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1 Probability

1.1 Randomness

• Descriptive statistics describe
the sample that we have
obtained

• Statistical inference uses the
sample to draw conclusions
about the whole population.

• The variables that we measure
are influenced by some ran-
domness.

• We therefore look at every
measurement as a random
phenomena.

• In this lecture we look closer
at random phenomena.

1.2 Events, outcomes and outcome space.

Outcome and outcome space
Every random phenomena has
certain possibleoutcomes. The
set of all possible outcomes is
theoutcome spacean is denoted
with Ω.

Event
An Event is a particular outcome
or a set of particular outcomes of
a random phenomena.

Which are the possible outcomes when a coin is tossed twice?

The possible outcomes are four, soΩ has four elements:

1. First heads, then tails

2. First heads, then heads

3. First tails, then tails

4. First tails, then heads
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1.3 Disjoint events

Disjoint events
We say that eventsA and B are
disjoint if they contain no com-
mon outcome.

If we toss a coin twice, are the following events disjoint?

A: To get at least one tail

B: To get no tails

Since we cannot have none and one tail at the same time the events are disjoint.

1.4 Union and intersection of events

Union of events
The union of eventsA and B is
denotedA∪B. It is the set of all
outcomes that are ineither A or
B or both of them.

Intersection of events
The Intersection of eventsA and
B is denotedA∩B. It is the set
of al outcomes that are inboth
A andB. If A andB are disjoint,
then their intersection isempty.

Let A be the event: "outcome on the interval (-3,4)" andB be the event "outcome in the interval (2,8)".
Fin the union and the intersection of the eventsA andB.

The union ofA andB, A∪B is "outcome in the interval (-3,8)".

The intersection ofA andB, A∩B is "outcome in the interval (2,4)".

1.5 The complement of an event

Complement of an event
The Complement of an eventA

is denotedAC . It s the set of all
outcomes inΩ that arenot it A.

We toss a coin twice. LetA andB be the events:

6



A: To have at lest one tail.

B: To have two tails.

Find the union, intersection and the complement of the events.

The intersection ofA andB is { „tail, tail“ }.

The union ofA andB is { „tail, tail“, „tail, heads“, „heads, tails“}.

The complement ofA is {„heads, heads“}.

The complement ofB is { „heads, heads“, „tails, heads“, „heads, tails“}.

1.6 Probability

Probability
Theprobability of a certain out-
come of a certain outcome of a
random phenomena is the propor-
tion of the cases when that the
random phenomena gets that out-
come when the phenomena is re-
peated often enough. This ratio
can be at minimumzero and at
maximumone.

Probability of an event
The probability of an event A,
denotedP(A), is the probability
that the observed outcome will be
in A.

1.7 Equally likely outcomes

Equally likely outcomes
Equally likely outcomes are
only defined for random phenom-
ena withfinite Ω. Then the prob-
ability of every outcome inΩ is
the same.

Probability of events when all
outcomes are equally likely
If all of the outcomes of a random
phenomena areequally likely,
then the probability of an eventA
are:

P(A)=
number of outcomes inA
number of outcomes inΩ

What is the probability of getting one "tail" when two coins are flipped?

The event „to get exactly one tail“, has two outcomes.Ω has in total four equally likely outcomes the
the probability is 2/4 or 50 %.
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1.8 Formulas

Formulas

1. P(Ω) = 1

2. P(AC) = 1−P(A)

3. P(A ∪ B) = P(A) +
P(B)−P(A∩B)

4. If A and B are dis-
joint, P(A ∪ B) =
P(A)+P(B)

1.9 Conditional probability

Conditional probability
With P(A|B) we denote the prob-
ability that eventA occurs, given
that eventB has occurred. The
probability ofP(A|B) can be cal-
culated with

P(A|B)= P(A∩B)
P(B)

, if P(B)>0.

Probability of intersection of
events

P(A∩B)=P(A|B)P(B), if P(B)>0.

1.10 Independent events

Independent events
We say that eventsA and B are
independent if the probability
that an eventA occurs does not
change even though the eventB
has occurred and vice versa.

