STATS201.stat 202 10 Experimental design and descriptive statistics

Anna Helga Jónsdóttir Sigrún Helga Lund

December 11, 2012

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

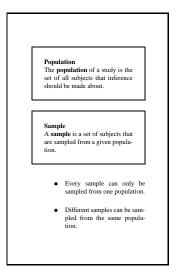
Contents

1	The	basics of statistics	3
	1.1	Sample and population	3
	1.2	Categorical and numerical variables	3
	1.3	Continuous and discrete variables	4
	1.4	Randomness	4
2	Exp	erimental design	5
	2.1	Bias	5
	2.2	Variability	5
	2.3	Controlled experiment	6
	2.4	Random sampling	6
	2.5	Simple and stratified random sample	7
	2.6	Paired random sample	7
	2.7	What if a random sample cannot be chosen?	8
	2.8	Volunteer samples	8
	2.9	Convenience samples	8
	2.10	Missing values	9
	2.11	Experimenters bias and placebo effects	9
	2.12	Placebo effects	10
	2.13	Single-blinded and double-blinded experiments.	10
	2.14	Repetitions	10
	2.15	Drawing conclusions	11
	2.16	Causation	11
	2.17	Good experimental design	11
3	Graj	phical representation	12
	3.1	Graphical representation	12
	3.2	Graphical representation of discrete variables	12
	3.3	Bar chart	13
	3.4	Pie chart	13
	3.5	Graphical representation of continuous variables	14
	3.6	Histograms	14

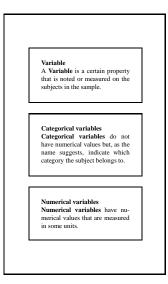
	3.7	Histograms	15
	3.8	Shapes of distributions	15
	3.9	Outliers	17
4	Desc	criptive statistics	17
	4.1	Statistic	17
	4.2	Statistics that describe central tendency	18
	4.3	Mid range	18
	4.4	Mode	18
	4.5	Median	19
	4.6	Mean	20
	4.7	Weighted mean	20
	4.8	Comparison of statistics that describe central tendency	21
	4.9	Comparison of the median and the meani	21
	4.10	Statistics that describe spread	22
	4.11	Range	22
	4.12	Quartiles	23
	4.13	Quartiles	24
	4.14	Interquartile range	24
	4.15	Percentiles	25
	4.16	Variance	25
	4.17	Standard deviation	26
	4.18	Coefficient of variation	26
	4.19	Comparison of statistics for spread	27
	4.20	Five-number summary	27
	4.21	Boxplot	28
	4.22	Boxplot	28
		$1.5 \cdot IQR$ rule for outliers \ldots	29
		IQR rule	29

1 The basics of statistics

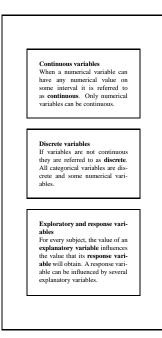
1.1 Sample and population



1.2 Categorical and numerical variables



1.3 Continuous and discrete variables



1.4 Randomness

We apply statistics because our measurements are influenced by some randomness: • We measure only a sample of the whole population.

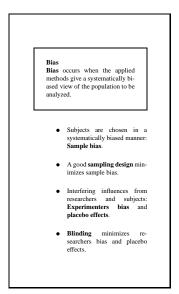
> The phenomena to be measured are random by nature.

This property is described with the concept **random variable**.

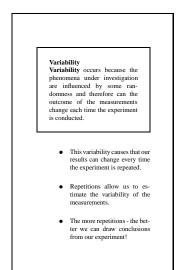
A random variable describes the outcome of a variable before it is measured.

