# Notes and examples: The linear model math612.0 A1: From numbers through algebra to calculus and linear algebra 

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

## Simple linear regression in $R$

To test the effect of one variable on another, simple linear regression may be applied. The fitted model may be expressed as $y=\alpha+$ $\hat{\beta} x$, where $\alpha$ is a constant, $\hat{\beta}$ is the estimated coefficient, and $x$ is the explanatory variable.


Figure: Example taken from R of a fitted model using linear regression.

## Multiple linear regression

Multiple linear regression attempts to model the relationship between two or more explanatory variables and a response variable by fitting a linear equation to observed data. Formally, the model for multiple linear regression, given $n$ observations, is
$y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\ldots+\beta_{p} x_{i, p}+e_{i}$ for $i=1,2, \ldots, n$
As always, we view the data, $y_{i}$ as observations of random variables, so another way to describe the same model is $Y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\ldots+\beta_{p} x_{i, p}+\epsilon_{i}$ for $i=1,2, \ldots, n$, and we note that the $x$-values are just numbers and are usually assumed to be without any measurement error.

## The one-way model

The one-way ANOVA model is of the form:

$$
Y_{i j}=\mu_{i}+\epsilon_{i j}
$$

or

$$
Y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}
$$

## Random effects in the one-way layout

The simplest random effects model is the one-way layout, commonly written in the form

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}
$$

where $j=1, \ldots, J$ and $i=1, \ldots, l$.
Normally one also assumes $\epsilon_{i j} \sim n\left(0, \sigma_{A}^{2}\right), \alpha_{i} \sim n\left(0, \sigma_{A}^{2}\right)$, and that all these random variables are independent.
Note that we have stopped making a distinction in notation between random variables and measurements (the $y$-values are just random variables when distributions occur).

## Linear mixed effects models (lmm)

The simplest mixed effects model is

$$
y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j}
$$

where $\mu, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$ are unknown constants, $\beta_{j} \sim n\left(0, \sigma_{\beta}^{2}\right)$
$\epsilon_{i j} \sim n\left(0, \sigma^{2}\right)$
( $\beta_{j}$ and $\epsilon_{i j}$ independent).

## Maximum likelihood estimation in Imm

The likelihood function for the unknown parameters $L\left(\boldsymbol{\beta}, \sigma_{A}^{2}, \sigma^{2}\right)$ is

$$
\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{y}\right|^{n / 2}} e^{-1 / 2(y-X \beta)^{\prime} \Sigma_{y}^{-1}(y-X \beta)}
$$

where $\Sigma_{y}=\sigma_{A}^{2} Z Z^{\prime}+\sigma^{2} I$.
Maximising $L$ over $\boldsymbol{\beta}, \sigma_{A}^{2}, \sigma^{2}$ gives the variance components and the fixed effects. May also need $a$, this is normally done using BLUP.

Copyright 2022, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