Probability of independent
events
If A andB are independent, then

P(A∩B) = P(A) ·P(B)

Beta has 8 balls in a bag, three red and five white. She takes oneball and then returns it and then draws
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another ball.

1. What is the probability that she draws tw red balls?

2. What is the probability that the balls have different color?

1. Since Beta returns the first ball the the draws are independent. The probability of getting two red
balls are:

3
8
· 3
8
=

9
64

approx. 14%.

2. LetaA be the event "first red, then white" andB be the event "first white, then red". Then the
probability of getting balls with different color equal toA∪B. SinceA andB are disjoint we get:

P(A∪B) = P(A)+P(B) =
3
8
· 5
8
+

3
8
· 5
8
=

15
64

+
15
64

=
30
64

approx. 47 %.

2 Random variables

2.1 Random variable

Random variable
Random variable describes the
outcome of a variable before it is
measured

Syntax for random variables
Random variables are denoted
with capital letters, oftenX

Values that a random variable
has received are denoted with
lower-caseletters, oftenx

The same letter is always used for
a random variable and the value it
has received.

2.2 Discrete and continuous random variables

Discrete random variables
Discrete random variablesde-
scribe discrete variables. They
have a finite set of possible out-
comes on every limited interval.

Continuous random variables
Continuous random variables
describe continuous variables.
They can obtain any outcome on
some interval.

9



2.3 Syntax for the probability of random variables

Syntax for the probability of
random variables

P(X ≤ a): Denotes the proba-
bility that the out-
come of a random
variable X will be
less or equal then
the valuea.

P(X ≥ a): Denotes the prob-
ability that the
outcome of a ran-
dom variableX will
be greater or equal
then the valuea.

P(a≤ X ≤ b): Denotes the
probability that the
outcome of a ran-
dom variableX will
be between aand b,
both values included

P(X = a): Denotes the proba-
bility that the out-
come of a random
variable X will be
exactly the valuea.

2.4 Probability distribution of random variables

Probability distribution ran-
dom variables
The Probability distribution of
a random variable is a rule that
tells us which values a random
variable can receive and further-
more:

P(X = a) for all valuesa it can
receive if the proba-
bility distribution is
discrete.

P(a≤ X ≤ b) for all values a
and b if the proba-
bility distribution is
continuous.

The probability distribution of a random
variable gives us all available information
possible of the random variable!
Why do you think that we define the proba-
bility distribution in a different manner de-
pending on whether the random variable is
discrete or continuous?
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2.5 Types of probability distributions

Types of probability distribu-
tions
The randomness of many of the
variables that we investigate are
similar by nature.

Then the random variables that
they describe behave similarly.

As a consequence, they will have
similar probability distributions.

Then we say that the probability
distributions of the random
variables are of the same type.

2.6 Parameter

Parameter
Every type of probability distri-
bution is described with numbers
that are called theparametersof
the probability distribution.

Different parameters describe
different probability distributions
.

Normally the parameters are only
one or two.

If we know the type of the prob-
ability distribution of a random
variable, the values of its parame-
ters give all information available
about the random variables.
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2.7 Short summary

• One can talk about the prob-
ability that a random variable
receives certain values.

• That probability is described
by the probability distribution
of the random variables, that
give all information available
about the random variables.

• Many random variables have
probability distributions of a
known type.

• Every type of probability dis-
tribution is described with
numbers that are called pa-
rameters.

• To every type of probabil-
ity distributionsbelong certain
parameters and they are nor-
mally one or two.

• If we know the type of the
probability distribution of a
random variable, the values
of its parameters give all in-
formation available about the
random variables.

2.8 Independent random variables

Independent random variables
We say that two random variables
are independent if the outcome
of one random variable does not
affect the outcome of the other
random variable.

Dependent random variables
We say that two random variables
aredependentif they are not in-
dependent, that is, if the outcome
of one random variable does not
affect the outcome of the other
random variable or vice versa.

Independent and identically
distributed random variables
We say that random variables
X1, . . .,Xn are independent if
each of them is independent to
all of the others andidentically
distributed if they all have the
same probability distribution.

