matrix for which an inverse exists,
then the equation Ax = b can be solved and the solution is
x = A−1b.

25.8.1 Examples

Example 25.6. If matrix A is:
ñ

2 3
3 1

ô

then A−1 is:
ñ

−1
4

3
4

3
4

1
2

ô
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26 Some notes on matrices and linear operators

26.1 The matrix as a linear operator

Let A be an m×n matrix, the function

TA : Rn → Rm,TA(x) = Ax,

is linear, that is

TA(ax+by) = aTA(x)+bTA(y)

if x,y ∈ Rn and a,b ∈ R.

26.1.1 Examples

Example 26.1. If A=
[
1 2

]
then TA(x) = x+ 2y where x =

(
x

y

)
∈ R2

Example 26.2. If A=

ñ

0 1
1 0

ô

then TA

(
x

y

)
=

ñ

y

x

ô

Example 26.3. If A=

ñ

0 2 3
1 0 1

ô

then TA

Ñ

x

y

z

é

=

ñ

2y+3z

x+ z

ô

Example 26.4. If T
(

x

y

)
=

Ç

x+ y

2x−3y

å

then T (x) = Ax if we

set A =

ñ

1 1
2 −3

ô
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26.2 Inner products and norms

Assuming x and y are vectors, then we define their inner
product by

x · y = x1y1+ x2y2 + · · ·+ xnyn

where x =

Ñ

x1
...

xn

é

and y =

Ñ

y1
...

yn

é

26.2.1 Details

If x, y ∈ Rn are arbitrary (column) vectors, then we define their
inner product by

x · y = x1y1 + x2y2 + · · ·+ xnyn

where x =

Ñ

x1
...

xn

é

and y =

Ñ

y1
...

yn

é

.

Note 26.1. Note that we can also view x and y as n×1 matrices
and we see that x · y = x′y.

Definition 26.1. The normal length of a vector is defined
by ‖x‖2 = x · x. It may also be expressed as ‖x‖ =
»

x2
1 + x2

2+ · · ·+ x2
n.

It is easy to see that for vectors a,b and c we have (a+b) · c =
a · c+b · c and a ·b = b ·a.
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26.2.2 Examples

Two vectors x and y are said to be orthogonal if x · y = 0

Example 26.5. If x =

Ç

3
4

å

and y =

Ç

2
1

å

, then

x · y = 3 ·2+4 ·1 = 10,

and

‖x‖2 = 32 +42 = 25,

so

‖x‖= 5

26.3 Orthogonal vectors

Two vectors x and y are said to be orthogonal if x · y = 0
denoted x ⊥ y

26.3.1 Details

Definition 26.2. Two vectors x and y are said to be ort-
hogonal if x · y = 0 denoted x ⊥ y

If a,b ∈ Rn then

‖a+b‖2 = a ·a+2a ·b+b ·b

so
‖a+b‖2 = ‖a‖2 +‖b‖2 +2ab.
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Note 26.2. Note that if a⊥ b then ‖a+b‖2 = ‖a‖2+‖b‖2, which
is Pythagoras’ theorem in n dimensions.

26.4 Linear combinations of i.i.d. random variables

Suppose X1, ....,Xn are i.i.d. random variables and have mean
µ1, ....,µn and variance σ2 then the expected value of Y of the
linear combination is

Y = ∑aiXi

and if a1, ....,an are real constants then the mean is:

µY = ∑aiµi

and the variance is:

σ2 = ∑a2
i σ2

i

26.4.1 Examples

Example 26.6. Consider two i.i.d. random variables, Y1,Y2

and a specific linear combination of the two, W = Y1+3Y2.

We first obtain

E[W ] = E[Y1+3Y2] = E[Y1]+3E[Y2] = 2+3 ·2 = 2+6 = 8.

Similarly, we can first use independence to obtain

V [W ] =V [Y1+3Y2] =V [Y1]+V [3Y2]

and then (recall that V [aY ] = a2V [Y ])

V [Y1]+V [3Y2] =V [Y1]+32V [Y2] = 12+32 = 1(4)+9(4)= 40

Normally, we just write this up in a simple sequence

V [W ] =V [Y1+3Y2] =V [Y1]+32V [Y2] = 12+32 = 1(4)+9(4)= 40
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26.5 Covariance between linear combinations of i.i.d random varia-
bles

Suppose Y1, . . . ,Yn are i.i.d., each with mean µ and variance

σ2 and a,b ∈ Rn. Writing Y =

Ñ

Y1
...

Yn

é

, consider the linear

combination a′Y and b′Y .

26.5.1 Details

The covarience between random variables U and W is defined
by

Cov(U,W) = E[(U −µu)(W −µw)]

where
µu = E[U ],µw = E[W ]

Now, let U = a′Y =∑Yiai and W = b′Y =∑Yibi, where Y1, . . . ,Yn

are i.i.d. with mean µ and variance σ2, then we get

Cov(U,W) = E[(a′Y −Σaµ)(b
′Y −Σbµ)]

= E[(ΣaiYi−Σaiµ)(Σb jYj −Σb jµ)]

and after some tedious (but basic) calculations we obtain

Cov(U,W) = σ2a ·b

26.5.2 Examples

Example 26.7. If Y1 and Y2 are i.i.d., then

Cov(Y1+Y2,Y1−Y2) =Cov((1,1)

Ç

Y1

Y2

å

,(1,−1)

Ç

Y1

Y2

å

)

= (1,1)

Ç

1
−1

å

σ2
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= 0

and in general, Cov(a′Y ,b′Y ) = 0 if a⊥b and Y1, . . . ,Yn are
independent.

26.6 Random vectors

Y = (Y1, . . . ,Yn) is a random vector if Y1, . . . ,Yn are random
variables.

26.6.1 Details

Definition 26.3. If EYi = µi then we typically write

E(Y ) =

Ñ

µ1
...

µn

é

= µ

If Cov(Yi,Yj) = σi j and V [Yi] = σii = σ2
i , then we define the

matrix
Σ = (σi j)

containing the variances and covariances. We call this matrix
the covariance matrix of Y , typically denoted V [Y ] = Σ or
Cov[Y ] = Σ.

26.6.2 Examples

Example 26.8. If Yi, . . . ,Yn are i.i.d., EYi = µ, VYi = σ2, a,b ∈
Rn and U = a′Y , W = b′Y ,

and T=

ñ

U

W

ô

then

ET=

ñ

Σaiµ

Σbiµ

ô

VT= Σ = σ2

ñ

Σa2
i Σaibi

Σaibi Σb2
i

ô
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Example 26.9. If Y is a random vector with mean µ and
variance-covariance matrix Σ, then

E[a′Y ] = a′µ

and

V [a′Y ] = a′Σa.

