Power and sample sizes math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Gunnar Stefansson (editor) with contribu

Power and sample sizes

The power of a test

Suppose we have a method to test a null hypothesis against an alternative hypothesis. The test would be "controlled" at some level α , i.e. $P[reject H_0] < \alpha$ whenever H_0 is true.

On the other hand, when H_0 is false one wants $P[reject H_0]$ to be as high as possible.

If the parameter to be tested is θ and θ_0 is a value within H_0 and θ_a is in H_a then we want $P_{\theta_0}[reject \ H_0] \leq \alpha$ and $P_{\theta_0}[reject \ H_0]$ as large as possible.

For a general θ we write

$$\beta(\theta) = P_{\theta}[reject \ H_0]$$

for the power of the test

A (10) A (10)

The power of tests for proportions

э

< A → <

The Power of the one sided z test for the mean

The one sided z-test for the mean (μ) is based on a random sample where $X_1 \dots X_n \sim n(\mu, \sigma^2)$ are independent and σ^2 is known.

The power of the test for an arbitrary μ can be computed as:

$$eta(\mu) = 1 - \Phi\left(rac{\mu_{\mathsf{0}}-\mu}{rac{\sigma}{\sqrt{n}}} + z_{1-lpha}
ight)$$

Power and sample size for the one-sided z-test for a single normal mean

Suppose we want to test $H_0: \mu = \mu_0$ vs $H_a: \mu > \mu_0$. We will reject H_0 if the observed value

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

is such that $z > z_{1-\alpha}$.

< ロト < 同ト < ヨト < ヨト

The non central t - distribution

Recall that if $Z \sim n(0,1)$ and $U \sim \chi^2_{\ v}$ are independent then

$$\frac{Z}{\sqrt{\frac{U}{v}}} \sim t_{v}$$

and it follows for a random sample $X_1 \dots X_n \sim n(\mu, \sigma^2)$ independent; that

$$\frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} = \frac{\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{\sum (X_i - \bar{X})^2}{\frac{\sigma^2}{n-1}}}} \sim t_{n-1}$$

Gunnar Stefansson (editor) with contribu

イロト 不得下 イヨト イヨト 二日

The power of t-test for a normal mean (warning: errors)

Gunnar Stefansson (editor) with contribu

Power and sample sizes

돌▶ ◀ 돌▶ 돌 ∽ ९ . March 7, 2022 7 / 12

< ロト < 同ト < ヨト < ヨト

Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test for a single mean (one sample), this can easily be done in R with the power.t.test command.

The power of the 2-sided t-test

A power analysis on a two-sided t-test can be done in R using the *power.t.test* command.

3

< ロト < 同ト < ヨト < ヨト

The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computed as follows:

$$\beta_{(\mu_1\mu_2)} = P_{\mu_1\mu_2} \left[\frac{Z + \Delta}{\sqrt{U/(n+m-2)}} > t^*_{1-\alpha,n+m-2} \right]$$

and the power of a two sample, two-sided t-test is give by:

$$\beta_{(\mu_1\mu_2)} = P_{\mu_1\mu_2} \left[\frac{Z + \Delta}{\sqrt{U/(n+m-2)}} > t^*_{1-\alpha,n+m-2} \right] + P_{\mu_1\mu_2} \left[\frac{Z + \Delta}{\sqrt{U/(n+m-2)}} \right]$$

where $\Delta = \frac{(\mu_1 - \mu_2)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}}$ and U is the SSE.

Gunnar Stefansson (editor) with contribu

Sample sizes for two-sample one and two-sided t-tests

The sample size should always satisfy the desired power.

A case study in power

Want to compute power in analysis of covariance:

$$y_{ij} = \mu_i + \beta x_{ij} + \epsilon_{ij}, \ i = 1, 2, \ j = 1, \dots J,$$

where $\epsilon_{ij} \sim n(0, \sigma^2)$ are i.i.d.?

This can be done by simulation and can easily be expanded to other cases.

・ 同 ト ・ ヨ ト ・ ヨ ト

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.