Vectors and Matrix Operations

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Numbers, vectors, matrices

Recall that the set of real numbers is \mathbb{R} and that a vector, $v \in \mathbb{R}^{n}$ is just an n-tuple of numbers.

Similarly, an $n \times m$ matrix is just a table of numbers, with n rows and m columns and we can write

$$
A_{m n} \in \mathbb{R}^{m n}
$$

Note that a vector is normally considered equivalent to a $n \times 1$ matrix i.e. we view these as column vectors.

Elementary Operations

We can define multiplication of a real number k and a vector $v=$ $\left(v_{1}, \ldots, v_{n}\right)$ by $k \cdot v=\left(k v_{1}, \ldots, k v_{n}\right)$. The sum of two vectors in $\mathbb{R}^{n}, v=\left(v_{1}, \ldots, v_{n}\right)$ and $u=\left(u_{1}, \ldots, u_{n}\right)$ as the vector $v+u=$ $\left(v_{1}+u_{1}, \ldots, v_{n}+u_{n}\right)$. We can define multiplication of a number and a matrix and the sum of two matrices (of the same sizes) similarly.

The tranpose of a matrix

In R, matrices may be constructed using the "matrix" function and the transpose of A, A^{\prime}, may be obtained in R by using the " t " function: A<-matrix (1:6, nrow=3)
t (A)

Matrix multiplication

Matrices A and B can be multiplied together if A is an $n \times p$ matrix and B is an $p \times m$ matrix. The general element $c_{i} j$ of $n \times m$; $C=A B$ is found by pairing the $i^{t} h$ row of
 C with the $j^{t} h$ column of B , and computing the sum of products of the paired terms.

More on matrix multiplication

Let A, B, and C be $m \times n, n \times I$, and $I \times p$ matrices, respectively. Then we have

$$
(A B) C=A(B C) .
$$

In general, matrix multiplication is not commutative, that is $A B \neq B A$. We also have

$$
(A B)^{\prime}=B^{\prime} A^{\prime}
$$

In particular, $(A v)^{\prime}(A v)=v^{\prime} A^{\prime} A v$, when v is a $n \times 1$ column vector.
More obvious are the rules
(1) $A+(B+C)=(A+B)+C$
(2) $k(A+B)=k A+k B$
(3) $A(B+C)=A B+A C$,
where $k \in \mathbb{R}$ and when the dimensions of the matrices fit.

Linear equations

The unit matrix

The $n \times n$ matrix

$$
\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right]
$$

is the identity matrix. This is because if a matrix A is $n \times n$ then $\mathrm{AI}=\mathrm{A}$ and $\mathrm{IA}=\mathrm{A}$

The inverse of a matrix

If A is an $n \times n$ matrix and B is a matrix such that

$$
B A=A B=I
$$

Then B is said to be the inverse of A, written

$$
B=A^{-1}
$$

Note that if A is an $n \times n$ matrix for which an inverse exists, then the equation $A x=b$ can be solved and the solution is $x=A^{-1} b$.

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