2 Experimental design

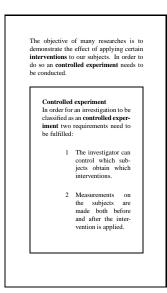
2.1 Bias



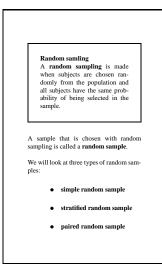
2.2 Variability



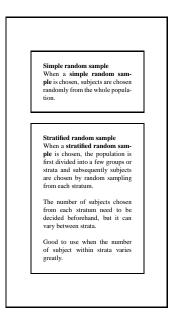
2.3 Controlled experiment



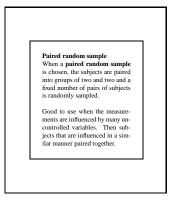
2.4 Random sampling



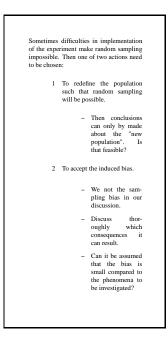
2.5 Simple and stratified random sample



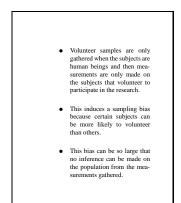
2.6 Paired random sample



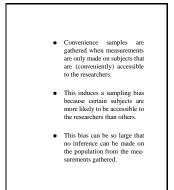
2.7 What if a random sample cannot be chosen?



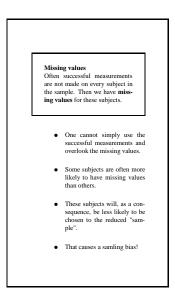
2.8 Volunteer samples



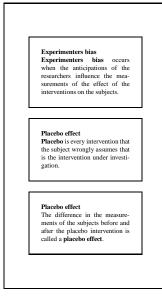
2.9 Convenience samples

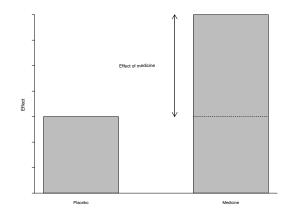


2.10 Missing values



2.11 Experimenters bias and placebo effects



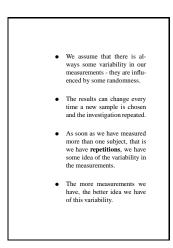


2.12 Placebo effects

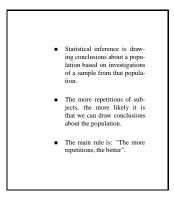
2.13 Single-blinded and double-blinded experiments.

When a blind n the sub vention tice that	blinded experiments an experiment is double weither the investigator nois ojects know which inter they will receive. no t an intervention can be a intervention.
	blind experiments
blind (know w	an experiment is single either the subjects don' which intervention they re- but the investigator does versa.

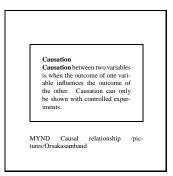
2.14 Repetitions



2.15 Drawing conclusions



2.16 Causation

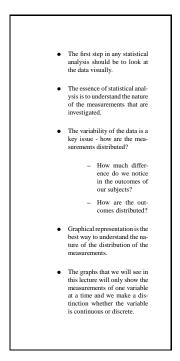


2.17 Good experimental design

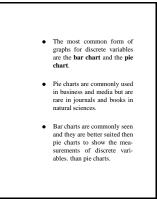
controlled Every inve	quirements should a experiment fulfill? estigator should seek experiment fulfills the conditions:
1	Sampling design.
	The subjects are chosen by random sampling and/or di- vided into groups by random sampling.
2	Blinding.
	The experiment is by all means double- blind but at least single-blind if that is impossible.
3	Repetitions.
	The intervention is applied to a repeated number of subjects.

3 Graphical representation

3.1 Graphical representation



3.2 Graphical representation of discrete variables



3.3 Bar chart

Bar chart A bar chart consists of two or more bars. The number of bars is determined by the number of categories values that the discrete variable takes. Every bar represents one category/value and they may not lie close to each other. The height of the bars shows the frequency of the corresponding category. The bars shall be ordered in an informative way, often by size.

Before one draws a bar chart it is often convenient to make a little table that shows the categories of the variable and how many subjects belong to each category.

3.4 Pie chart

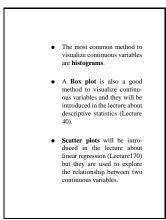
Pie chart When making a pie chart, it is important that all categories/values of the variable under investigation are pictured on the chart. The number of slices in the pie chart is determined by the number of categories/values of the variable. The size of the slice is determined by the proportional number of subjects in the corresponding category compared to the whole sample. Watch out that the ratios add up to 100 %.

Before one draws a bar chart it is often convenient to make a little table that shows the categories of the variable, how many subjects belong to each category and the corresponding percentage of subjects in that category as a proportion of the whole sample

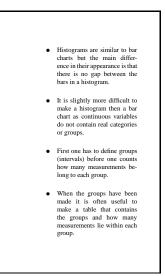
ple. PIE CHARTS ARE NOT DRAWN BY

HAND!

