Derivatives
 math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The derivative as a limit

The derivative of the function f at the point x is defined as

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

if this limit exists.

The derivative of $f(x)=a+b x$

If $f(x)=a+b x$ then $f(x+h)=a+b(x+$ $h)=a+b x+b h$ and thus

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{b h}{h}=b
$$

The derivative of $f(x)=x^{n}$

$$
\text { If } f(x)=x^{n} \text {, then } f^{\prime}(x)=n x^{n-1}
$$

The derivative of \ln and \exp

If

$$
f(x)=e^{x}
$$

then

$$
f^{\prime}(x)=e^{x}
$$

If

$$
g(x)=\ln (x)
$$

then

$$
g^{\prime}(x)=\frac{1}{x}
$$

The derivative of a sum and linear combination

If f and g are functions then the derivative of $f+g$ is given by $f^{\prime}+g^{\prime}$.

The derivative of a polynomial

The derivative of a polynomial is the sum of the derivatives of the terms of the polynomial.

The derivative of a product

If

$$
h(x)=f(x) \cdot g(x)
$$

then

$$
h^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

Derivatives of composite functions

If f and g are functions and $h=f \circ g$ so that

$$
\begin{aligned}
& h(x)=f(g(x)) \text { then } \\
& h^{\prime}(x)=\frac{d h(x)}{d x}=f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