26.7 Transforming random vectors

Suppose

Y =

Ñ

Y1
...

Yn

é

is a random vector with EY = µ and VY = Σ where the
variance-covariance matrix

Σ = σ2I

26.7.1 Details

Note that if Y1, . . . ,Yn are independent with common variance
σ2 then

Σ =










σ2
1 σ12 σ13 . . . σ1n

σ21 σ2
2 σ23 . . . σ2n

σ31 σ32 σ2
3 . . . σ3n

... ... ... . . . ...
σn1 σn2 σn3 . . . σ2

n









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=










σ2
1 0 . . . . . . 0

0 σ2
2

. . . 0 ...
... . . . σ2

3
. . . ...

... 0 . . . . . . 0
0 . . . . . . 0 σ2

n










= σ2










1 0 . . . . . . 0
0 1 . . . 0 ...
... . . . 1 . . . ...
... 0 . . . . . . 0
0 . . . . . . 0 1










= σ2I

If A is an m x n matrix, then

E[AY] = Aµ

and
V [AY] = AΣA′
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27 Ranks and determinants

27.1 The rank of a matrix

The rank of an nxp matrix, A, is the largest number of col-
umns of A, which are not linearly dependent (i.e. the number
of linearly independent columns).

27.1.1 Details

Vectors a1,a2, . . . ,an are said to be linearly dependent if the
constant k1, . . . ,kn exists and are not all zero, such that

k1a1+ k2a2 + . . .+ knan = 0

Note that if such constants exist, then we can write one of the
a’s as a linear combination of the rest, e.g. if k1 6= 0 then

a1 = c1 =−k2

k1
a2 − . . .− k2

k1
an

It can be shown that the rank of A is the same as the rank of A′

i.e. the maximum number of linearly independent rows of A.

Note 27.1. Note that if rank (A) = p, then the columns are line-
arly independent.

27.1.2 Examples

Example 27.1. If

A =

ñ

1 0
0 1

ô

the rank of A = 2, since

k1

Ç

1
0

å

+ k2

Ç

0
1

å

=

Ç

0
0

å

if and only if
Ç

k1

k2

å

=

Ç

0
0

å
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so the columns are linearly independent.

Example 27.2. If

A =





1 0 1
0 1 1
0 0 0





the rank of A = 2.

Example 27.3. If

A =





1 1 1
0 1 0
0 1 0





the rank of A = 2, since

1

Ñ

1
0
0

é

+0

Ñ

0
1
1

é

+(−1)

Ñ

1
0
0

é

= 0

(and hence the rank can not be more than 2) but

k1

Ñ

1
0
0

é

+ k2

Ñ

0
1
1

é

if and only if k1 = k2 = 0 (and hence the rank must be at least
2).
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27.2 The determinant

Recall that for a 2x2 matrix,

A =

ñ

a b

c d

ô

the inverse of A is

A−1 = 1
ad−bc

ñ

2 3
3 1

ô

27.2.1 Details

Definition 27.1. The number ad −bc is called the determin-
antof the 2x2 matrix A.

Definition 27.2. Now suppose A is an nxn matrix. An
elementary product from the matrix is a product of n terms
based on taking exactly one term from each column of row x.
Each such term can be written in the form a1 j1 ·a2 j2 ·a3 j3 · . . . ·
an jn where j1, . . . , jn is a permutation of the integers 1,2, . . . ,n.
Each permutation σ of the integers 1,2, . . . ,n can be perfor-
med by repeatedly interchanging two numbers.

Definition 27.3. A signed elementary product is an
elementary product with a positive sign if the number
of interchanges in the permutation is even but negative
otherwise.

The determinant of A, det(A) or |A| is the sum of all signed
elementary products.
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27.2.2 Examples

Example 27.4. A =

ñ

a11 a12

a21 a22

ô

then
|A|= a11a22 −a12a21.

Example 27.5. A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





|A|
= a11a22a33 This is the identity permutation and has positive
sign
−a11a23a32 This is the permutation that only interchanges 2
and 3
−a12a21a33 Only one interchange
+a12a23a31 Two interchanges
+a13a21a32 Two interchanges
−a13a22a31 Three interchanges

Example 27.6. A =

ñ

1 1
1 0

ô

|A|=−1

Example 27.7. A =





1 0 0
0 2 0
0 0 3





|A|= 1 ·2 ·3 = 6

175



Example 27.8. A =





1 0 0
0 2 0
0 3 0





|A|= 0

Example 27.9. A =





1 0 0
0 0 2
0 3 0





|A|=−6

Example 27.10. A =

ñ

2 1
2 1

ô

|A|= 0

Example 27.11. A =





1 0 1
0 1 1
1 1 2





|A|= 0

27.3 Ranks, inverses and determinants

The following statements are true for an n×n matrix A:

• rank(A) = n

• det(A) 6= 0

• A has an inverse
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27.3.1 Details

Suppose A is an n×n matrix. Then the following are truths:

• rank(A) = n

• det(A) 6= 0

• A has an inverse
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28 Multivariate calculus

28.1 Vector functions of several variables

A vector-valued function of several variables is a function

f : Rm → Rn

i.e. a function of m dimensional vectors, which returns n di-
mensional vectors.

28.1.1 Examples

Example 28.1. A real valued function of many variables: f :
R3 → R, f (x1,x2,x3) = 2x1+3x2+4x3.

Note 28.1. Note that f is linear and f (x) = Ax where x =
Ñ

x1

x2

x3

é

and A =
[
2 3 4

]
.

Example 28.2. Let
f : R2 → R2

where:

f (x1,x2) =

Ç

x1+ x2

x1− x2

å

Note 28.2. Note that f (x) = Ax, where A =

ñ

1 1
1 −1

ô

.

Example 28.3. Let
f : R3 → R4
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be defined by

f (x) =

á

x1 + x2

x1 − x3

y− z

x1+ x2+ x3

ë

Note 28.3. Note that:

f (x) = Ax

where

A =








1 1 0
1 0 −1
0 1 −1
1 1 1








Example 28.4. These multi-dimensional functions do not
have to be linear, for example the function f : R2 → R2

f (x) =

Ç

x1x2

x2
1 + x2

2

å

,

is obviously not linear.

28.2 The gradient

Suppose the real valued function f : Rm →R is differentiable
in each coordinate. Then the gradient of f , denoted ∇ f is
given by

∇ f (x) =
Ä

∂ f

∂x1
, . . . , ∂ f

∂x1

ä

.
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28.2.1 Details

Definition 28.1. Suppose the real valued function f :Rm →R

is differentiable in each coordinate. Then the gradient of f ,
denoted ∇ f is given by

∇ f (x) =
Ä

∂ f

∂x1
, . . . , ∂ f

∂x1

ä

,

where each partial derivative ∂ f

∂xi
is computed by differentiat-

ing f with respect to that variable, regarding the others as fix-
ed.