3.5 Graphical representation of continuous variables



3.6 Histograms



3.7 Histograms

are lined another. is determi groups (in tinuous va When the	m consists of bars that continuously one by The number of bars ned by the number of itervals) that the con- riable is split up into. groups are made is is a to keep in mind the
•	Lower and upper limits should be simple and easily understood.
•	The intervals may not overlap and must cover all measure- ments.
•	The intervals should be equally wide.
•	The number of intervals should be appropriate. A rule of thumb is that the number of intervals should be approx. 5 times the logarithm of the total number of measurements.
made, one interval an is determi	intervals have been bar is drawn for each d the height of the bar ned by the number of ents within the corre- nterval.

3.8 Shapes of distributions

Shapesof distributionsThefollowing

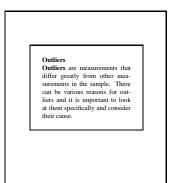
concepts are used to describe the distribution of measurements.

> • The distribution of the smallest measurements are called the left-tail of the distribution. The distribution of the largest measurements is called the right-tail of the distribution.

• A distribution is *symmet-ric* if its right-tail is distributed as the mirror image of the left-tail.

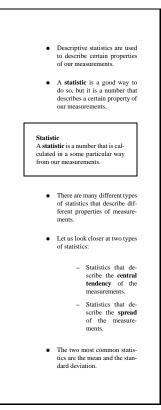
- A distribution that is not symmetric is skewed. A distribution is skewed to the right if its right-tail is longer then the left-tail and skewed to the left if the left one is longer then the right one.
- If a distribution has one peak it is referred to as *unimodal*.
- If a dis-

3.9 Outliers

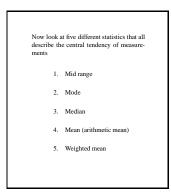


4 Descriptive statistics

4.1 Statistic



4.2 Statistics that describe central tendency



4.3 Mid range

Mid range Assume that we have n measur	e-
ments x_1, x_2, x_n . Let x_{\min} d note the smallest one and x_{\max} denote the largest one. The M	ıx
range is calculated with	a
Mid range = $\frac{x_{\min} + x_{\max}}{2}$.	

We have the following measurements: 1, 2, 3, 5, 9, 9, 15. Find the mid range.

Mid range =
$$\frac{x_{\min} + x_{\max}}{2} = \frac{1+15}{2} = 8.$$

4.4 Mode

Mode Assume that we have <i>n</i> measure ments, x_1, x_2, x_n . The mod is the most frequent outcom among the measurements. It the only statistic that describe central tendency that can be use
central tendency that can be use for categorical data. It is on the other hand inappropriate to us the mode to describe continuor variables.

We have the following measurements: 1, 2, 2, 3, 5, 9, 9, 15. What is the mode? The mode is 2 and 9.

4.5 Median

Median Assume that we have n measurements, $x_1, x_2, ..., x_n$. Arrange the measurements by order from the smallest measurement to the largest. Then calculate index number = $0.5 \cdot (n+1)$. The median is often denoted by М. It depends on whether n is an odd or an even number how we calculate the median. • If n is an odd number, then the median is the measurement with the index number 0.5 · (n+1).• If *n* is an even number then the median is the average of the two numbers that have index numbers next to $0.5 \cdot (n+1)$ CAUTION: 0.5 · (n+1) is the index number for the measurement, not the median itself!

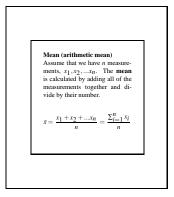
We have the following measurements: 1, 2, 3, 5, 9, 9, 15. Find the median.

The measurements are ranked from the smallest value to the largest value. We need to find the placement of the median:

Placement = $0.5 \cdot (n+1) = 0.5 \cdot 8 = 4$.

so the median is number 4 in the ranked sequence. The median is thus M = 5.

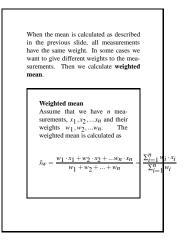
4.6 Mean



We have the following measurements: 1, 2, 3, 5, 9, 9, 15. Find the mean.

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1+2+3+5+9+9+15}{7} = \frac{44}{7} = 6.29.$$

4.7 Weighted mean



A geography student has finished the following courses with the given grades. The number of credits each courses gives is also shown.

