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1 Independence, expectations and the moment generating
function

1.1 Independent random variables

Recall that two event#\ andB, are independent if,
P[ANB] = P[A]P[B]
Since the conditional probability & givenB is defined by:

P[ANB]
P[B]
We see that A and B are independent if and only if

PIAIB] =

P[A|B] = P[A](whenHB]| > 0)

Two continuous random variables,andY, are similarly independent if,

P[X € AY € B] = P[X € AIP]Y € B]

1.1.1 Details

Two continuous random variables,andY, are similarly independent if,

PX € AY € B =P[X € AIP]Y € B]
Now suppos& has p.d.f.fx and Y has p.d.ffy. Then,

PIX € A :/Afx(x)dx

PIY € B = [ fy(y)dy

SoX andY are independent if:

PXe€,YeB|= /Afx(x)dx/B fy(y)dy
= [ 00 ( [, vy

_ /A /B f (%) fy (y)dydx
But, if f is the joint density oK andY then we know that
PX e AY € B]

/A /B £(x,y)dydx

HenceX andY are independent if and only if we can write the joint dengityhie form of,

f(xy) = fx(X) fy(y)



1.2 Independence and expected values

If X andY are independent random variables tE&XY] = E[X]E[Y].

Further, if X and Y are independent random variables thé&ig(X)h(Y)] =
E[g(X)]E[h(Y)] is true ifg andh are functions in which expectations exist.

1.2.1 Details

If X andY are random variables with a joint distribution functibfx, y), then it is true that
for h: R? — R we have

E[h(X,Y)] ://h(x,y)f(x,y)dxdy

for thoseh such that the integral on the right exists.

SupposeX andY are independent continuous r.v., then

Fxy) = (9 fr (y)
Thus,
E[XY] ://xyf(x,y)dxdy

://w&®WWMMy
= /xfx(x)dx/yfy(y)dy
= E[X]E]Y]
Note 1.1.Note that ifX andY are independent théf{h(X)g(Y)] = E[h(X)]E[g(Y)] is true

whenever the functionsandy have expected values.

1.2.2 Examples

Example 1.1. SupposeX,Y € U (0,2) are i.i.d then,

1 ifo<x<2
= 2 - -
fx(x) { 0 otherwise

and similarly forfy.

Next, note that,

1 jfo<xy<?2

Fxy) = fx(¥) fr(y) = { 4o otherwise

Also note thatf (x,y) > 0 for all (x,y) € R? and

//f(x,y)dxdy: /02/02 %dxdy: %.4: 1

E[XY] :/_aa /_aaxyf(x,y)dxdy

It follows that,
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But )
E[X] = E[Y] /Oxzdx 1
y_
So
E[XY] = E[X|E]Y]
1.3

Independence and the covariance

=0.

If X andY are independent th&DoV(X,Y)

In fact, if X andY are independent thelov(h(X),g(Y))
expected values exist.

= 0 for any functions in which

1.4 The moment generating function

If X is a random variable we define the moment generating fungtloent exists as
M(t) := E(eX).

1.4.1 Examples

Example 1.2. If X ~ b(n, p) thenM(t

SICLEE S (LA

1.5 Moments and the moment generating function

If Mx (t) is the moment generating function (mgf)X)fthenM( )

X (0) =E[X".

1.5.1 Details

Observe thaM(t) = E[eX] = E[l—i—X—l—%—l—% +...]sincee® =1+a+ 3—2,—1—3—?—1—
If the random variable!™*| has a finite expected value then we can switch the sum and the



expected valued to obtain:
2 (tX)" * E[(tX)N

D S By o

n=0
This implies that thet" derivative ofM(t) in t = 0 is exactlyE [X"]

1.6 The moment generating function of a sum of random varialgs

Mx.y(t) = Mx(t) - My (t) if X andY are independent.

1.6.1 Details

Let X andY be independent random vaiables, then

Mxv (1) = E[€Y] = E[e"'e"!] = E[[E[e"] = Mx (t)Mv )

1.7 Uniqueness of the moment generating function

Moment generating functions (m.g.f.) uniquely determine probability distribution
function for random variables. Thus, if two random variaidt@ve the same m.g.f, the
they must also have the same distribution.

