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1 Independence, expectations and the moment generating
function

1.1 Independent random variables

Recall that two events,A andB, are independent if,

P[A∩B] = P[A]P[B]

Since the conditional probability ofA givenB is defined by:

P[A|B] = P[A∩B]
P[B]

We see that A and B are independent if and only if

P[A|B] = P[A](whenP[B]> 0)

Two continuous random variables,X andY, are similarly independent if,

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B]

1.1.1 Details

Two continuous random variables,X andY, are similarly independent if,

P[X ∈ A,Y ∈ B] = P[X ∈ A]P[Y ∈ B]

Now supposeX has p.d.f.fX and Y has p.d.f.fY. Then,

P[X ∈ A] =
∫

A
fX(x)dx

P[Y ∈ B] =
∫

B
fY(y)dy

SoX andY are independent if:

P[X ∈,Y ∈ B] =
∫

A
fX(x)dx

∫

B
fY(y)dy

=
∫

A
fX(x)(

∫

B
fY(y)dy)dx

=
∫

A

∫

B
fX(x) fY(y)dydx

But, if f is the joint density ofX andY then we know that

P[X ∈ A,Y ∈ B]

∫

A

∫

B
f (x,y)dydx

HenceX andY are independent if and only if we can write the joint density in the form of,

f (x,y) = fX(x) fY(y)
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1.2 Independence and expected values

If X andY are independent random variables thenE[XY] = E[X]E[Y].

Further, if X and Y are independent random variables thenE[g(X)h(Y)] =
E[g(X)]E[h(Y)] is true ifg andh are functions in which expectations exist.

1.2.1 Details

If X andY are random variables with a joint distribution functionf (x,y), then it is true that
for h : R2 → R we have

E[h(X,Y)] =
∫ ∫

h(x,y) f (x,y)dxdy

for thoseh such that the integral on the right exists.

SupposeX andY are independent continuous r.v., then

f (x,y) = fX(x) fY(y)

Thus,

E[XY] =
∫ ∫

xy f(x,y)dxdy

=
∫ ∫

xy fX(x) fY(y)dxdy

=
∫

x fX(x)dx
∫

y fY(y)dy

= E[X]E[Y]

Note 1.1.Note that ifX andY are independent thenE[h(X)g(Y)] = E[h(X)]E[g(Y)] is true
whenever the functionsh andy have expected values.

1.2.2 Examples

Example 1.1. SupposeX,Y ∈U(0,2) are i.i.d then,

fX(x) =
® 1

2 if 0 ≤ x≤ 2
0 otherwise

and similarly for fY.

Next, note that,

f (x,y) = fX(x) fY(y) =
® 1

4 if 0 ≤ x,y≤ 2
0 otherwise

Also note thatf (x,y) ≥ 0 for all (x,y) ∈ R
2 and

∫ ∫

f (x,y)dxdy=
∫ 2

0

∫ 2

0

1
4

dxdy=
1
4
.4= 1

It follows that,

E[XY] =
∫ α

−α

∫ α

−α
xy f(x,y)dxdy
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=
∫ 2

y=0

∫ 2

x=0
xy.

1
4

dxdy

=
∫ 2

y=0
(
∫ 2

x=0
xy

1
4

dx)dy

=
∫ 2

y=0
[
1
4

y.
1
2

x2]2x=0dy

=
∫ 2

y=0

1
4

y(
1
2
.22− 1

2
.0)dy

∫ 2

0

1
4

y2dy=
∫ 2

0

1
2

ydy=
1
2
.
1
2

y2|2y =
1
4
.22 = 1

But

E[X] = E[Y] =
∫ 2

y=0
x.

1
2

dx= 1

So
E[XY] = E[X]E[Y]

1.3 Independence and the covariance

If X andY are independent thenCov(X,Y) = 0.

In fact, if X andY are independent thenCov(h(X),g(Y)) = 0 for any functions in which
expected values exist.

1.4 The moment generating function

If X is a random variable we define the moment generating functionwhent exists as:
M(t) := E(etX).