28.2.2 Examples

Example 28.5.

f (x)= x2+y2+2xy;
∂ f

∂x
= 2x+2y,

∂ f

∂y
= 2y+2x,∇ f =

(
2x+2y, 2y+2x

)

Example 28.6.

f (x) = x1 − x2;∇ f =
(
1, −1

)

28.3 The Jacobian

Now consider a function f : Rm → Rn. Write fi

for the ith coordinate of f , so we can write f (x) =

( f1(x), f2(x), . . . , fn(x)), where x ∈ Rm. If each coordinate
function fi is differentiable in each variable we can form the
Jacobian matrix of f :

Ñ

∇ f1
...

∇ fn

é

.
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28.3.1 Details

Now consider a function f :Rm →Rn. Write fi for the ith coord-
inate of f , so we can write f (x) = ( f1(x), f2(x), . . . , fn(x)), wh-
ere x ∈ Rm. If each coordinate function fi is differentiable in
each variable we can form the Jacobian matrix of f :

Ñ

∇ f1
...

∇ fn

é

.

In this matrix, the element in the ith row and jth column is ∂ fi
∂x j

.

28.3.2 Examples

Example 28.7. For the function

f (x,y) =

Ñ

x2 + y

xy

x

é

=

Ñ

f1(x,y)

f2(x,y)

f3(x,y)

é

,

the Jacobian matrix of f is the matrix

J =





∇ f1

∇ f2

∇ f3



=





2x 2y

y x

1 0



 .

28.4 Univariate integration by substitution

If f is a continuous function and g is strictly increasing and
differentiable then,

∫ g(b)

g(a)
f (x)dx =

∫ b

a

f (g(t))g′(t)dt
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28.4.1 Details

If f is a continuous function and g is strictly increasing and
differentiable then,

∫ g(b)

g(a)
f (x)dx =

∫ b

a

f (g(t))g′(t)dt

It follows that if X is a continuous random variable with density
f and Y = h(X) is a function of X that has the inverse g = h−1,
so X = g(Y ) , then the density of Y is given by,

fY(y) = f (g(y))g′(y)

This is a consequence of

P[Y ≤ b] =P[g(Y)≤ g(b)] =P[X ≤ g(b)] =
∫ g(b)

−∞
f (x)dx=

∫ b

−∞
f (g(y))g′(y)dy

28.5 Multivariate integration by substitution

Suppose f is a continuous function f : Rn → R and g : Rn →
Rn is a one-to-one function with continuous partial derivati-
ves. Then if U ⊆ Rn is a subset,

∫
g(U)

f (x)dx =
∫

U

(g(y))|J|dy

where J is the Jacobian matrix and |J| is the absolute value of
it’s determinant.

J =

∣
∣
∣
∣
∣
∣
∣






∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yn... ... · · · ...

∂gn

∂y1

∂gn

∂y2
· · · ∂gn

∂yn






∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣





∇g1
...

∇gn





∣
∣
∣
∣
∣
∣
∣

28.5.1 Details

Suppose f is a continuous function f : Rn → R and g : Rn →
Rn is a one-to-one function with continuous partial derivatives.
Then if U ⊆ Rn is a subset,
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∫
g(U)

f (x)dx =
∫

U

(g(y))|J|dy

where J is the Jacobian determinant and |J| is its absolute value.

J =

∣
∣
∣
∣
∣
∣
∣






∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yn... ... · · · ...

∂gn

∂y1

∂gn

∂y2
· · · ∂gn

∂yn






∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣





∇g1
...

∇gn





∣
∣
∣
∣
∣
∣
∣

Similar calculations as in 28.4 give us that if X is a continuous
multivariate random variable, X = (X1, . . . ,Xn)

′ with density f

and Y = h(X), where h is 1-1 with inverse g = h−1. So, X =

g(Y), then the density of Y is given by;

fY(y) = f (g(y))|J|

28.5.2 Examples

Example 28.8. If Y = AX where A is an n× n matrix with
det(A) 6= 0 and X = (X1, . . . ,Xn)

′ are i.i.d. random variables,
then we have the following results:

The joint density of X1 · · ·Xn is the product of the individual
(marginal) densities,

fX(x) = f (x1) f (x2) · · · f (xn)

The matrix of partial derivatives corresponds to ∂g

∂y
where

X = g(Y), i.e. these are the derivatives of the transformation:
X = g(Y) = A−1Y, or X = BY where B = A−1.

But if X = BY, then

Xi = bi1y1 +bi2y2+ · · ·bi jy j · · ·binyn
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So, ∂xi

∂y j
= bi j and thus,

J =

∣
∣
∣
∣

∂dx
∂dy

∣
∣
∣
∣= |B|= |A−1|= 1

|A|
The density of Y is therefore;

fY(y) = fX(g(y))|J|= fX(A
−1y)|A−1|
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29 The multivariate normal distribution and related topics

29.1 Transformations of random variables

Recall that if X is a vector of continuous random variables
with a joint probability density function and if Y = h(X) such
that h is a 1-1 function and continuously differentiable with
inverse g so X = g(Y ), then the density of Y is given by

fY(y) = f (g(y))|J|

29.1.1 Details

J is the Jacobian determinant of g. In particular if Y = AX then

fY(y) = f (A−1y)|det(A−1)|

if A has an inverse.

29.2 The multivariate normal distribution

29.2.1 Details

Consider i.i.d. random variables, Z1, . . . ,Zn ∼ (0,1), written

Z =

Ñ

Z1
...

Zn

é

and let Y = AZ + µ where A is an invertible nxn

matrix and µ ∈ Rn is a vector, so Z = A−1(Y −µ).