Course	Grade	Credits
Course 1	7	8
Course 2	9	8
Course 3	7	8
Course 4	8	6
Course 5	6	8
Course 6	9	8
Course 7	9	6
Course 8	10	8

What is the weighted mean of the grades?

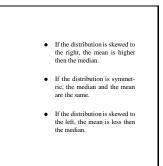
The *x*-is in the following equation are the grades and the *w*-s the number of credits:

$$\bar{x}_w = \frac{\sum_{i=1}^n w_i \cdot x_i}{\sum_{i=1}^n w_i} = \frac{8 \cdot 7 + 8 \cdot 9 + 8 \cdot 7 + 6 \cdot 8 + 8 \cdot 6 + 8 \cdot 9 + 6 \cdot 9 + 8 \cdot 10}{8 + 8 + 6 + 8 + 6 + 8} = 8.10.$$

4.8 Comparison of statistics that describe central tendency

•	All of the statistics previously mentioned are interesting and good to calculate when look- ing at new data
•	Before deciding which statis- tic is appropriate to use it is good to look at graphical rep- resentations of the data in or- der to get a picture of the dis- tribution of the measurements
•	If the distribution is skewed bimodal or multimodal the median shall be used rather then the mean
•	The median should also be preferred if there are outliers in the measurements

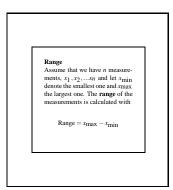
4.9 Comparison of the median and the meani



4.10 Statistics that describe spread

scribe	d read of measurements de- s how spread out the mea- ents are.
	scuss 6 statistics that describe of measurements
1.	Range
2.	Quartiles
3.	Interquartile range
	Interquartile range Percentiles
4.	
4. 5.	Percentiles

4.11 Range



We have the following measuremetns: 1, 2, 3, 5, 9, 9, 15. Find the range.

Range = $x_{\text{max}} - x_{\text{min}} = 15 - 1 = 14$.

4.12 Quartiles

These are	these execution and these
are commo	three quartiles and they only named Q_1, Q_2 og Q_3 . ften sometimes denoted with
	% og Q _{75%} . The former
<i>Q</i> ₁ :	The first quartile is such that 25% of the measurements are lower then Q_1 . Q_1 is therfore the median of the lower half of the measurements, excluding the median.
Q ₁ :	The second quartile is such that 50% of the measurements are lower then Q_2 . Q_2 is therefore the median, $Q_2 = M$.
Q ₁ :	The third quartile is such that 75% of the measurements are lower then Q_3 . Q_3 is therfore the median of the upper half of the measurements, excluding the median.

We have the following measurements: 1, 2, 3, 5, 9, 9, 15, 17. Find the quartiles. We start by finding the placement in the ranked sequence:

$$\begin{array}{rcl} Q_1 - \operatorname{sæti} i \ \text{röð:} \ 0.25 \cdot (n+1) &=& 0.25 \cdot 9 = 2.25 \\ Q_2 - \operatorname{sæti} i \ \text{röð:} \ 0.50 \cdot (n+1) &=& 0.50 \cdot 9 = 4.50 \\ Q_3 - \operatorname{sæti} i \ \text{röð:} \ 0.75 \cdot (n+1) &=& 0.75 \cdot 9 = 6.75 \end{array}$$

So Q_1 is the mean of the measurements in place 2 and 3:

$$Q_1 = \frac{2+3}{2} = 2.5.$$

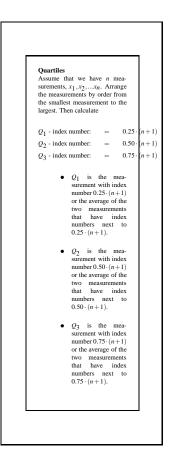
 Q_2 is the mean of the numbers in place 4 and 5:

$$Q_2 = \frac{5+9}{2} = 7.$$

and Q_3 is the mean of the numbers in place 6 and 7:

$$Q_3 = \frac{9+15}{2} = 12.$$

4.13 Quartiles



4.14 Interquartile range

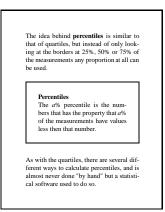
Interquartile range of the mea- surements is denoted with <i>IQR</i> and calculated with	
$IQR = Q_3 - Q_1.$	

We have the following measurements: 1, 2, 3, 5, 9, 9, 15, 17. Find the interquartile range.