2N

2 The gamma distribution

2.1 The gamma distribution

If a random variabl& has the density

xa—1eT
= Tl

wherex > 0 for some constants, 3 > 0, thenX is said to have a gamma distribution

2.1.1 Details

The functionl” is basically chosen so thatintegrates to one, i.e.

a) :/0 9 letdt

It is not too hard to see thatn) = (n—1)!if ne N. Also,l(a+1) =al (a) forall a > 0.

2.2 The mean, variance and mgf of the gamma distribution

Suppos&X ~ G(a,B) i.e. X has density

xa—Lg—x/B

0= "Faype

Then,




2.2.1 Details

The expected value of can be computed as follows:

EX) = [ xf(xdx

B xd—1lg— X/B
= e @

(X—l—l Ba+1 x(a+1)— x/B
B / Mo+1 BGH
_ ( )B(Hl

(o)

SsoE[X] = ap.

Next, the m.g.f.is given by

E[dX] — /Oetxa(l‘iﬁjsd

_ / KO~ 1ghx— X/de

(pa e X/®
F(G)(ﬁ’

if we choosep so that;(;‘ =tx—x/Bi.e. % =t—1 7€ 0=—173

dx

\_/\_/\_/

M(t) =

orM(t) = (1—pt)~%. It follows that

BB then we have

M'(t) = (~a)(1— Bt) " H(~B) = aB(1 - B)

soM’(0) = ap. Further,

M’(t) = aB(—a—1)(1—Bt)"**(—p)
= ap?(a+1)(1—pt)~%2

E[X? = M"(0)
= ap¥(a+1)
= a’p*4ap?

Hence,



E[X]2—E[X]?
= o?B?+ap’— (ap)?
= QBZ

=
X
|

2.3 Special cases of the gamma distribution: The exponentiand chi-
squared distributions

Consider the gamma density,

For parametera, 3 > 0.

If a =1then

1 —x
f(x) =-efP x>0

B

and this is the density of exponential distribution.

x:lg7
f=2 €% vo0
T

Consider next the case= 3 andf = 2 wherev is an integer, so the density becomes

Dy

This is the density of a chi-squared random variable widegrees of freedom.

2.3.1 Details

Considera = 3 and = 2 wherev is an integer, so the density becomes,

y_1.=X
X27 ez
v,X>0

"=z

This is the density of a chi - squared random variable witdegrees of freedom.
This is easy to see by starting with~ n(0, 1) and definingV = Z? so that the c.d.f. is:

Hw) = PW <w] =P[Z* < W
=Pl-vWw<Z < VW
=1-P[|Z] > VW]

=1-2p[Z < —vW]

\/\TVe‘Tt2
_1—2/(x Jendt= 120



The p.d.f. ofw s therefore,

h(w) = H'(w)
=0 20/(/i0) swi !
but
2
_ M &= d xe3 e~
qw‘/aznduﬂ) dx A 2n ' an
So
e¥ 1 1
_ 8% 1At
hw] = -2 o 5 W
wz ~le=
_ 2
h{w| = o W 0
We see that we must have= f with v=1. We have also showh(3 )2% =20, i.e
I (3) =+/M. Hence we have shown tfyé distribution on 1 df to b&S(a = ¥, B = 2) when
v=1.

2.4 The sum of gamma variables

In the general case X; ... X, ~ G(a,B) are i.i.d. thenX; + Xo+... Xy ~ G(na, B).

In particular, ifXy, Xp, ..., X, ~ X2 i.i.d. then:Y_; X ~ x2.