Then the p.d.f. of Y is given by

fY(y) = fZ(A
−1(y−µ))|det(A−1)|

But the joint p.d.f. of Z is the product of the p.d.f.’s of Z1, . . . ,Zn,
so fZ(z) = f (z1) · f (z2) · . . . · f (zn) where

f (zi) =
1√
2π

e−
z2
2

and hence
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fZ(z) =
n

∏
i=1

1√
2π

e
−z2

2

= (
1√
2π

)ne−
1
2 ∑n

i=1 z2
i

=
1

(2π)
n
2
e−

1
2z′z

since

n

∑
i=1

z2
i = ‖z‖2 = z · z = z′z

The joint p.d.f. of Y is therefore

fY(y) = fZ(A
−1(y−µ))|det(A−1)|

=
1

(2π)
n
2
e−

1
2(A

−1(y−µ))′(A−1(y−µ)) 1
|det(A)|

We can write det(AA′) = det(A)2 so |det(A)|=
√

det(AA′) and
if we write Σ = AA′, then

|det(A)|= |Σ|1
2

Also, note that

(A−1(y−µ))′(A−1(y−µ))= (y−µ)′(A−1)′A−1(y−µ)= (y−µ)′Σ−1(y−µ)

We can now write

fY(y) =
1

(2π)
n
2 |Σ|1

2

e−
1
2(y−µ)Σ−1(y−µ)

This is the density of the multivariate normal distribution.
Note that

E[Y ] = µ

V [Y ] =V [AZ] = AV [Z]A′ = AIA′ = Σ

Notation: Y ∼ n(µ,Σ)
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29.3 Univariate normal transforms

The general univariate normal distribution with density

fY(y) =
1√
2πσ

e
−(y−µ)2

2σ2

is a special case of the multivariate version.

29.3.1 Details

Further, if Z ∼ n(0,1), then clearly X = aZ+µ∼ n(µ,σ2) where
σ2 = a2

29.4 Transforms to lower dimensions

If Y ∼ n(µ,Σ) is a random vector of length n and A is an m×n

matrix of rank m ≤ n, then AY ∼ n(Aµ,AΣA′).

29.4.1 Details

If Y ∼ n(µ,Σ) is a random vector of length n and A is an m×n

matrix of rank m ≤ n, then AY ∼ n(Aµ,AΣA′).

To prove this, set up an (n−m)×n matrix, B, so that the n×n

matrix, C, formed from combining the rows of A and B is of
full rank n. Then it is easy to derive the density of CY which
also factors nicely into a product, only one of which contains
AY , which gives the density for AY .
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29.5 The OLS estimator

Suppose Y ∼ n(Xβ,σ2I). The ordinary least squares
estimator, when the n × p matrix is of full rank, p, where
p ≤ n, is:

β̂ = (X ′X)−1X ′Y

The random variable which describes the process giving the
data and estimate is:

b = (X ′X)−1X ′Y

It follows that
β̂ ∼ n(β,σ2(X ′X)−1)

29.5.1 Details

Suppose Y ∼ n(Xβ,σ2I). The ordinary least squares estimator,
when the n× p matrix is of full rank, p, is:

β̂ = (X ′X)−1X ′Y.

The equation below is the random variable which describes the
process giving the data and estimate:

b = (X ′X)−1X ′Y

If B = (X ′X)−1X ′, then we know that

BY ∼ n(BXβ,B(σ2I)B′)

Note that
BXβ = (X ′X)−1X ′Xβ = β

and
B(σ2I)B′ = σ(X ′X)−1X ′[(X ′X)−1X ′]′

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1

It follows that
β̂ ∼ n(β,σ2(X ′X)−1)
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Note 29.1. The earlier results regarding the multivariate Gaussi-
an distribution also show that the vector of parameter estimates
will be Gaussian even if the original Y -variables are not in-
dependent.
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30 Independence, expectations and the moment generat-
ing function

30.1 Independent random variables

Recall that two events, A and B, are independent if,

P[A∩B] = P[A]P[B]

Since the conditional probability of A given B is defined by:

P[A|B] = P[A∩B]

P[B]

We see that A and B are independent if and only if

P[A|B] = P[A](whenP[B]> 0)

Two continuous random variables, X and Y , are similarly in-
dependent if,

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B]

30.1.1 Details

Two continuous random variables, X and Y , are similarly in-
dependent if,

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B]

Now suppose X has p.d.f. fX and Y has p.d.f. fY . Then,

P[X ∈ A] =

∫
A

fX(x)dx

P[Y ∈ B] =
∫

B

fY(y)dy

So X and Y are independent if:

P[X ∈,Y ∈ B] =
∫

A

fX(x)dx

∫
B

fY(y)dy
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=
∫

A

fX(x)(
∫

B

fY(y)dy)dx

=

∫
A

∫
B

fX(x) fY(y)dydx

But, if f is the joint density of X and Y then we know that

P[X ∈ A,Y ∈ B]

∫
A

∫
B

f (x,y)dydx

Hence X and Y are independent if and only if we can write the
joint density in the form of,

f (x,y) = fX(x) fY(y)

30.2 Independence and expected values

If X and Y are independent random variables then
E[XY ] = E[X ]E[Y ].

Further, if X and Y are independent random variables then
E[g(X)h(Y)] = E[g(X)]E[h(Y)] is true if g and h are functi-
ons in which expectations exist.

30.2.1 Details

If X and Y are random variables with a joint distribution functi-
on f (x,y), then it is true that for h : R2 → R we have

E[h(X ,Y )] =
∫ ∫

h(x,y) f (x,y)dxdy

for those h such that the integral on the right exists.

Suppose X and Y are independent continuous r.v., then
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f (x,y) = fX(x) fY(y)

Thus,

E[XY ] =
∫ ∫

xy f (x,y)dxdy

=
∫ ∫

xy fX(x) fY(y)dxdy

=
∫

x fX(x)dx

∫
y fY(y)dy

= E[X ]E[Y ]

Note 30.1. Note that if X and Y are independent then E[h(X)g(Y)] =

E[h(X)]E[g(Y)] is true whenever the functions h and g have
expected values.

30.2.2 Examples

Example 30.1. Suppose X ,Y ∈U(0,2) are i.i.d then,

fX(x) =

®

1
2 if 0 ≤ x ≤ 2
0 otherwise

and similarly for fY .

Next, note that,

f (x,y) = fX(x) fY(y) =

®

1
4 if 0 ≤ x,y ≤ 2
0 otherwise

Also note that f (x,y)≥ 0 for all (x,y) ∈ R2 and

∫ ∫
f (x,y)dxdy =

∫ 2

0

∫ 2

0

1
4

dxdy =
1
4
.4 = 1

It follows that,

E[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xy f (x,y)dxdy
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=
∫ 2

y=0

∫ 2

x=0
xy.

1
4

dxdy

=

∫ 2

y=0
(

∫ 2

x=0
xy

1
4

dx)dy

=
∫ 2

y=0
[
1
4

y.
1
2

x2]2x=0dy

=
∫ 2

y=0

1
4

y(
1
2
.22− 1

2
.0)dy

∫ 2

0

2
4

ydy =

∫ 2

0

1
2

ydy =
1
2
· 1
2

y2|20 =
1
4
·22 = 1

But

E[X ] = E[Y ] =

∫ 2

y=0
x.

