Multivariate calculus

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Vector functions of several variables

A vector-valued function of several variables is a function

$$
f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

i.e. a function of m dimensional vectors, which returns n dimensional vectors.

The gradient

Suppose the real valued function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable in each coordinate. Then the gradient of f, denoted ∇f is given by

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}, \quad \cdots \quad, \frac{\partial f}{\partial x_{1}}\right) .
$$

The Jacobian

Now consider a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Write f_{i} for the $i^{t h}$ coordinate of f, so we can write $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$, where $x \in \mathbb{R}^{m}$. If each coordinate function f_{i} is differentiable in each variable we can form the Jacobian matrix of f :

$$
\left(\begin{array}{c}
\nabla f_{1} \\
\vdots \\
\nabla f_{n}
\end{array}\right) .
$$

Univariate integration by substitution

If f is a continuous function and g is strictly increasing and differentiable then,

$$
\int_{g(a)}^{g(b)} f(x) d x=\int_{a}^{b} f(g(t)) g^{\prime}(t) d t
$$

Multivariate integration by substitution

Suppose f is a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one function with continuous partial derivatives. Then if $U \subseteq \mathbb{R}^{n}$ is a subset,

$$
\int_{g(U)} f(\mathrm{x}) d \mathrm{x}=\int_{U}(g(\mathrm{y}))|J| d \mathrm{y}
$$

where J is the Jacobian matrix and $|J|$ is the absolute value of it's determinant.

$$
J=\left|\left[\begin{array}{cccc}
\frac{\partial g_{1}}{\partial y_{1}} & \frac{\partial g_{1}}{\partial y_{2}} & \cdots & \frac{\partial g_{1}}{\partial y_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial g_{n}}{\partial y_{1}} & \frac{\partial g_{n}}{\partial y_{2}} & \cdots & \frac{\partial g_{n}}{\partial y_{n}}
\end{array}\right]\right|=\left|\left[\begin{array}{c}
\nabla g_{1} \\
\vdots \\
\nabla g_{n}
\end{array}\right]\right|
$$

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