12



2.9 Expected value of a random variable

Expected value of a random
variables
Expected value of a random
variable is thetrue mean of the
random variable. It is either de-
noted withµ or E[X]. It is also
called population mean when
appropriate.

Law of large numbers
As the number of measurements
of a random variableX grows,
the mean of the measurements,
denoted ¯x, gets closer to theex-
pected valueof the random vari-
able, denotedµ or E[X].

2.10 Expected value of a discrete random variable

Expected value of a discrete
random variable
If a random variable isdiscrete
its expected value is the weighted
mean of all of its possible out-
comes, where the weight of each
outcome is the probability that
the random variable receives that
outcome.

Formula for the expected value
of a discrete random variable
If a random variableX is discrete,
then its expected value is

µ=∑xi ·P(X = xi )

where we sum over all possible
outcomes of the random variable.

What is the expected value of the random variable "the sum from tossing two dies"?

When we add the outcomes from tossing two dies the outcomes are not equally likely. The probabilities

are
Value 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

The expected value is:

∑xi ·P(X = xi) =

2 · 1
36

+3 · 2
36

+4 · 3
36

+5 · 4
36

+6 · 5
36

+7 · 6
36

+8 · 5
36

+9 · 4
36

+10· 3
36

+11· 2
36

+12· 1
36

= 7.
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2.11 Variance of random variables

Variance of random variables,
Var[X]
As random variables have true
means, they also have atrue
variance. It is either denoted
with σ2, or Var[X]. It is also
called thepopulation variance
when appropriate.

Formula for the variance of a
discrete random variable
The variance of a discrete ran-
dom variable is

σ2 =∑(xi −µ)2 ·P(X = xi )

where we sum over all possible
outcomes of the random variable.

What is the variance of the random variable "tossing a die"?

The expected value is equal to 3.5.

The variance is:

∑(xi −µ)2 ·P(X = xi) =(1−3.5)2 · 1
6
+(2−3.5)2 · 1

6
+(3−3.5)2 · 1

6

+(4−3.5)2 · 1
6
+(5−3.5)2 · 1

6
+(6−3.5)2 · 1

6
= 2.92

3 Discrete probability distributions

3.1 Probability distributions of random variables

• Many random variables have
probability distributions of a
known type.

• The probability distributions
of random variables are dis-
crete if the random variables
are discrete and continuous if
not.

• Let us look at the two most
common discrete probability
distributions:

– The binomial dis-
tribution

– The Poisson dis-
tribution

• We will see how these two
probability distributions can
be used to describe several
random phenomena.
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3.2 Mass function

Mass function
Discrete probability distributions
are described with amass func-
tion and we will use it to cal-
culate that probability of cer-
tain outcomes of discrete random
variables. We denote the mass
function with f (x) and it can be
written as

f (x) = P(X = x).

The following holds for the mass
function:

f (x)≥ 0

∑
yfir öll x

f (x) = 1.

We use barplots to represent mass
functions graphically.

3.3 Barplot of a mass function
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3.4 Formulas for discrete random variables

Formulas fyrir discrete ran-
dom variables
When calculating probabilities
for a discrete random variable
X calculations can often be sim-
plified by ”turning around” the
probabilities

P(X ≤ k) = 1−P(X > k)

P(X < k) = 1−P(X ≥ k)

P(X ≥ k) = 1−P(X < k)

P(X > k) = 1−P(X ≤ k)

wherek can be any number in the
outcome space ofX.
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3.5 Bernoulli trial

Bernoulli trial
Every event in a group of re-
peated events is classified as a
Bernoulli trial if the following
holds:

1. Every event has
only two possible
outcomes. These
outcomes are tra-
ditionally called
successand failure .
An event is success-
ful if the outcome
is a success and
unsuccessful if its
outcome is afailure .

2. The probability of a
success are the same
for every event. The
probability of a fail-
ure is therefore the
same for all events
as the probability of
a failure is always 1
minus the probabil-
ity of a success.

3. An outcome in one
event does not influ-
ence the outcome of
another event, that is
the events are inde-
pendent.

3.6 The binomial distribution

• We are often interested in cal-
culating how many success-
ful events are among a set of
Bernoulli trials.