1
2

dx = 1

So
E[XY ] = E[X ]E[Y ]

30.3 Independence and the covariance

If X and Y are independent then Cov(X ,Y) = 0.

In fact, if X and Y are independent then Cov(h(X),g(Y)) = 0
for any functions g and h in which expected values exist.

30.4 The moment generating function

If X is a random variable we define the moment generating
function when t exists as: M(t) := E(etX).

30.4.1 Examples

193



Example 30.2. If X ∼ b(n, p) then M(t) =
n

∑
x=0

etxp(x) =

n

∑
x=0

etx

Ç

n

x

å

p · (1− p)n−x

30.5 Moments and the moment generating function

If MX(t) is the moment generating function (mgf) of X , then
M

(n)
X (0) = E[Xn].

30.5.1 Details

Observe that M(t) = E[etX ] =E[1+X + (tX)2

2! + (tX)3

3! + . . . ] since

ea = 1+a+ a2

2! +
a3

3! + . . . . If the random variable e|tX | has a finite
expected value then we can switch the sum and the expected
valued to obtain:

M(t) = E[
∞

∑
n=0

(tX)n

n!
] =

∞

∑
n=0

E[(tX)n]

n!
=

∞

∑
n=0

tnE[Xn]

n!

This implies that the nth derivative of M(t) evaluated at t = 0 is
exactly E[Xn]

30.6 The moment generating function of a sum of random variables

MX+Y(t) = MX(t) ·MY(t) if X and Y are independent.

30.6.1 Details

Let X and Y be independent random vaiables, then

MX+Y(t) = E[eXt+Yt] = E[eXteXt] = E[eXt]E[eXt] = MX(t)MY(t)
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30.7 Uniqueness of the moment generating function

Moment generating functions (m.g.f.) uniquely determine the
probability distribution function for random variables. Thus,
if two random variables have the same m.g.f, then they must
also have the same distribution.
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31 The gamma distribution

31.1 The gamma distribution

If a random variable X has the density

f (x) =
xα−1e

−x
β

Γ(α)βα

where x > 0 for some constants α, β > 0, then X is said to
have a gamma distribution.

31.1.1 Details

The function Γ is basically chosen so that f integrates to one,
i.e.

Γ(α) =
∫ ∞

0
tα−1e−tdt

It is not too hard to see that Γ(n) = (n− 1)! if n ∈ N. Also,
Γ(α+1) = αΓ(α) for all α > 0.

31.2 The mean, variance and mgf of the gamma distribution

Suppose X ∼ G(α,β) i.e. X has density

f (x) =
xα−1e−x/β

Γ(α)βα
,x > 0

Then,
E[X ] = αβ

M(t) = (1−βt)−α

V [X ] = αβ2

31.2.1 Details

The expected value of X can be computed as follows:
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E[X ] =
∫ ∞

−∞
x f (x)dx

=
∫ ∞

0
x

xα−1e−x/β

Γ(α)βα
dx

=
Γ(α+1)βα+1

Γ(α)βα

∫ ∞

0

x(α+1)−1e−x/β

Γ(α+1)βα+1
dx

=
αΓ(α)βα+1

Γ(α)βα

so E[X ] = αβ.

Next, the m.g.f.is given by

E[etX ] =

∫ ∞

0
etxxα−1e−x/β

Γ(α)βα
dx

=
1

Γ(α)βα

∫ ∞

0
xα−1etx−x/βdx

=
Γ(α)φα

Γ(α)βα

∫ ∞

0

x(α−1)e−x/φ

Γ(α)φα
dx

if we choose φ so that −x
φ
= tx− x/β i.e. −1

φ
= t − 1

β
i.e. φ =

− 1
t−1/β

= β
1−βt

then we have

M(t) =

Å

φ

β

ãα

=

Å

β/(1−βt)

β

ãα

=
1

(1−βt)α

or M(t) = (1−βt)−α. It follows that

M′(t) = (−α)(1−βt)−α−1(−β) = αβ(1−βt)−α−1
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so M′(0) = αβ. Further,

M′′(t) = αβ(−α−1)(1−βt)−α−2(−β)

= αβ2(α+1)(1−βt)−α−2

E[X2] = M′′(0)

= αβ2(α+1)

= α2β2+αβ2

Hence,

V [X ] = E[X ]2−E[X ]2

= α2β2 +αβ2− (αβ)2

= αβ2
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31.3 Special cases of the gamma distribution: The exponential and
chi-squared distributions

Consider the gamma density,

f (x) =
xα−1e

−x
β

Γ(α)βα
,x > 0

For parameters α,β > 0.

If α = 1 then

f (x) =
1
β

e
−x
β ,x > 0

and this is the density of exponential distribution.

Consider next the case α = v
2 and β = 2 where v is an integer,

so the density becomes,

f (x) =
x

v
2−1e

−x
2

Γ( v
2)Z

v
2
,x > 0

This is the density of a chi-squared random variable with v

degrees of freedom.

31.3.1 Details

Consider, α = v
2 and β = 2 where v is an integer, so the density

becomes,

f (x) =
x

v
2−1e

−x
2

Γ( v
2)Z

v
2
,x > 0

This is the density of a chi - squared random variable with v

degrees of freedom.

This is easy to see by starting with Z ∼ n(0,1) and defining
W = Z2 so that the c.d.f. is:
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H(w) = P[W ≤ w] = P[Z2 ≤ w]

= P[−
√

w ≤ Z ≤
√

w]

= 1−P[|Z|>
√

w]

= 1−2p[Z <−
√

w]

= 1−2
∫ √

w

−α

e−t2

2√
2w

dt = 1−2φ(
√

w)

The p.d.f. of w is therefore,

h(w) = H ′(w)

= 0−2φ′(
√

w)
1
2

w
1
2−1

but

φ(x) =
∫ x

−α

e−t2

2

2Π
dt;φ′(x) =

d

dx

∫ x

α

e−t2

2

2Π
dt =

e−x2

2

2Π

So

h[w] =−2
e−w

2

2Π
.
1
2
.w

1
2−1

h[w] =
w

−1
2 −1e−w

2

2Π
,w > 0

We see that we must have h = f with v = 1. We have also
shown Γ(1

2)2
1
2 =

√
2Π, i.e Γ(1

2) =
√

Π. Hence we have shown
the χ2 distribution on 1 df to be G(α = v

2,β = 2) when v = 1.
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31.4 The sum of gamma variables

In the general case if X1 . . .Xn ∼ G(α,β) are i.i.d. then
X1 +X2+ . . .Xn ∼ G(nα,β).

