STATS201.stat201 20 Simple linear regression

Anna Helga Jónsdóttir

Sigrún Helga Lund

December 16, 2012

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

1 Simple linear regression 3
1.1 Scatter plot 3
1.2 Scatter plot - continuous variables 3
1.3 The equation of a straight line 3
1.4 The equation of a straight line 4
1.5 Linear relationship 4
1.6 Linear and nonlinear relationship 4
1.7 Sample coefficient of correlation 5
1.8 The size and direction of a linear relationship 5
1.9 The size and direction of a linear relationship 6
1.10 Correlation and causation 6
1.11 The linear regression model 6
1.12 The least squares method 7
1.13 The least squares method 7
1.14 The least squares regression line 8
1.15 Residuals 9
1.16 Residual plot 9
1.17 Interpolation 9
1.18 Extrapolation 10
1.19 Coefficient of determination 10
1.20 Outliers and influential measurements 10
1.21 Outliers and influential measurements 11
1.22 Treatment of outliers and influential measurements 11
1.23 The linear regression model 11
1.24 The random variable ε 12
1.25 Confidence interval for β_{0} 12
1.26 Confidence interval for β_{1} 13
1.27 Prediction interval 13
1.28 Hypothesis test for the correlation coefficient 14

1 Simple linear regression

1.1 Scatter plot

Scatter plot

Scatter plots are used to investigate the relationship between two numerical variables.

The value of one variable is on he y-axis (vertical) and the other on the x -axis (horizontal).

When one of the variable is an explanatory variable and the other one is a response variable, the response variable is always on the -axis and the explanatory vari able on the x-axis.

Response variables and explanatory variables
planatory variables
or every subject, the value of an explanatory variable will in-
fluence what value the response variable receives.

1.2 Scatter plot - continuous variables

1.3 The equation of a straight line

$$
\begin{aligned}
& \text { The equation of a straight line } \\
& \text { The equation of a straight line de- } \\
& \text { scribes a linear relationship be- } \\
& \text { tween two variables, } x \text { and } y \text {. The } \\
& \text { equation is written } \\
& \qquad y=\beta_{0}+\beta_{1} x \\
& \text { where } \beta_{0} \text { is the intercept of the } \\
& \text { line on the } y \text {-axis and } \beta_{1} \text { is the } \\
& \text { slope of the line. }
\end{aligned}
$$

1.4 The equation of a straight line

Figure 1: The equation of a straight line.

1.5 Linear relationship

> Linear relationship
> We say that the relationship be-
> tween two variables is linear if
> the equation of a straight line can
> be used to predict which value the
> response variable will take based
> on the value of the explanatory variable.

Notice that there can be all sorts of rela tionship between two variables. For exam ple, the relationship can be described with a parabola, an exponential function and so on. Those relationship are referred to a nonlinear and are not covered in this lec
ture.

1.6 Linear and nonlinear relationship

1.7 Sample coefficient of correlation

> Sample coefficient of correlation
> Assume that we have n measure-
> ments on two variables x and y.
> Denote the mean and the stan-
> dard deviation of the variable x
> with \bar{x} and $s x$ and the mean and
> the standard deviation of the y
> variable with \bar{y} and $s y$.
> The sample coefficient of correlation is
> $r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$.

Be careful! We only use correlation to estimate linear relationship!

1.8 The size and direction of a linear relationship

> The direction of a linear relationship
> The sign of the correlation coefficients determines the direction of a linear relationship. It is ei-
> ther positive or negative.
> - If the correlation coefficient of two variables is positive, we say that their correlation is positive.
> - If the correlation coefficient of two variables is negative, we say that their correlation is negative.

```
The size of a linear relationship
The absolute value of Nonship
lion coefficient describes the size
of the linear relationship between
the variables.
It tlls us how well we can predict
the value of the response variable
rom the value of the explanatory
variable.
```


1.9 The size and direction of a linear relationship
1.10 Correlation and causation

- Causation is when changes in one variable cause changes in the other variable.
- There is often strong correla tion between two variables al though there is no causal relationship.
- In many cases, the variables are both influenced by the third variable which is then a lurking variable.
- Therefore, high correlation on its own is never enough to its own is never enough to
claim that there is a causal re lationship between two variables.

1.11 The linear regression model

1.12 The least squares method

Figure 4: Many lines, but which one is the best?

1.13 The least squares method

1.14 The least squares regression line

Porgerður and Birna like beer a lot. They decided to make an experiment to investigate the relationship between the alcohol level in blood and the number of consumed beers. 16 students took part in the experiment, the data can be seen below.