• We would for example want
to calculate the probability of
receiving two sixes (which
would be the success) when a
dice is thrown five times.

• We view the total number of
successful events as a random
variableX.

• It has a known probability dis-
tribution that is called thebi-
nomial distribution and it is
described with the parameters
n which is the total number of
Bernoulli trials that are con-
ducted, andp which is the
probability that is the prob-
ability of success within the
Bernoulli trials.
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3.7 The binomial distribution

The binomial
distribution
Let the random
variable X denote
the number of
successful events
from n Bernoulli
trials. ThenX fol-
lows a binomial
distribution with
the parameters
n and p, writ-
ten X ∼ B(n, p),
where p is the
probability of
success within
each event.

The probability
that the random
variable X re-
ceives the valuek
∈ 0,1,2, ...n can
be calculated with
the mass function
of the binomial
distribution:

P(X = k)=

(

n
k

)

pk(1−p)n−k, k= 0,1,2, ...n

(n
k

)

the binomial
coefficient. It is
the probability of
receiving k posi-
tive outcomes inn
events and calcu-
lated with
(

n
k

)

=
n!

k!(n−k)!
.

Wherek! = k·(k−
1) ·(k−2) · ... ·(1).
Notice that 0!= 1.

Benni likes to toss coins. Calculate the probability that hewill get exactly two "heads" when he tosses
a coin four times.

We let X represent the number of heads.X follows a binomial distribution withn = 4, p = 0.5, X ∼
B(4,0.5).

17



We start by finding the value of the binomaial coefficient:
(

n
k

)

=

(

4
2

)

=
4!

2!(4−2)!
=

4 ·3 ·2 ·1
2 ·1 · (2 ·1) = 6

and then we use the mass function of the binomial distribution to calculate the probability:

P(X = 2) =

(

n
k

)

pk(1− p)n−k =

(

4
2

)

0.52(1−0.5)4−2 = 6 ·0.52 ·0.52 = 0.3750.

The probability is 37.5 %.

3.8 The binomial distribution

• We have now seen that the
probability that the random
variable X receives a certain
valuek can be calculated.

• In addition to calculating
P(X = k) we are often
interested in calculating

– P(a ≤ X ≤ b) or
P(a< X < b)

– P(X ≤ k)) or
P(X < k)

– P(X ≥ k)) or
P(X > k)

• We can calculate all of those
probabilities by using the for-
mula for the mass function of
a binomial distribution along
with the rules on slide 3.4.

Helga throws a coin 10 times. We useX to represent the number of "heads",X ∼ B(10,0.5).

a) What is the probability that Helga gets between 4 and 6 heads?

b) What is the probability that Helga gets 3 or less heads?

c) What is the probability that Helga gets 8 or more heads?

d) What is the probability that Helga gets more than 2 heads?

a) P(4≤ X ≤ 6)

We need to add the probabilities that she will geet 4, 5 and 6 heads or

P(4≤ X ≤ 6) = P(X = 4)+P(X = 5)+P(X = 6).

P(4≤ X ≤ 6) = 0.2051+0.2461+0.2051= 0.6563.

b) P(X ≤ 3)

We need to add the probability of getting 0, 1, 2 and 3 heads:

P(X ≤ 3) = P(X = 0)+P(X = 1)+P(X = 2)+P(X = 3)
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P(X ≤ 3) = 0.0010+0.0098+0.0439+0.1172= 0.1719.

c) P(X ≥ 8).

We need to ass the probability of getting 8, 9, or 10 heads:

P(X ≥ 8) = P(X = 8)+P(X = 9)+P(X = 10)

P(X ≥ 8) = 0.0439+0.0098+0.0010= 0.0547

d) P(X > 2).

We can calculate the probability as:

P(X > 2) = P(X = 3)+P(X = 4)+ ...+P(X = 10)

but it is easier to rewrite the probability and get:

P(X > 2) = 1−P(X ≤ 2) = 1− (P(X = 2)+P(X = 1)+P(X = 0)).

