# STATS201.stat201 20 Simple linear regression

Anna Helga Jónsdóttir Sigrún Helga Lund

December 16, 2012

**Copyright** This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

## Contents

| 1 | Simj | ple linear regression                              | 3  |
|---|------|----------------------------------------------------|----|
|   | 1.1  | Scatter plot                                       | 3  |
|   | 1.2  | Scatter plot - continuous variables                | 3  |
|   | 1.3  | The equation of a straight line                    | 3  |
|   | 1.4  | The equation of a straight line                    | 4  |
|   | 1.5  | Linear relationship                                | 4  |
|   | 1.6  | Linear and nonlinear relationship                  | 4  |
|   | 1.7  | Sample coefficient of correlation                  | 5  |
|   | 1.8  | The size and direction of a linear relationship    | 5  |
|   | 1.9  | The size and direction of a linear relationship    | 6  |
|   | 1.10 | Correlation and causation                          | 6  |
|   | 1.11 | The linear regression model                        | 6  |
|   | 1.12 | The least squares method                           | 7  |
|   | 1.13 | The least squares method                           | 7  |
|   | 1.14 | The least squares regression line                  | 8  |
|   | 1.15 | Residuals                                          | 9  |
|   | 1.16 | Residual plot                                      | 9  |
|   | 1.17 | Interpolation                                      | 9  |
|   | 1.18 | Extrapolation                                      | 10 |
|   | 1.19 | Coefficient of determination                       | 10 |
|   | 1.20 | Outliers and influential measurements              | 10 |
|   | 1.21 | Outliers and influential measurements              | 11 |
|   | 1.22 | Treatment of outliers and influential measurements | 11 |
|   | 1.23 | The linear regression model                        | 11 |
|   | 1.24 | The random variable $\varepsilon$                  | 12 |
|   | 1.25 | Confidence interval for $\beta_0$                  | 12 |
|   | 1.26 | Confidence interval for $\beta_1$                  | 13 |
|   | 1.27 | Prediction interval                                | 13 |
|   | 1.28 | Hypothesis test for the correlation coefficient    | 14 |

## 1 Simple linear regression

## 1.1 Scatter plot



### **1.2** Scatter plot - continuous variables



### **1.3** The equation of a straight line



**1.4** The equation of a straight line



Figure 1: The equation of a straight line.

## 1.5 Linear relationship



## 1.6 Linear and nonlinear relationship



Figure 2: Scatter plot where the relationship between two variables is linear (above) and nonlinear (below).

## **1.7** Sample coefficient of correlation



## 1.8 The size and direction of a linear relationship

| The direct<br>tionship<br>The sign o<br>ficients det<br>of a linear<br>ther positiv                                                | tion of a linear rela-<br>f the correlation coef-<br>ermines the <b>direction</b><br>relationship. It is ei-<br>e or negative.                                            |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                                  | If the correlation co-<br>efficient of two vari-<br>ables is positive, we<br>say that their corre-<br>lation is <b>positive</b> .                                         |
| •                                                                                                                                  | If the correlation co-<br>efficient of two vari-<br>ables is negative, we<br>say that their corre-<br>lation is <b>negative</b> .                                         |
| The size of<br>The absolution coeffic<br>of the linea<br>the variable<br>It tells us ha<br>the value o<br>from the va<br>variable. | <b>Ta linear relationship</b><br>te value of a correla-<br>ier relationship between<br>ss.<br>ww well we can predict<br>f the response variable<br>lue of the explanatory |



Figure 3: Scatter plot for various values of r.

### **1.9** The size and direction of a linear relationship

#### **1.10** Correlation and causation



## 1.11 The linear regression model



1.12 The least squares method



Figure 4: Many lines, but which one is the best?

## 1.13 The least squares method



Figure 5: The least squares method.

#### 1.14 The least squares regression line



Þorgerður and Birna like beer a lot. They decided to make an experiment to investigate the relationship between the alcohol level in blood and the number of consumed beers. 16 students took part in the experiment, the data can be seen below.

| 2*Nemi | Fjöldi | Alkóhólmagn | 2*Nemi | Fjöldi | Alkóhólmagn |
|--------|--------|-------------|--------|--------|-------------|
|        | bjóra  | í blóði     |        | bjóra  | í blóði     |
| 1      | 5      | 0.100       | 9      | 8      | 0.120       |
| 2      | 2      | 0.030       | 10     | 3      | 0.040       |
| 3      | 9      | 0.190       | 11     | 5      | 0.060       |
| 4      | 7      | 0.095       | 12     | 5      | 0.050       |
| 5      | 3      | 0.070       | 13     | 6      | 0.100       |
| 6      | 3      | 0.020       | 14     | 7      | 0.090       |
| 7      | 4      | 0.070       | 15     | 1      | 0.010       |
| 8      | 5      | 0.085       | 16     | 4      | 0.050       |

Use the method of least squares to fir fit a regression line to the data. From the data we can calculate:

$$\bar{x} = 4.813, \ s_x = 2.198, \ \bar{y} = 0.074, \ s_y = 0.044, \ r = 0.894.$$

The slope is

$$b_1 = r\frac{s_y}{s_x} = 0.894 \cdot \frac{0.044}{2.198} = 0.018$$

and the intercept is:

$$b_0 = \bar{y} - \beta_1 \bar{x} = 0.074 - (0.018 \cdot 4.813) = -0.013.$$

so the regression line is

$$\hat{y} = -0.013 + 0.018x.$$

#### 1.15 Residuals



#### 1.16 Residual plot



Figure 6: Scatter plot of the data and a residual plot.

