Estimation, estimates and estimators math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Ordinary least squares for a single mean

If μ is unknown and x_{i}, \ldots, x_{n} are data, we can estimate μ by finding

$$
\min _{\mu} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

In this case the resulting estimate is simply

$$
\mu=\bar{x}
$$

and can easily be derived by setting the derivative to zero.

Maximum likelihood estimation

If $\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ is a random vector from a density f_{θ} where θ is an unknown parameter, and y is a vector of observations then we define the likelihood function to be

$$
L_{y}(\theta)=f_{\theta}(y)
$$

If, x_{1}, \ldots, x_{n} are assumed to come from independent normal distributions with a mean of μ and variance of σ^{2}, then the joint density is

$$
f\left(x_{1}\right) \cdot f\left(x_{2}\right) \cdot \ldots \cdot f\left(x_{n}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}
$$

and if we assume σ^{2} is known then the likelihood function is

$$
L(\mu)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}
$$

Ordinary least squares

Consider the regression problem where we fit a line through $\left(x_{i}, y_{i}\right)$ pairs with x_{1}, \ldots, x_{n} fixed numbers but where y_{i} is measured with error.

Figure: Regression line through data pairs.

Random variables and outcomes

Estimators and estimates

In OLS regression, note that the values of a and b

$$
\begin{gathered}
a=\bar{y}-b \bar{x} \\
b=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

are outcomes of random variables e.g. b is the outcome of

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

the estimator which has some distribution.

Figure: Shows an example of the distribution of the estimator $\hat{\beta}$

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