1.4.1 Examples

Example 1.2. If X ∼ b(n, p) thenM(t) =
n
∑

x=0

etxp(x) =
n
∑

x=0

etx

(

n
x

)

p · (1− p)n−x

1.5 Moments and the moment generating function

If MX(t) is the moment generating function (mgf) ofX, thenM(n)
X (0) = E[Xn].

1.5.1 Details

Observe thatM(t) = E[etX] = E[1+X+ (tX)2

2! + (tX)3

3! + . . . ] sinceea = 1+a+ a2

2! +
a3

3! + . . . .
If the random variablee|tX| has a finite expected value then we can switch the sum and the
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expected valued to obtain:

M(t) = E[
∞
∑

n=0

(tX)n

n!
] =

∞
∑

n=0

E[(tX)n]

n!
=

∞
∑

n=0

tnE[Xn]

n!

This implies that thenth derivative ofM(t) in t = 0 is exactlyE[Xn]

1.6 The moment generating function of a sum of random variables

MX+Y(t) = MX(t) ·MY(t) if X andY are independent.

1.6.1 Details

Let X andY be independent random vaiables, then

MX+Y(t) = E[eXt+Yt] = E[eXteXt] = E[eXt]E[eXt] = MX(t)MY(t)

1.7 Uniqueness of the moment generating function

Moment generating functions (m.g.f.) uniquely determine the probability distribution
function for random variables. Thus, if two random variables have the same m.g.f, then
they must also have the same distribution.

2 The gamma distribution

2.1 The gamma distribution

If a random variableX has the density

f (x) =
xα−1e

−x
β

Γ(α)βα

wherex> 0 for some constantsα, β > 0, thenX is said to have a gamma distribution.

2.1.1 Details

The functionΓ is basically chosen so thatf integrates to one, i.e.

Γ(α) =
∫ ∞

0
tα−1e−tdt

It is not too hard to see thatΓ(n) = (n−1)! if n∈N. Also,Γ(α+1) = αΓ(α) for all α > 0.

2.2 The mean, variance and mgf of the gamma distribution

SupposeX ∼ G(α,β) i.e. X has density

f (x) =
xα−1e−x/β

Γ(α)βα ,x> 0

Then,
E[X] = αβ

M(t) = (1−βt)−α

V[X] = αβ2
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2.2.1 Details

The expected value ofX can be computed as follows:

E[X] =
∫ ∞

−∞
x f(x)dx

=
∫ ∞

0
x
xα−1e−x/β

Γ(α)βα dx

=
Γ(α+1)βα+1

Γ(α)βα

∫ ∞

0

x(α+1)−1e−x/β

Γ(α+1)βα+1 dx

=
αΓ(α)βα+1

Γ(α)βα

soE[X] = αβ.

Next, the m.g.f.is given by

E[etX] =
∫ ∞

0
etxxα−1e−x/β

Γ(α)βα dx

=
1

Γ(α)βα

∫ ∞

0
xα−1etx−x/βdx

=
Γ(α)φα

Γ(α)βα

∫ ∞

0

x(α−1)e−x/φ

Γ(α)φα dx

if we chooseφ so that−x
φ = tx−x/β i.e. −1

φ = t − 1
β i.e. φ =− 1

t−1/β = β
1−βt then we have

M(t) =

Ç

φ
β

åα

=

Ç

β/(1−βt)
β

åα

=
1

(1−βt)α

or M(t) = (1−βt)−α. It follows that

M′(t) = (−α)(1−βt)−α−1(−β) = αβ(1−βt)−α−1

soM′(0) = αβ. Further,

M′′(t) = αβ(−α−1)(1−βt)−α−2(−β)
= αβ2(α+1)(1−βt)−α−2

E[X2] = M′′(0)

= αβ2(α+1)

= α2β2+αβ2

Hence,
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V[X] = E[X]2−E[X]2

= α2β2+αβ2− (αβ)2

= αβ2

2.3 Special cases of the gamma distribution: The exponential and chi-
squared distributions

Consider the gamma density,

f (x) =
xα−1e

−x
β

Γ(α)βα ,x> 0

For parametersα,β > 0.