## 1.17 Interpolation



Let us continue with the beer example. Predict the alcohol level in the blood of a person that has drunken 6.5 beers.

The regression equation is:

$$\hat{y} = -0.013 + 0.018x$$

We used data from people drinking from one to nine beers so we are interpolating here. We insert 6.5 in the equation and get:

$$\hat{y} = -0.013 + (0.018 \cdot 6.5) = 0.104.$$

#### 1.18 Extrapolation



#### 1.19 Coefficient of determination



We continue to work with the beer data. How much of the variability in the alcohol level can be explained by the number of consumed beers.

We saw earlier that r = 0.894. So we get that  $r^2 = 0.894^2 = 0.799$ . Around 80% of the variability in alcohol level can be explained by the number of beers consumed.

#### **1.20** Outliers and influential measurements



Figure 7: Outliers and their residuals.



## **1.21** Outliers and influential measurements

## **1.22** Treatment of outliers and influential measurements

| • | Outliers and influential mea-<br>surements shall always be<br>viewed carefully.                                                                          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | If a mistake has been made,<br>the measurement shall be<br>eliminated.                                                                                   |
| • | If it cannot be shown that a<br>mistake has been made it is<br>often good to show estimates<br>with and without these mea-<br>surements.                 |
| • | In some cases it is more ap-<br>propriate to use the estimates<br>without the outliers/influential<br>measurements.                                      |
| • | In these cases, it shall be<br>pointed out that the model<br>does not it data outside the<br>range of the measurements<br>used for estimating the model. |
|   |                                                                                                                                                          |

## 1.23 The linear regression model



### **1.24** The random variable $\varepsilon$



## 1.25 Confidence interval for $\beta_0$

| Cor<br>The<br>fide                                            | fidence interval<br>lower bound of a<br>ice interval for β                                                                                                                     | for $\beta_0$<br>a 1 - $\alpha$ con-<br>0 is:                                                                        |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <i>b</i> 0 -                                                  | $t_{1-\alpha/2,(n-2)}$                                                                                                                                                         | $s_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{s_{\bar{x}}^2 \cdot (n-1)}}$                                             |
| The                                                           | upper bound of<br>e interval is:                                                                                                                                               | $1 - \alpha$ confi-                                                                                                  |
| <i>b</i> 0 -                                                  | $t_{1-\alpha/2,(n-2)}$                                                                                                                                                         | $s_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{s_x^2 \cdot (n-x)}}$                                                     |
| when<br>way<br>of p<br>mea<br>able<br>of t<br>$t_{1-}$<br>the | The $b_0$ is calculat<br>as usual, <i>n</i> is<br>aired measurement<br>of the explan-<br>tion $x_1$ is the standar-<br>ne explanatory of<br>x/2, (n-2) is in<br>-distribution. | ed the same<br>the number<br>ints, $\bar{x}$ is the<br>natory vari-<br>rd deviation<br>variable and<br>the table for |

## **1.26** Confidence interval for $\beta_1$



### **1.27** Prediction interval



#### **1.28** Hypothesis test for the correlation coefficient



Atli is making an experiment to investigate whether there is a relationship between the icecream sales in a certain shop and the temperature outside. He looks at sales numbers and temperature data on 38 days he chose randomly. He calculated the correlation to be 0.5. Can Atli conclude that the variables temperature and icecream sales. Use  $\alpha = 0.05$ .

- 1. We would like to make a hypothesis test for a correlation.
- 2.  $\alpha = 0.05$ .
- 3. The hypotheses are:

$$H_0$$
 :  $\rho = 0$   
 $H_1$  :  $\rho \neq 0$ .

4. The test statistic is:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}.$$

We have n = 38 and r = 0.5.

$$t = \frac{0.5\sqrt{38-2}}{\sqrt{1-0.5^2}} = \frac{0.5\sqrt{36}}{\sqrt{1-0.25}}$$
$$= \frac{0.5\cdot 6}{\sqrt{0.75}} = \frac{3}{\sqrt{0.75}} = 3.46.$$

5. We have n - 2 = 36 degrees of freedom.  $t_{1-\alpha/2,(n-2)} = t_{0.975,(36)} = 2.028$ , so we reject the null hypothesis if t > 2.028 or if t < -2.028.

We see that t = 3.46 > 2.028.

6. We reject the null hypothesis and conclude that temperature and icecream sales are correlated.