$2 *$ Nemi	Fjöldi bjóra	Alkóhólmagn í blóði	$2 *$ Nemi	Fjöldi bjóra	Alkóhólmagn í blóði
1	5	0.100	9	8	0.120
2	2	0.030	10	3	0.040
3	9	0.190	11	5	0.060
4	7	0.095	12	5	0.050
5	3	0.070	13	6	0.100
6	3	0.020	14	7	0.090
7	4	0.070	15	1	0.010
8	5	0.085	16	4	0.050

Use the method of least squares to fir fit a regression line to the data. From the data we can calculate:

$$
\bar{x}=4.813, \quad s_{x}=2.198, \quad \bar{y}=0.074, \quad s_{y}=0.044, \quad r=0.894
$$

The slope is

$$
b_{1}=r \frac{s_{y}}{s_{x}}=0.894 \cdot \frac{0.044}{2.198}=0.018
$$

and the intercept is:

$$
b_{0}=\bar{y}-\beta_{1} \bar{x}=0.074-(0.018 \cdot 4.813)=-0.013
$$

so the regression line is

$$
\hat{y}=-0.013+0.018 x
$$

1.15 Residuals

1.16 Residual plot

Figure 6: Scatter plot of the data and a residual plot.

1.17 Interpolation

> Interpolation
> If the regression model is used
> to predict a value of Y for some
> value of x which is similar to the
> x-values that were used to estimate the model is referred to as interpolating.

Let us continue with the beer example. Predict the alcohol level in the blood of a person that has drunken 6.5 beers.

The regression equation is:

$$
\hat{y}=-0.013+0.018 x
$$

We used data from people drinking from one to nine beers so we are interpolating here. We insert 6.5 in the equation and get:

$$
\hat{y}=-0.013+(0.018 \cdot 6.5)=0.104
$$

1.18 Extrapolation

Extrapolation

Extrapolating is using the reression model to predict a value of Y for some value of x which s far from the x-values that were sed to estimate the model.
It can be very questionable to extrapolate

1.19 Coefficient of determination

We continue to work with the beer data. How much of the variability in the alcohol level can be explained by the number of consumed beers.

We saw earlier that $r=0.894$. So we get that $r^{2}=0.894^{2}=0.799$. Around 80% of the variability in alcohol level can be explained by the number of beers consumed.

1.20 Outliers and influential measurements

1.21 Outliers and influential measurements

1.22 Treatment of outliers and influential measurements

- Outliers and influential mea surements shall always be viewed carefully.
- If a mistake has been made, the measurement shall be eliminated.
- If it cannot be shown that a mistake has been made it is often good to show estimates with and without these measurements.
- In some cases it is more appropriate to use the estimates without the outliers/influential measurements.
- In these cases, it shall b pointed out that the model does not it data outside the does not it data outside the
range of the measurement used for estimating the model.

1.23 The linear regression model

```
If we have n paired measurement
m
    Y}=\mp@subsup{\beta}{0}{}+\mp@subsup{\beta}{1}{}\mp@subsup{x}{i}{}+\mp@subsup{\varepsilon}{i}{}
    - }\mp@subsup{\beta}{0}{}\mathrm{ is the true intercept (popu
        lation intercept) that we do not
        know the value of.
    - }\mp@subsup{\beta}{1}{}\mathrm{ is the true slope (popula-
        tion slope)
    - }\mp@subsup{\varepsilon}{i}{}\mathrm{ are the errors.
\beta
both want to estimate and make inference
on.
We do that by applying the least squares
method to our data.
```


1.24 The random variable ε

ε describes the uncertainty in our measure ments of Y
We assume that ε_{i} are independent and identically distributed random variables that follow a normal distribution with mean

$$
\begin{aligned}
& \text { Estimating } \sigma^{2} \text { in simple linear } \\
& \text { regression } \\
& \text { The estimate of } \sigma^{2} \text { in simple lin- } \\
& \text { ear regression is denoted with } s_{e}^{2} \\
& \text { and calculated with } \\
& \qquad s_{e}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2} .
\end{aligned}
$$

This is the same equation as for the "normal" standard deviation, but now we divide with $n-2$ but not $n-1$

1.25 Confidence interval for β_{0}

1.26 Confidence interval for β_{1}

1.27 Prediction interval

1.28 Hypothesis test for the correlation coefficient

Atli is making an experiment to investigate whether there is a relationship between the icecream sales in a certain shop and the temperature outside. He looks at sales numbers and temperature data on 38 days he chose randomly. He calculated the correlation to be 0.5 . Can Atli conclude that the variables temperature and icecream sales. Use $\alpha=0.05$.

1. We would like to make a hypothesis test for a correlation.
2. $\alpha=0.05$.
3. The hypotheses are:

$$
\begin{aligned}
& H_{0} \quad: \quad \rho=0 \\
& H_{1} \quad: \quad \rho \neq 0 .
\end{aligned}
$$

4. The test statistic is:

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

We have $n=38$ and $r=0.5$.

$$
\begin{aligned}
t & =\frac{0.5 \sqrt{38-2}}{\sqrt{1-0.5^{2}}}=\frac{0.5 \sqrt{36}}{\sqrt{1-0.25}} \\
& =\frac{0.5 \cdot 6}{\sqrt{0.75}}=\frac{3}{\sqrt{0.75}}=3.46 .
\end{aligned}
$$

5. We have $n-2=36$ degrees of freedom. $t_{1-\alpha / 2,(n-2)}=t_{0.975,(36)}=2.028$, so we reject the null hypothesis if $t>2.028$ or if $t<-2.028$.

We see that $t=3.46>2.028$.
6. We reject the null hypothesis and conclude that temperature and icecream sales are correlated.

