Test of hypothesis, P values and related concepts math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The principle of the hypothesis test

The principle is to formulate a hypothesis and an alternative hypothesis, H_{0} and H_{a} respectively, and then select a statistic with a given distribution when H_{0} is true and select a rejection region which has a specified probability (α) when H_{0} is true.
The rejection region is chosen to reflect H_{a}, i.e to ensure a high probability of rejection when H_{a} is true.

The one sided z test for normal mean

Consider testing

$$
H_{0}: \mu=\mu_{0}
$$

vs

$$
H_{a}: \mu>\mu_{0}
$$

Where data $x_{1} \ldots x_{n}$ are collected as independent observations of $X_{1} \ldots X_{n} \sim n\left(\mu, \sigma^{2}\right)$ and σ^{2} is known. If H_{0} is true, then

$$
\bar{x} \sim n\left(\mu_{0}, \frac{\sigma^{2}}{n}\right)
$$

So,

$$
Z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}} \sim n(0,1)
$$

The two-sided z test for a normal mean

$$
z:=\frac{\bar{x}-\mu_{0}}{s \sqrt{n}} \sim n(0,1)
$$

The one-sided t-test for a single normal mean

Recall that if $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ i.i.d. then

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}
$$

Comparing means from normal populations

Suppose data are gathered independently from two normal populations resulting in
x_{1}, \ldots, x_{n} and $y_{1}, \ldots y_{m}$

Comparing means from large samples <ÓI.B.M.>

If $X_{1}, \ldots . X_{n}$ and $Y_{1}, \ldots . Y_{m}$, are all independent (with finite variance) with expected values of μ_{1} and μ_{2} respectively, and variances of σ_{1}^{2}, and σ_{2}^{2} respectively, then

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}} \dot{\sim} n(0,1)
$$

if the sample sizes are large enough.
This is the central limit theorem.

The P-value

The p -value of a test is an evaluation of the probability of obtaining results which are as extreme as those observed in the context of the hypothesis.

The concept of significance

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