In particular, if X1,X2, . . . ,Xv ∼ χ2 i.i.d. then ∑
v
i=1 Xi ∼ χ2

v.

31.4.1 Details

If X and Y are i.i.d. G(α,β), then

MX(t) = MY(t) =
1

(1−βt)α

and

MX+Y(t) = MX(t)MY(t) =
1

(1−βt)2α

So
X +Y ∼ G(2α,β)

In the general case if X1 . . .Xn ∼ G(α,β) are i.i.d. then X1 +

X2+ . . .Xn ∼ G(nα,β). In particular, if X1,X2, . . . ,Xv ∼ χ2 i.i.d.,
then ∑

v
i=1 Xi ∼ χ2

v
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32 Notes and examples: The linear model

32.1 Simple linear regression in R

To test the effect of one variable
on another, simple linear regression
may be applied. The fitted model
may be expressed as y = α+ β̂x, wh-
ere α is a constant, β̂ is the estimated
coefficient, and x is the explanatory
variable.

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

speed

d
is

t

Example taken from R of a fitted model using
linear regression.

32.1.1 Details

Below is the linear regression output using the R’s data set
"car". Notice that the output from the model may be divided
into two main categories:

1. output that assesses the model as a whole, and

2. output that relates to the estimated coefficients for the model

Call:

lm(formula = dist ~ speed, data = 
ars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

---
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Residual standard error: 15.38 on 48 degrees of

freedom

Multiple R-squared: 0.6511, Adjusted R-squared:

0.6438

F-statisti
: 89.57 on 1 and 48 DF, p-value: 1.490e

-12

Notice that there are four different sets of output (Call, Residuals,
Coefficients, and Results) for both the constant α and the estima-
ted coefficient β̂ speed variable.

The estimated coefficients describe the change in the dependent
variable when there is a single unit increase in the explanatory
variable given that everything else is held constant.

The standard error is a measure of accuracy and is used to
construct the confidence interval. Confidence intervals provi-
de a range of values for which there is a set level of confidence
that the true population mean will be within the given range.
For example, if the CI is set at 95% percent then the probability
of observing a value outside the given CI range is less than 0.05.

The p-value is represented as a percentage. Specifically, the
p-value indicates the percentage of time, given that your null
hypothesis is true, that you would find an outcome at least as
extreme as the observed value. If your calculated p-value is
0.02 then 2
In the overall model assessment the R-squared is the explained
variance over the total variance. Generally, a higher R2 is better
but data with very little variance makes it easy to achieve a
higher R2, which is why the adjusted R2 is presented.

Lastly, the F-statistic is given. Since the t-Statistic is not app-
ropriate to compare two or more coefficients, the F-statistic
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must be applied. The basic methodology is that it compares
a restricted model where the coefficients have been set to a
certain fixed level to a model which is unrestricted. The most
common is the sum of squared residuals F-test.

32.2 Multiple linear regression

Multiple linear regression attempts to model the relationship
between two or more explanatory variables and a respon-
se variable by fitting a linear equation to observed data.
Formally, the model for multiple linear regression, given n

observations, is
yi = β1xi,1+β2xi,2+ . . .+βpxi,p + ei for i = 1,2, . . . ,n
As always, we view the data, yi as observations of random
variables, so another way to describe the same model is
Yi = β1xi,1+β2xi,2+ . . .+βpxi,p + εi for i = 1,2, . . . ,n,
and we note that the x-values are just numbers and are usually
assumed to be without any measurement error.

32.3 The one-way model

The one-way ANOVA model is of the form:

Yi j = µi + εi j

or
Yi j = µ+αi+ εi j

32.3.1 Details

The one-way ANOVA model is of the form:

Yi j = µi + εi j

where Yi j is observation j in treatment group i and µi are the
parameters of the model and are means of treatment group i.
The εi j are independent and follow a normal distribution with
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mean zero and constant variance σ2 often written as ε∼N(0,σ2).

The ANOVA model can also be written in the form:

Yi j = µ+αi+ εi j

where µ is the overall mean of all treatment groups and αi is the
deviation of mean of treatment group i from the overall mean.
The εi j follow a normal distribution as before.

The expected value of Yi j is µi as the expected value of the errors
is zero, often written as E[Yi j] = µi.

32.3.2 Examples

Example 32.1. In the rat diet experiment the model would be
of the form:

yi j = µi+ εi j

where yi j is the weight gain for rat j in diet group i, µi would
be the mean weight gain in diet group i and εi j would be the
deviation of rat j from the mean of its diet group.

32.4 Random effects in the one-way layout

The simplest random effects model is the one-way layout,
commonly written in the form

yi j = µ+αi+ εi j,

where j = 1, . . . ,J and i = 1, . . . , I.
Normally one also assumes εi j ∼ n(0,σ2

A), αi ∼ n(0,σ2
A), and

that all these random variables are independent.
Note that we have stopped making a distinction in notation
between random variables and measurements (the y-values
are just random variables when distributions occur).
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32.4.1 Details

Note that this is considerably different from the fixed effect
model.
Since the factor has changed to a random variable with an expected
value of zero, the expected value of all the y is the same:

Eyi j = µ.

The variance of y now has two components:

V yi j = σ2
A+σ2.

In addition we have a covariance structure between the mea-
surements and this needs to be looked at in some detail. First,
the general case of a covariance between two general yi j and
yi′ j′, where the indices may or may not be the same:

cov(yi j,yi′ j′) = cov(αi+ εi j,αi′+ εi′ j′)

= E[(αi+ εi j)(αi′+ εi′ j′)]

= E[αiαi′]+E[εi jαi′]+E[αiεi′ j′]+E[εi jεi′ j′]

Note 32.1. Recall that E[UW ] =E[U ]E[W ] if U,W are independ-
ent

So,
E[εi jαi′] = E[αiεi′ j′] = EαiEεi′ j′ = 0.

Further,

E[εi jεi′ j′] =

®

σ2 if i = i′, j = j′

0 otherwise

and

E[αiαi′] =

®

σ2
A if i = i′

0 if i 6= i′

so

Cov(yi j,yi′ j′) =







σ2
A+σ2 if i = i′, j = j′

σ′
A if i = i′, j 6= j′

0 otherwise
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It follows that the correlation between measurements yi j and
yi j′ (within the same group) are

cor(yi j,yi j′ =
Cov(yi j,yi j′)
√

v[yi j]v[yi j′]

=
σ2

A
»

(σ2
A+σ2)2

⇒Cor(yi j,yi j′) =
σ2

A

σ2
A+σ2

This is the intra-class correlation.

