Continuity and limits

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The concept of continuity

A function is continuous if it has no jumps. Thus, small changes in each x_{0}, the input, correspond to small changes in the output, $f\left(x_{0}\right)$.

Unlimited Growth

Figure: The above figure is an example of linear growth. Thomas Robert Malthus (1766-1834) warned about the dangers of uninhibited population growth.

Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete random variable is discontinuous.

Notes on discontinuous function

A function is discontinuous for values or ranges of the variable that do not vary continuously as the variable increases. In other words, breaks or jumps.

Discontinuous Function

Figure: $f(x)=\frac{1}{x}$, where $x \neq 0$

Continuity of polynomials

All polynomials, $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $\ldots+a_{n} x^{n}$, are continuous.

Polynomial Function

Simple Limits

A "limit" is used to describe the value that a function or sequence "approaches" as the input or index approaches some value. Limits are used to define continuity, derivatives and integrals.

Example of Limit

Figure: $f(x)=x^{x}$, for $x>0$

More on limits

Limits impose a certain range of values that may be applied to the function.

Figure: The function $f(x)=\frac{1}{1+e^{-x}}$.

Example 1:

The Beverton-Holt stock recruitment curve is given by:

$$
R=\frac{\alpha S}{1+\frac{S}{K}}
$$

One-sided limits

$f(x)$ may tend towards different numbers depending on whether $x \rightarrow x_{0}$:
from the right $\left(x \rightarrow x_{0+}\right)$ or from the left $\left(x \rightarrow x_{0-}\right)$.

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