We have $Q_1 = 2.5$ and $Q_3 = 12$.

$$IQR = 12 - 2.5 = 9.5$$

4.15 Percentiles



4.16 Variance

	ariance
	ssume that we have n measure-
	ents, $x_1, x_2, \dots x_n$. The vari-
	nce of the measurements is de- oted with s ² and calculated with
no	and calculated with
	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$
_e 2	= 0 if and only if all of
	e measurements are equal, if
	s^2 is always greater then 0.
	the further the measurements lie
fr	om the mean, the higher s^2 will
be	

We have the following measurements: 2, 2, 3, 5, 8. Find the variance.

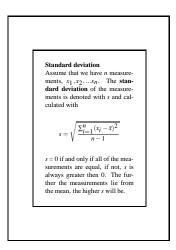
We need the mean value:

$$\bar{x} = \frac{2+2+3+5+8}{5} = \frac{20}{5} = 4.$$

Let us make a small table. The first column is the data. The second column has the difference between the data and the mean. In the third column the the number in column two is squared and in the last line, the numbers in the corresponding column are added.

x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	
2	2-4 = -2	4	
2	2-4 = -2	4	
3	3-4 = -1	1	
5	5-4 = -1 5-4 = 1	1	
8	8-4 = 4	16	
$\sum_{i=1}^{n}$	$(x_i - \bar{x})^2 =$	26	
			$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1} = \frac{26}{4} = 6.5.$

4.17 Standard deviation

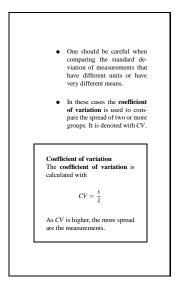


We have the following measurements: 2, 2, 3, 5, 8. Find the standard deviation.

We need to start by calculating the variance. We have already done that (example of variance), $s^2 = 6.25$.

$$s = \sqrt{s^2} = \sqrt{6.25} = 2.25.$$

4.18 Coefficient of variation



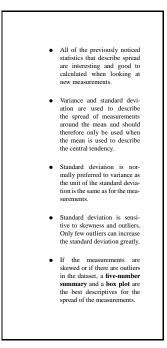
The following table shows the mean, standard deviation and the coefficient of variation of measurements in three cities in the US:

City	\bar{x}	S	CV
Buffalo, N.Y	35.47	4.70	0.13
St. Louis, Mo	35.56	6.62	0.19
San Diego, Calif.	9.62	4.42	0.46

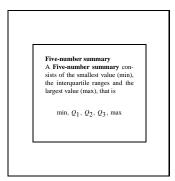
Where is the largest variability.

The CV is largest in San Diego so the variability is largest there.

4.19 Comparison of statistics for spread



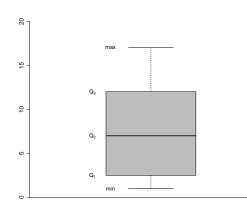
4.20 Five-number summary

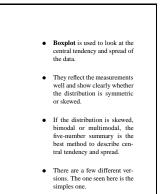


We have the following measurements: 1, 2, 3, 5, 9, 9, 15, 17. We found the quartiles in the quartiles example: og er þau: $Q_1 = 2.5$, $Q_2 = 7$ og $Q_3 = 12$.

The five number summary is:

$$\min = 1, Q_1 = 2.5, Q_2 = 7, Q_3 = 12 \text{ og max} = 17.$$



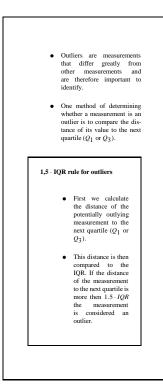


4.21 Boxplot

4.22 Boxplot

Boxplot	
•	A boxplot consists of a box and two lines that go out of the ends of the box. These lines are often called whiskers.
•	The box may lie (horizontal) or stand (vertical), we let it stand in our expla- nation. Then the y-axis shall cover both the smallest and the largest measure- ments.
•	The lower end of the box shall be at Q_1 and the upper end at Q_3 a line should be drawn through the box in Q_2 .
•	The lower whisker should touch the lowest measurement (min) and the upper whisker should touch the tallest measurement (max).

4.23 1.5 · IQR rule for outliers



4.24 IQR rule