2.4.1 Details
If X andY are i.i.d.G(a,3), then

1
Mx (t) = My (t) = A—pe
and
Mx v (t) = Mx (t)My(t) = ﬁ
So

X+Y ~ G(2a,B)

In the general case DKl Xn ~ G(a,pB) are i.i.d. thenX1+X2+...Xn ~ G(na,B). In
particular, ifXy, Xo, ..., Xy ~ x iid., theny" ;X ~ xv



3 Notes and examples: The linear model

3.1 Simple linear regression in R

v

To test the effect of one variable on another, simpl¢
linear regression may be applied. The fitted model
may be expressed ags= o + X, where a is a
constantf is the estimated coefficient, axds the
explanatory variable.

speed

Example taken from R of a fitted model using
linear regression.

3.1.1 Details

Below is the linear regression output using the R’s dataat'' Notice that the output
from the model may be divided into two main categories:

1. output that assesses the model as a whole, and

2. output that relates to the estimated coefficients for thdeh

Call:
Im(formula = dist

speed, data = cars)

Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 **x

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12

Notice that there are four different sets of outl(, Residuals, Coefficients, aResults)
for both the constard and the estimated coefficieftspeed variable.

The estimated coefficients describe the change in the deperdriable when there is a
single unit increase in the explanatory variable given évatything else is held constant.

The standard error is a measure of accuracy and is used twweirtee confidence interval.
Confidence intervals provide a range of values for whichdah&gr set level of confidence
that the true population mean will be within the given ranger example, if the Cl is set
at 95% percent then the probability of observing a valueidathe given Cl range is less
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than 0.05.

The p-value is represented as a percentage. Specificalg;¥alue indicates the percenta-
ge of time, given that your null hypothesis is true, that yauld find an outcome at least
as extreme as the observed value. If your calculated p-v&€2 then 2

In the overall model assessment the R-squared is the egdlaariance over the total vari-
ance. Generally, a high&®® is better but data with very little variance makes it easy to
achieve a higheR?, which is why the adjusteR? is presented.

Lastly, the F-statistic is given. Since the t-Statistic & appropriate to compare two
or more coefficients, the F-statistic must be applied. Thacbaethodology is that it
compares a restricted model where the coefficients havedwstda a certain fixed level to
a model which is unrestricted. The most common is the sumwdregl residuals F-test.

3.2 Multiple linear regression

Multiple linear regression attempts to model the relatmpsetween two or mor¢
explanatory variables and a response variable by fittingeah equation to observed
data. Formally, the model for multiple linear regressionjeg n observations, is
yi =0+ Ixil+ 2xi2+...pxip+ifori =1,2,...n.

A1%

The definition above was taken from: http://www.stat.yede/Courses/1997
98/101/linmult.htm

3.3 The one-way model

The one-way ANOVA model is of the form:
Yij = Hi +&ij
or
Yij = U+ Qj + &
3.3.1 Details

The one-way ANOVA model is of the form:
Yij = i +Eij

whereYijj is observation in treatment group andy; are the parameters of the model and
are means of treatment groupThezg;j; are independent and follow a normal distribution
with mean zero and constant variaraeoften written as ~ N(0,g?).

The ANOVA model can also be written in the form:
Yij = U+ O + &

where is the overall mean of all treatment groups andis the deviation of mean of
treatment group from the overall mean. The; follow a normal distribution as before.

The expected value ofj is | as the expected value of the errors is zero, often written as
E[Yij] = w.

11



3.3.2 Examples

Example 3.1. In the rat diet experiment the model would be of the form:
Yij = Hi +&ij

whereyij is the weight gain for raj in diet groupi, 4 would be the mean weight gain
diet groupi andeij would be the deviation of rgtfrom the mean of its diet group.

3.4 Random effects in the one-way layout

The random effects model is written ag; = U+ 01 + &
where

j=1,...J
=1,

and assumes;j ~ n(0,0%), a; ~ n(0,0%), and that they are all independent.

