Slopes of lines and curves

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The slope of a line

Linear functions produce straight-line graphs. In general, a straight line follows the following equation:

$$
y=a+b x
$$

where a and b are fixed numbers.
The line on the graph is the set of points:

$$
\{(x, y): x, y \in \mathbb{R}, y=a+b x\}
$$

Segment slopes

Let's assume we have a more general function
$y=f(x)$.
To find the slope of a line segment, consider $2 x$-coordinates, x_{0} and x_{1}, and look at the slope between ($\left.x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$.

The slope of $y=x^{2}$

Consider the task of computing the slope of the function $y=x^{2}$ at a given point.

The tangent to a curve

A tangent to a curve is a line that intersects the curve at exactly one point. The slope of a tangent for the function $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ is

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

The slope of a general curve

We can have positive slope in the right hand side of the graph and negative slope in the left hand side. The slope is zero at $\mathrm{x}=0$ as shown in the figure 2

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

