Power and sample sizes
 math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The power of a test

Suppose we have a method to test a null hypothesis against an alternative hypothesis. The test would be "controlled" at some level α, i.e. P reject $\left.H_{0}\right] \leq \alpha$ whenever H_{0} is true.

On the other hand, when H_{0} is false one wants $P\left[\right.$ reject $\left.H_{0}\right]$ to be as high as possible.

If the parameter to be tested is θ and θ_{0} is a value within H_{0} and θ_{a} is in H_{a} then we want $P_{\theta_{0}}$ [reject $\left.H_{0}\right] \leq \alpha$ and $P_{\theta_{a}}$ [reject $\left.H_{0}\right]$ as large as possible.

For a general θ we write

$$
\beta(\theta)=P_{\theta}\left[r e j e c t ~ H_{0}\right]
$$

for the power of the test

The power of tests for proportions

The Power of the one sided z test for the mean

The one sided z-test for the mean (μ) is based on a random sample where $X_{1} \ldots X_{n} \sim n\left(\mu, \sigma^{2}\right)$ are independent and σ^{2} is known.

The power of the test for an arbitrary μ can be computed as:

$$
\beta(\mu)=1-\Phi\left(\frac{\mu_{0}-\mu}{\frac{\sigma}{\sqrt{n}}}+z_{1-\alpha}\right)
$$

Power and sample size for the one-sided z-test for a single normal mean

Suppose we want to test $H_{0}: \mu=\mu_{0}$ vs $H_{a}: \mu>\mu_{0}$. We will reject H_{0} if the observed value

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}
$$

is such that $z>z_{1-\alpha}$.

The non central t - distribution

Recall that if $Z \sim n(0,1)$ and $U \sim \chi^{2}{ }_{v}$ are independent then

$$
\frac{Z}{\sqrt{\frac{u}{v}}} \sim t_{v}
$$

and it follows for a random sample $X_{1} \ldots X_{n} \sim n\left(\mu, \sigma^{2}\right)$ independent; that

$$
\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}=\frac{\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\frac{\sigma^{2}}{n-1}}}} \sim t_{n-1}
$$

The power of t-test for a normal mean (warning: errors)

Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test for a single mean (one sample), this can easily be done in R with the power.t.test command.

The power of the 2-sided t-test

A power analysis on a two-sided t-test can be done in R using the power.t.test command.

The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computed as follows:

$$
\beta_{\left(\mu_{1} \mu_{2}\right)}=P_{\mu_{1} \mu_{2}}\left[\frac{Z+\Delta}{\sqrt{U /(n+m-2)}}>t_{1-\alpha, n+m-2}^{*}\right]
$$

and the power of a two sample, two-sided t-test is give by:

$$
\beta_{\left(\mu_{1} \mu_{2}\right)}=P_{\mu_{1} \mu_{2}}\left[\frac{Z+\Delta}{\sqrt{U /(n+m-2)}}>t_{1-\alpha, n+m-2}^{*}\right]+P_{\mu_{1} \mu_{2}}\left[\frac{Z+\Delta}{\sqrt{U /(n+m-}}\right.
$$

where $\Delta=\frac{\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{n}+\frac{1}{m}}}$ and U is the SSE.

Sample sizes for two-sample one and two-sided t-tests

The sample size should always satisfy the desired power.

A case study in power

Want to compute power in analysis of covariance:

$$
y_{i j}=\mu_{i}+\beta x_{i j}+\epsilon_{i j}, \quad i=1,2, j=1, \ldots J
$$

where $\epsilon_{i j} \sim n\left(0, \sigma^{2}\right)$ are i.i.d.?
This can be done by simulation and can easily be expanded to other cases.

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