If α = 1 then

f (x) =
1
β

e
−x
β ,x> 0

and this is the density of exponential distribution.

Consider next the caseα = v
2 andβ = 2 wherev is an integer, so the density becomes,

f (x) =
x

v
2−1e

−x
2

Γ( v
2)Z

v
2
,x> 0

This is the density of a chi-squared random variable withv degrees of freedom.

2.3.1 Details

Consider,α = v
2 andβ = 2 wherev is an integer, so the density becomes,

f (x) =
x

v
2−1e

−x
2

Γ( v
2)Z

v
2
,x> 0

This is the density of a chi - squared random variable withv degrees of freedom.

This is easy to see by starting withZ ∼ n(0,1) and definingW = Z2 so that the c.d.f. is:

H(w) = P[W ≤ w] = P[Z2 ≤ w]

= P[−
√

w≤ Z ≤
√

w]

= 1−P[|Z|>
√

w]

= 1−2p[Z <−
√

w]

= 1−2
∫

√
w

−α

e−t2

2√
2w

dt = 1−2φ(
√

w)
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The p.d.f. ofw is therefore,

h(w) = H ′(w)

= 0−2φ′(
√

w)
1
2

w
1
2−1

but

φ(x) =
∫ x

−α

e−t2

2

2Π
dt;φ′(x) =

d
dx

∫ x

α

e−t2

2

2Π
dt =

e−x2

2

2Π
So

h[w] =−2
e−w

2

2Π
.
1
2
.w

1
2−1

h[w] =
w

−1
2 −1e−w

2

2Π
,w> 0

We see that we must haveh = f with v = 1. We have also shownΓ(1
2)2

1
2 =

√
2Π, i.e

Γ(1
2) =

√
Π. Hence we have shown theχ2 distribution on 1 df to beG(α = v

2,β = 2) when
v = 1.

2.4 The sum of gamma variables

In the general case ifX1 . . .Xn ∼ G(α,β) are i.i.d. thenX1+X2+ . . .Xn ∼ G(nα,β).

In particular, ifX1,X2, . . . ,Xv ∼ χ2 i.i.d. then
∑v

i=1Xi ∼ χ2
v.

2.4.1 Details

If X andY are i.i.d.G(α,β), then

MX(t) = MY(t) =
1

(1−βt)α

and

MX+Y(t) = MX(t)MY(t) =
1

(1−βt)2α

So
X+Y ∼ G(2α,β)

In the general case ifX1 . . .Xn ∼ G(α,β) are i.i.d. thenX1+X2+ . . .Xn ∼ G(nα,β). In
particular, ifX1,X2, . . . ,Xv ∼ χ2 i.i.d., then

∑v
i=1Xi ∼ χ2

v
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3 Notes and examples: The linear model

3.1 Simple linear regression in R

To test the effect of one variable on another, simple
linear regression may be applied. The fitted model
may be expressed asy = α + β̂x, where α is a
constant,̂β is the estimated coefficient, andx is the
explanatory variable.

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Example taken from R of a fitted model using
linear regression.

3.1.1 Details

Below is the linear regression output using the R’s data set "car". Notice that the output
from the model may be divided into two main categories:

1. output that assesses the model as a whole, and

2. output that relates to the estimated coefficients for the model

Call:

lm(formula = dist ~ speed, data = ars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

---

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statisti: 89.57 on 1 and 48 DF, p-value: 1.490e-12

Notice that there are four different sets of output (Call, Residuals, Coefficients, andResults)
for both the constantα and the estimated coefficientβ̂ speed variable.

The estimated coefficients describe the change in the dependent variable when there is a
single unit increase in the explanatory variable given thateverything else is held constant.

The standard error is a measure of accuracy and is used to construct the confidence interval.
Confidence intervals provide a range of values for which there is a set level of confidence
that the true population mean will be within the given range.For example, if the CI is set
at 95% percent then the probability of observing a value outside the given CI range is less
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than 0.05.