32.5 Linear mixed effects models (lmm)

The simplest mixed effects model is

yi j = µ+αi+β j + εi j

where µ,α1,α2, . . . ,αi are unknown constants,
β j ∼ n(0,σ2

β)

εi j ∼ n(0,σ2)

(β j and εi j independent).

32.5.1 Details

The µ and αi are the fixed effects and β j is the random effects.

Recall that in the simple one-way layout with yi j = µ+αi+εi j,
we can write the model in matrix form y = Xβ+ ε where β =

(µ,α1, . . . ,αI)
′ and X is appropriately chosen.

The same applies to the simplest random effects model yi j =

µ+β j + εi j where we can write y = µ · 1+ZU + ε where 1 =

(1,1, . . . ,1)′, U = (β1, . . . ,βJ)
′.
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In general, we write the mixed effects models in matrix form
with y = Xβ+ZU + ε, where β contains the fixed effects and
U contains the random effects.

32.5.2 Examples

Example 32.2. 1. yi = β1+β2xi+ εi (SLR)

2. yi j = µ+αi+βixi j + εi j only fixed effects (ANCOVA)

3. yi jk = µ + αi + b j + εi jk where αi are fixed but b j are
random.

4. yi jk = µ+αi + b jxi j + εi jk where αi are fixed but b j are
random slopes.

32.6 Maximum likelihood estimation in lmm

The likelihood function for the unknown parameters
L(β,σ2

A,σ
2) is

1

(2π)n/2 |Σy|n/2
e−1/2(y−Xβ)′Σ−1

y (y−Xβ)

where Σy = σ2
AZZ′+σ2I.

Maximising L over β,σ2
A,σ

2 gives the variance components
and the fixed effects. May also need û, this is normally done
using BLUP.

32.6.1 Details

Recall that if W is a random variable vector with EW = µ and
VW = Σ then

E[AW ] = Aµ

V [AW ] = AΣA′
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In particular, if W ∼ n(µ,Σ( then AW ∼ n(Aµ,AΣA′).

Now consider the lmm with

y = Xβ+Zu+ ε

where
u = (u1, . . . ,um)

′

ε = (ε1, . . . ,εm)
′

and the random variables Ui ∼ n(0,σ2
A), εi ∼ n(0,σ2) are all

independent so that u ∼ n(0,σ2
AI) and ε ∼ n(0,σ2I).

Then Ey = Xβ and

V y = Σy

= V [Zu+V [ε]

= Z(σ2
AI)Z′+σ2I

= σ2
AZZ′+σ2I

and hence y ∼ n(Xβ,σ2
AZZ′+σ2I).

Therefore the likelihood function for the unknown parameters
L(β,σ2

A,σ
2) is

=
1

(2π)n/2 |Σy|n/2
e−1/2(y−Xβ)′Σ−1

y (y−Xβ)

where Σy = σ2
AZZ′ +σ2I. Maximizing L over β,σ2

A,σ
2 gives

the variance components and the fixed effects. May also need
û, which is normally done using BLUP.
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33 Some regression topics

33.1 Poisson regression

Data yi are from a Poisson distribution with mean µi and
lnµi = β1 + β2xi. A likelihood function can be written and
the parameters can be estimated using maximum likelihood.

33.2 The generalized linear model (GLM)

Data yi are from a distribution within the exponential family,
with mean µi and g(µi) = x′

iβ for some link function, g. A
likelihood function can now be written and the parameters
can be estimated using maximum likelihood.

33.2.1 Details

Data yi are from a distribution within the exponential family,
with mean µi and g(µi) = x′

iβ for some link function, g.

The exponential family includes distributions such as the Gaussi-
an, binomial, Poisson, and gamma (and thus exponential and
chi-squared).

The link functions are typically

• identity (with the Gaussian)

• log (with the Poisson and the gamma)

• logistic (with the binomial)

A likelihood function can be set up for each of these models and
the parameters can be estimated using maximum likelihood.
The glm package in R has options to estimate parameters in
these models.
Copyright 2022, Gunnar Stefansson (editor) with contributi-
ons from very many students
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34 Overview drills

Copyright 2021, Gunnar Stefansson (editor) with contributi-
ons from very many students
This work is licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit http://creativecommons.or
sa/1.0/ or send a letter to Creative Commons, 559 Nathan Ab-
bott Way, Stanford, California 94305, USA.

212


	Numbers, arithmetic and basic algebra
	Natural Numbers
	Details
	Examples

	Starting with R
	Details
	Examples

	The Integers
	Details
	Examples

	Rational numbers
	Details
	Examples

	The real line
	Details
	Examples


	Data vectors
	The plane
	Details
	Examples

	Simple plots in R
	Examples

	Data
	Details
	Examples

	Indices for a data vector
	Details
	Examples

	Summation
	Examples


	More on algebra
	Some Squares
	Details

	Pascal's Triangle
	Details
	Examples

	Factorials
	Details
	Examples

	Combinations
	Details
	Examples

	The binomial theorem
	Details
	Examples


	Discrete random variables and the binomial distribution
	Simple probabilities
	Details
	Examples

	Random variables
	Examples
	Handout

	Simple surveys with replacement
	Examples

	The binomial distribution
	Examples

	General discrete probability distributions
	Details
	Examples

	The expected value or population mean
	Details
	Examples

	The population variance
	Details
	Examples


	Functions
	Functions of a single variable
	Details
	Examples

	Functions in R
	Ranges and plots in R
	Examples

	Plotting functions
	Examples

	Functions of several variables
	Examples


	Polynomials
	The general polynomial
	Details

	The quadratic
	Details

	The cubic
	The Quartic
	Solving the linear equation
	Details

	Roots of the quadratic equation
	Details
	Examples


	Simple data analysis in R
	Entering data; dataframes
	Details
	Examples

	Histograms
	Examples

	Bar Charts
	Details

	Mean, standard error, standard deviations
	Details

	Scatter plots and correlations
	Details
	Examples


	Indices and the apply commands in R
	Giving names to elements
	Examples

	Regular matrix indices and naming
	Details
	Examples

	The apply command
	The tapply command
	Examples

	Logical indexing
	Examples

	Lists, indexing lists
	Examples


	Functions of functions and the exponential function
	Exponential growth and decline
	Details

	The exponential function
	Details

	Properties of the exponential function
	Functions of functions
	Details
	Examples