P(X > 2) = 1− (0.0439+0.0098+0.0010)= 0.9453.

3.9 Expected value and variance of a binomial distribution

Expected value and variance of
a binomial distribution
If X follows a binomial distribu-
tion, X ∼ B(n, p) then

E[X] = np

Var[X] = np(1− p)

John is going to toss a die 900 times. We useX to denote the number of times a four comes up,
X ∼ B(900,1/6). Find E[X] and Var[X].

E[X] = np = 900·1/6= 150

Var[X] = np(1− p) = 125.
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3.10 The Poisson distribution

• The Poisson distribution is of-
ten used to describe the num-
ber of random phenomena that
occur within a certain unit
but the number of possible
outcomes has no upper limit.

• The units can betime in-
tervals, spatial intervals or
somephysical object.

• As an example we can men-
tion the number of phone
calls an office receives every
minute, the number of rein-
deers per each square kilome-
ter or the number of typos on
each page.

3.11 The Poisson distribution

The Poisson distribution
The Poisson distribution has one
parameter that is calledλ. If
X follows a Poisson distribution
with the parameterλ the proba-
bility that the random variableX
receives a valuek, k = 0,1,2, ...
with the mass function of the
Poisson distribution:

P(X = k) =
e−λλk

k!
.

We writeX ∼ Pois(λ). The sam-
ple space ofX is Ω = {0,1,2,...}.
The parameterλ is the expected
value of the random variableX,
that is, its true mean. It describe
how many successful outcomes
we expect on average per each
unit.

3.12 The Poisson distribution

• We have now seen that the
probability that a random vari-
able X that follows the Pois-
son distribution receives a cer-
tain valuek can be calculated
with the mass function of the
Poisson distribution.

• We are often interested in cal-
culating other probabilities:

– P(a ≤ X ≤ b) or
P(a< X < b)

– P(X ≤ k) or P(X <
k)

– P(X ≥ k) or P(X >
k).

We can calculate all of these probabilities
with the mass function of the Poisson dis-
tribution.
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3.13 Changing units

• When calculating the prob-
ability that a random vari-
able that follows a Poisson
distribution receives a certain
value, we often have given the
value ofλ in another unit then
the one we wish to use.

• We could for example know
that the number of car in-
cidents in Reykjavik every
week, but we wish to know the
number of incidents per day.
Thenλ need to be adjusted to
a new unit.

• If the new unit isa times the
old unit, then

λnew= a ·λold

Whereλold is the ”oldλ” and
λnew is the ”newλ” adjusted
to a new unit.

Anna is in a hurry and wonders how long time she has to wait in line in a supermarket. Average number
of customers to get help there are 1.5 per minute.

Find the probability that:
a) 3 customers arrive at the resister in one minute.

b) 4 customers arrive at the resister in two minutes.

c) No more than 2 customers arrive at the register in one minute.

d) At least 1 customer arrives at the register in one minute.

a) We know that the average number of customers in one minute is 1.5, soλ = 1.5.

P(X = 3) =
e−1.51.53

3!
= 0.1255.

b) We know that the average number of customers is per minute is 1.5 =λ. We need the average number
of customers in two minutes. Since the average number of customers in one minute is 1.5 we expect on
average 2·1.5= 3 customers to arrive in two minutes.We useλ = 3 and get:

P(X = 4) =
e−334

4!
= 0.1680

c)

P(X ≤ 2) = P(X = 0)+P(X = 1)+P(X = 2)

= 0.2231+0.3347+0.2510

= 0.8088.

d)
P(X ≥ 1).

We need to rewrite the probability:

P(X ≥ 1) = 1−P(X < 1)

= 1−P(X = 0)

= 1−0.2231

= 0.7769.
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3.14 The expected value and variance of a Poisson distribution

Expected value and variance of
a Poisson distribution
If X follows a Poisson distribu-
tion, X ∈ Pois(λ) then

E[X] = λ

Var[X] = λ.

Let X denote a random variable that follows a Poisson distribution with λ = 2. Find the expected value
and variance ofX.

E[X] = λ = 2

Var[X] = λ = 2.

