Continuity and limits math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Gunnar Stefansson (editor) with contribu

Continuity and limits

The concept of continuity

A function is continuous if it has no jumps. Thus, small changes in each x_0 , the input, correspond to small changes in the output, $f(x_0)$.

Figure: The above figure is an example of linear growth. Thomas Robert Malthus (1766-1834) warned about the dangers of uninhibited population growth.

Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete random variable is discontinuous.

Notes on discontinuous function

A function is discontinuous for values or ranges of the variable that do not vary continuously as the variable increases. In other words, breaks or jumps.

Continuity of polynomials

Simple Limits

A "limit" is used to describe the value that a function or sequence "approaches" as the input or index approaches some value. Limits are used to define continuity, derivatives and integrals.

Figure: $f(x) = x^x$, for x > 0

More on limits

Limits impose a certain range of values that may be applied to the function.

Example 1:

The Beverton-Holt stock recruitment curve is given by:

$$R = \frac{\alpha S}{1 + \frac{S}{K}}$$

Gunnar Stefansson (editor) with contribu

One-sided limits

f(x) may tend towards different numbers depending on whether $x \to x_0$: from the right $(x \to x_{0+})$ or from the left $(x \to x_{0-})$.

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.