	Storing and using R code
	Examples

	Storing and calling functions in R
	Examples


	Inverse functions and the logarithm
	Inverse Function
	Details
	Examples

	When the inverse exists: The domain question
	Examples

	The base 10 logarithm
	Details
	Examples

	The natural logarithm
	Properties of logarithm(s)
	Details

	The exponential function and the logarithm
	Details
	Examples


	Continuity and limits
	The concept of continuity
	Details

	Discrete probabilities and cumulative distribution functions
	Details
	Examples

	Notes on discontinuous function
	Details

	Continuity of polynomials
	Details

	Simple Limits
	Details
	Examples

	More on limits
	Examples

	One-sided limits
	Details


	Sequences and series
	Sequences
	Details
	Examples

	Convergent sequences
	Details
	Examples

	Infinite sums (series)
	Details
	Examples

	The exponential function and the Poisson distribution
	Details

	Relation to expected values
	Details


	Slopes of lines and curves
	The slope of a line
	Details

	Segment slopes
	Details

	The slope of y=x2
	Examples

	The tangent to a curve
	Details
	Examples

	The slope of a general curve
	Details


	Derivatives
	The derivative as a limit
	Details

	The derivative of f(x)=a+bx
	Details

	The derivative of f(x)=xn
	Details

	The derivative of ln and exp
	Details

	The derivative of a sum and linear combination
	Details
	Examples

	The derivative of a polynomial
	Details
	Examples

	The derivative of a product
	Details
	Examples

	Derivatives of composite functions
	Examples


	Applications of differentiation
	Tracking the sign of the derivative
	Details
	Examples

	Describing extrema using f''
	Details

	The likelihood function
	Details
	Examples

	Plotting the likelihood
	Examples

	Maximum likelihood estimation
	Details
	Examples

	Least squares estimation
	Details
	Examples


	Integrals and probability density functions
	Area under a curve
	Details

	The antiderivative
	Examples

	The fundamental theorem of calculus
	Detail
	Examples

	Density functions
	Details
	Examples

	Probabilities in R: The normal distribution
	Details
	Examples

	Some rules of integration
	Examples
	Handout


	Principles of programming
	Modularity
	Details
	Examples

	Modularity and functions
	Details
	Examples

	Modularity and files
	Details
	Examples

	Structuring an R project
	Details
	Examples

	Loops, for
	Details
	Examples

	The if and ifelse commands
	Examples

	Indenting
	Details

	Comments
	Examples


	The Central Limit Theorem and related topics
	The Central Limit Theorem
	Details
	Examples

	Properties of the binomial and Poisson distributions
	Details
	Examples

	Monte Carlo simulation
	Examples


	Miscellanea
	Simple probabilities in R
	Examples

	Computing normal probabilities in R
	Details
	Examples

	Introduction to hypothesis testing
	Details


	Multivariate probability distributions
	Joint probability distribution
	Details
	Examples

	The random sample
	Details
	Examples

	The sum of discrete random variables
	Details
	Examples

	The sum of two continuous random variables
	Details
	Examples

	Means and variances of linear combinations of independent random variables
	Details
	Examples

	Means and variances of linear combinations of measurements
	Examples

	The joint density of independent normal random variables
	Details

	More general multivariate probability density functions
	Examples
	Handout


	Some distributions related to the normal
	The normal and sums of normals
	Details
	Examples

	The Chi-square distribution
	Details

	Sum of Chi square Distributions
	Details

	Sum of squared deviation
	Details

	The t-distribution
	Details


	Estimation, estimates and estimators
	Ordinary least squares for a single mean
	Examples

	Maximum likelihood estimation
	Examples
	Detail

	Ordinary least squares
	Details

	Random variables and outcomes
	Details
	Examples

	Estimators and estimates
	Details


	Test of hypothesis, P values and related concepts
	The principle of the hypothesis test
	Examples

	The one sided z test for normal mean
	Examples

	The two-sided z test for a normal mean
	Details
	Examples

	The one-sided t-test for a single normal mean
	Details
	Examples

	Comparing means from normal populations
	Details

	Comparing means from large samples <Ól.B.M.>
	Details

	The P-value
	Examples

	The concept of significance
	Details


	Power and sample sizes
	The power of a test
	Details

	The power of tests for proportions
	Examples

	The Power of the one sided z test for the mean
	Details
	Examples

	Power and sample size for the one-sided z-test for a single normal mean
	Details
	Examples

	The non central t - distribution
	Details

	The power of t-test for a normal mean (warning: errors)
	Details

	Power and sample size for the one sided t-test for a mean
	Details
	Examples

	The power of the 2-sided t-test
	Details
	Examples

	The power of the 2-sample one and two-sided t-tests
	Details

	Sample sizes for two-sample one and two-sided t-tests
	Details

	A case study in power
	Handout


	Vectors and Matrix Operations
	Numbers, vectors, matrices
	Examples

	Elementary Operations
	Examples

	The tranpose of a matrix
	Details
	Examples

	Matrix multiplication
	Details
	Examples

	More on matrix multiplication
	Linear equations
	Details
	Examples

	The unit matrix
	The inverse of a matrix
	Examples


	Some notes on matrices and linear operators
	The matrix as a linear operator
	Examples

	Inner products and norms
	Details
	Examples

	Orthogonal vectors
	Details

	Linear combinations of i.i.d. random variables
	Examples

	Covariance between linear combinations of i.i.d random variables
	Details
	Examples

	Random vectors
	Details
	Examples

	Transforming random vectors
	Details


	Ranks and determinants
	The rank of a matrix
	Details
	Examples

	The determinant
	Details
	Examples

	Ranks, inverses and determinants
	Details


	Multivariate calculus
	Vector functions of several variables
	Examples

	The gradient
	Details
	Examples

	The Jacobian
	Details
	Examples

	Univariate integration by substitution
	Details

	Multivariate integration by substitution
	Details
	Examples


	The multivariate normal distribution and related topics
	Transformations of random variables
	Details

	The multivariate normal distribution
	Details

	Univariate normal transforms
	Details

	Transforms to lower dimensions
	Details

	The OLS estimator
	Details


	Independence, expectations and the moment generating function
	Independent random variables
	Details

	Independence and expected values
	Details
	Examples

	Independence and the covariance
	The moment generating function
	Examples

	Moments and the moment generating function
	Details

	The moment generating function of a sum of random variables
	Details

	Uniqueness of the moment generating function

	The gamma distribution
	The gamma distribution
	Details

	The mean, variance and mgf of the gamma distribution
	Details

	Special cases of the gamma distribution: The exponential and chi-squared distributions
	Details

	The sum of gamma variables
	Details


	Notes and examples: The linear model
	Simple linear regression in R
	Details

	Multiple linear regression
	The one-way model
	Details
	Examples

	Random effects in the one-way layout
	Details

	Linear mixed effects models (lmm)
	Details
	Examples

	Maximum likelihood estimation in lmm
	Details


	Some regression topics
	Poisson regression
	The generalized linear model (GLM)
	Details


	Overview drills