The p-value is represented as a percentage. Specifically, the p-value indicates the percenta-
ge of time, given that your null hypothesis is true, that you would find an outcome at least
as extreme as the observed value. If your calculated p-valueis 0.02 then 2
In the overall model assessment the R-squared is the explained variance over the total vari-
ance. Generally, a higherR2 is better but data with very little variance makes it easy to
achieve a higherR2, which is why the adjustedR2 is presented.

Lastly, the F-statistic is given. Since the t-Statistic is not appropriate to compare two
or more coefficients, the F-statistic must be applied. The basic methodology is that it
compares a restricted model where the coefficients have beenset to a certain fixed level to
a model which is unrestricted. The most common is the sum of squared residuals F-test.

3.2 Multiple linear regression

Multiple linear regression attempts to model the relationship between two or more
explanatory variables and a response variable by fitting a linear equation to observed
data. Formally, the model for multiple linear regression, given n observations, is
yi = 0+1xi1+2xi2+ ...pxip+ i f ori = 1,2, ...n.

The definition above was taken from: http://www.stat.yale.edu/Courses/1997-
98/101/linmult.htm

3.3 The one-way model

The one-way ANOVA model is of the form:

Yi j = µi + εi j

or
Yi j = µ+αi + εi j

3.3.1 Details

The one-way ANOVA model is of the form:

Yi j = µi + εi j

whereYi j is observationj in treatment groupi andµi are the parameters of the model and
are means of treatment groupi. Theεi j are independent and follow a normal distribution
with mean zero and constant varianceσ2 often written asε ∼ N(0,σ2).

The ANOVA model can also be written in the form:

Yi j = µ+αi + εi j

whereµ is the overall mean of all treatment groups andαi is the deviation of mean of
treatment groupi from the overall mean. Theεi j follow a normal distribution as before.

The expected value ofYi j is µi as the expected value of the errors is zero, often written as
E[Yi j ] = µi .
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3.3.2 Examples

Example 3.1. In the rat diet experiment the model would be of the form:

yi j = µi + εi j

whereyi j is the weight gain for ratj in diet groupi, µi would be the mean weight gain in
diet groupi andεi j would be the deviation of ratj from the mean of its diet group.

3.4 Random effects in the one-way layout

The random effects model is written as:yi j = µ+α1+ εi j

where

j = 1, . . . ,J

i = 1, . . . , I

and assumesεi j ∼ n(0,σ2
A), αi ∼ n(0,σ2

A), and that they are all independent.

3.4.1 Details

Note that this is considerably different from the fixed effect model

Eyi j = µ

Vyi j = σ2
A+σ2

we have

cov(yi j ,yi′ j ′) = cov(αi + εi j ,αi′ + εi′ j ′)

= E[(αi + εi j )(αi′ + εi′ j ′)]

= E[αiαi′]+E[εi jαi′]+E[αiεi′ j ′ ]+E[εi j εi′ j ′]

Note 3.1.Note thatE[UW] = E[U ]E[W] if U,W are independent

So,
E[εi j αi′] = E[αiεi′ j ′] = EαiEεi′ j ′ = 0

Further,

E[εi j εi′ j ′] =
®

σ2 if i = i′, j = j ′

0 otherwise

and

E[αiαi′] =
®

σ2
A if i = i′

0 if i 6= i′

so

Cov(yi j ,yi′ j ′) =











σ2
A+σ2 if i = i′, j = j ′

σ′
A if i = i′, j 6= j ′

0 otherwise
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It follows that the correlation between measurementsyi j andyi j ′ (within the same group)
are

cor(yi j ,yi j ′ =
Cov(yi j ,yi j ′)
»

v[yi j ]v[yi j ′]

=
σ2

A
»

(σ2
A+σ2)2

⇒Cor(yi j ,yi j ′) =
σ2

A
σ2

A+σ2

This is the intra-class correlation.

