Estimation, estimates and estimators math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Gunnar Stefansson (editor) with contribute Estimation, estimates and estimators

Ordinary least squares for a single mean

If μ is unknown and x_i,\ldots,x_n are data, we can estimate μ by finding

$$\min_{\mu}\sum_{i=1}^{n}(x_i-\mu)^2$$

In this case the resulting estimate is simply

$$\mu = \overline{x}$$

and can easily be derived by setting the derivative to zero.

Maximum likelihood estimation

If $(Y_1, \ldots, Y_n)'$ is a random vector from a density f_{θ} where θ is an unknown parameter, and y is a vector of observations then we define the **likelihood** function to be

$$L_{\mathsf{y}}(\theta) = f_{\theta}(\mathsf{y}).$$

If, x_1, \ldots, x_n are assumed to come from independent normal distributions with a mean of μ and variance of σ^2 , then the joint density is

$$f(x_1) \cdot f(x_2) \cdot \ldots \cdot f(x_n) = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

and if we assume σ^2 is known then the likelihood function is

$$L(\mu) = \frac{1}{(2\pi)^{n/2}\sigma^n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}$$

Ordinary least squares

Consider the regression problem where we fit a line through (x_i, y_i) pairs with x_1, \ldots, x_n fixed numbers but where y_i is measured with error.

Figure: Regression line through data pairs.

Random variables and outcomes

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Estimators and estimates

In OLS regression, note that the values of a and b

$$a = \overline{y} - b\overline{x}$$
$$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

are outcomes of random variables e.g. b is the outcome of

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Figure: Shows an example of the distribution of the estimator $\hat{\beta}$

the estimator which has some distribution.

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.