3.4.1 Details
Note that this is considerably different from the fixed effemdel

Eyij =1
Vyij = 0% +0?
we have
COVYij, Yirj’) = COV(Qj + &ij, O + €irjr)
= E[(ai +&ij) (ay + & )]
= Elajay] +E[eijay] +E[aigy ] + E[gij&ij/]

Note 3.1.Note thatE[UW] = E[U]|E[W] if U,W are independent

So,
E[Eijai/] = E[Giﬁi/j/] = EGiESi/j/ =0
Further, ,
g o ifi=ilj=]
Eleijel)] = { 0 otherwise
and 2 i
. [og ifi=i
E[O"“']_{ 0 ifii
So

0§\+02 ifi=ij=j
Comyij, Yirj) = op ifi=ij#]
0 otherwise

12



It follows that the correlation between measuremegntandy;;, (within the same group)
are

cor(yij, Yijr = i
P NV ]
N
(0% +02)?
- yi) = A
:>C0|’(Y|jayij’) = 03+0?

This is the intra-class correlation.

3.5 Linear mixed effects models (Imm)

The simplest mixed effects model is

Yij = W+ 0+ Bj + &j
wherep,a1,0z,...,0; are unknown constants,
Bj ~n(0,ap)
& j ~n(0,0%)
(Bj ands; j independent).

3.5.1 Detalils

Thepanda; are the fixed effects arfg) is the random effects.

Recall that in the simple one-way layout with = P+ 0 + &j, we can write the model in
matrix formy = X+ & wheref = (4,ay,...,a;)" andX is appropriately chosen.

The same applies to the simplest random effects mpget u+ B + €j where we can
writey = p-1+2ZU + e where 1= (1,1,...,1),U = (B1,...,By)".

In general, we write the mixed effects models in matrix forithwy = XE+ZQ+§, where
BB contains the fixed effects atfl contains the random effects.

3.5.2 Examples

Example 3.2. 1.y =B1+B2x% + & (SLR)
2. Yij = U+ 0+ Bixij +&j only fixed effects (ANCOVA)
3. Vijk = U+ aj+bj +&ijk wherea; are fixed bub; are random.

4. Yijk = U+ai+bjxij +&jx wherea; are fixed bubj are random slopes.

13



3.6 Maximum likelihood estimation in Imm

The likelihood function for the unknown parameté&(§, 03, 02) is

S v R\ G R VR
(2_’_[)”/2 ’Zy’n/Z

wheres, = 0327 + o?l.

MaximisingL over 3, 0%, 0 gives the variance components and the fixed effects. May
also need], this is normally done using BLUP.

3.6.1 Details
Recall that ifW is a random variable vector withW = pandVW = % then
E[AW] = A
V[AW] = AZA
In particular, ifW ~ n(W, Z( thenAW ~ n(Ap, AZA).

Now consider the Imm with

y=XB+Zu+¢

where

u= (Ug,...,Un)

€= (€1,...,&m)
and the random variabldg; ~ n(0,0%), & ~ n(0,02) are all independent so that~
n(0,04l) ande ~ n(0,a2l).
ThenEy= X and
= V[Zu+V]g]
= Z(oal)Z' +3d?l
022Z +0?|

and hence ~ n(XB,02ZZ +a?l).

Therefore the likelihood function for the unknown parameté, 0%, 0?) is

1 vty _xp
(2]_[)”/2 ’Zy’n/Z

whereZ, = 03ZZ + 0?l. MaximizingL over, 0%, a2 gives the variance components and
the fixed effects. May also neeglwhich is normally done using BLUP.

4 Some regression topics

4.1 Poisson regression

Datay; are from a Poisson distribution with megnand Iny; = 31+ B2X;. A likelihood
function can be written and the parameters can be estimated maximum likelihood
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4.2 The generalized linear model (GLM)

Datay; are from a distribution within the exponential family, wittheany; andg(;) =
xB’ for some link functiong. A likelihood function can now be written and the para-
meters can be estimated using maximum likelihood.

4.2.1 Details

Datay; are from a distribution within the exponential family, witheany; andg(p) = i3’
for some link functiong.

The exponential family includes distributions such as tlae€3ian, binomial, Poisson, and
gamma (and thus exponential and chi-squared).

The link functions are typically
¢ identity(with the Gaussian)
¢ log (with the Poisson and the gamma)
e logistic (with the binomial)

A likelihood function can be written and the parameters caestimated using maximum
likelihood.
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