3.5 Linear mixed effects models (lmm)

The simplest mixed effects model is

yi j = µ+αi +β j + εi j

whereµ,α1,α2, . . . ,αi are unknown constants,
β j ∼ n(0,σ2

β)

εi j ∼ n(0,σ2)
(β j andεi j independent).

3.5.1 Details

Theµ andαi are the fixed effects andβ j is the random effects.

Recall that in the simple one-way layout withyi j = µ+αi + εi j , we can write the model in
matrix formy= Xβ+ ε whereβ = (µ,α1, . . . ,αI)

′ andX is appropriately chosen.

The same applies to the simplest random effects modelyi j = µ+ β j + εi j where we can
write y= µ·1+ZU+ ε where 1= (1,1, . . . ,1)′, U = (β1, . . . ,βJ)

′.

In general, we write the mixed effects models in matrix form with y= Xβ+ZU+ε, where
β contains the fixed effects andU contains the random effects.

3.5.2 Examples

Example 3.2. 1. yi = β1+β2xi + εi (SLR)

2. yi j = µ+αi +βixi j + εi j only fixed effects (ANCOVA)

3. yi jk = µ+αi +b j + εi jk whereαi are fixed butb j are random.

4. yi jk = µ+αi +b jxi j + εi jk whereαi are fixed butb j are random slopes.
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3.6 Maximum likelihood estimation in lmm

The likelihood function for the unknown parametersL(β,σ2
A,σ2) is

1

(2π)n/2
∣

∣

∣Σy

∣

∣

∣

n/2
e−1/2(y−Xβ)′Σ−1

y (y−Xβ)

whereΣy = σ2
AZZ′+σ2I .

MaximisingL overβ,σ2
A,σ2 gives the variance components and the fixed effects. May

also need̂u, this is normally done using BLUP.

3.6.1 Details

Recall that ifW is a random variable vector withEW= µ andVW= Σ then

E[AW] = Aµ

V[AW] = AΣA′

In particular, ifW ∼ n(µ,Σ( thenAW∼ n(Aµ,AΣA′).

Now consider the lmm with

y= Xβ+Zu+ ε
where

u= (u1, . . . ,um)
′

ε = (ε1, . . . ,εm)
′

and the random variablesUi ∼ n(0,σ2
A), εi ∼ n(0,σ2) are all independent so thatu ∼

n(0,σ2
AI) andε ∼ n(0,σ2I).

ThenEy= Xβ and

Vy = Σy

= V[Zu+V[ε]
= Z(σ2

AI)Z′+σ2I

= σ2
AZZ′+σ2I

and hencey∼ n(Xβ,σ2
AZZ′+σ2I).

Therefore the likelihood function for the unknown parameters L(β,σ2
A,σ2) is

=
1

(2π)n/2
∣

∣

∣Σy

∣

∣

∣

n/2
e−1/2(y−Xβ)′Σ−1

y (y−Xβ)

whereΣy = σ2
AZZ′+σ2I . MaximizingL overβ,σ2

A,σ2 gives the variance components and
the fixed effects. May also need ˆu, which is normally done using BLUP.

4 Some regression topics

4.1 Poisson regression

Datayi are from a Poisson distribution with meanµi and lnµi = β1+β2xi . A likelihood
function can be written and the parameters can be estimated using maximum likelihood.
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4.2 The generalized linear model (GLM)

Datayi are from a distribution within the exponential family, withmeanµi andg(µi) =
xiβ′ for some link function,g. A likelihood function can now be written and the para-
meters can be estimated using maximum likelihood.

4.2.1 Details

Datayi are from a distribution within the exponential family, withmeanµi andg(µi) = xiβ′

for some link function,g.

The exponential family includes distributions such as the Gaussian, binomial, Poisson, and
gamma (and thus exponential and chi-squared).

The link functions are typically

• identity(with the Gaussian)

• log (with the Poisson and the gamma)

• logistic (with the binomial)

A likelihood function can be written and the parameters can be estimated using maximum
likelihood.
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