4 Continuous probability distributions

4.1 Probability distributions of random variables

• Many random variables fol-
low probability distribution of
known types.

• The probability distributions
of random variables are con-
tinuous if the random vari-
ables are continuous.

• We will look closely at the
most common continuous
probability distribution:

– Normal distribu-
tion

• And also look at three contin-
uous distributions that we will
use for statistical inference:

– t-distribution

– χ2-distribution

– F-distribution
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4.2 Probability of continuous random variables

For continuous random variables holds that

P(X = x) = 0.

This equation tells us that the probability
of a continuous random variable receiving
any specific value is always zero, no matter
what the value is. Therefore it holds that

P(a≤X ≤b)=P(a<X ≤b)=P(a≤X <b)=P(a<X <b)

whenX is continuous. Remember that this
does not generally apply to discrete ran-
dom variables!

Formulas for continuous ran-
dom variables
The following rules hold for con-
tinuous random variables and are
often useful.

P(X > a) = 1−P(X < a)

P(a<X <b)=P(X <b)−P(X <a).

4.3 Density function, distribution function and density curve

Density function, distribution
function and density curve
Continuous distributions are de-
scribed with adensity function,
denoted with f (x). We use a
so-calleddistribution function ,
which is the integral of the den-
sity function, to calculate the
probability that a continuous ran-
dom variableX receives a value
that is less then a specific refer-
ence valuex. The distribution
function is denoted withF(x) and
can be written as

F(x) = P(X < x)

Density curve is described graph-
ically with a density curve. The
area under the density curve be-
tween two valuesa andb equals
the probability that a random
variable receives a value between
a andb. The total area under the
whole curve is always equal to 1.
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a b

4.4 Density function, distribution function and density curve

4.5 Normal distribution

• The Normal distribution is the
most frequently used distribu-
tion within statistics.

• All sorts of phenomenas can
be described with the normal
distribution such as height,
blood pressure, weight and so
and so forth.

• We will also get to know the
importanse of the normal dis-
tribution in lecture 090 when
we study the central limit the-
orem.

• The density curve of the nor-
mal distribution is bell shaped
and has two parameters that
determine its shape.

4.6 Normal distribution

Normal distribution
The density function of the nor-
mal distribution is often denoted
with φ(x) and may be written as

f (x)= φ(x)=
1

σ
√

2π
e
− 1

2 (
x−µ

σ )2

The function has twoparame-
ters, µ and σ. µ is the mean of
the normal distribution and deter-
mines its location.σ2 is the vari-
ance of the distribution and de-
termines its spread. If a random
variableX follows normal distri-
bution with meanµ and variance

σ2 we write thatX ∼ N(µ,σ2).
The distribution function of the
normal distribution is denoted
with Φ(x).
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4.7 Normal distribution

µ

σ1

σ2

σ1 < σ2

Figure 4: Two normal distributions with the same mean but different variances

4.8 Normal distribution

µ1 µ2 µ3

µ1 < µ2 < µ3

Figure 5: Three normal distributions with the same variancebut different means.
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4.9 The 68-95-99.7% rule

The 68-95-99.7% rule
For every normal distribution
with meanµ and standard devia-
tion σ holds that

• approx. 68% of
the measurements
will lie within one
standard deviation
from the mean

• approx. 95% of
the measurements
will lie within two
standard deviations
from the mean

• approx. 99.7% of
the measurements
will lie within three
standard deviations
from the mean

4.10 The 68-95-99.7% rule

µ
µ + σµ − σ

µ+ 2σµ− 2σ
µ+ 3σµ− 3σ

99.7%

95%

68%

Figure 6: The 68-95-99.7% rule
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4.11 Standardized normal distribution

Normal distribution with meanµ = 0 and
standard deviationσ = 1 is called the stan-
dardized normal distribution.

Standardized normal distribu-
tion
If a random variableX follows
normal distribution with meanµ,
standard deviationσ and variance
σ2, written

X ∼ N(µ,σ2)

then

Z =
X−µ

σ

follows a normal distribution
with meanµ= 0 and standard de-
viationσ = 1, written

Z ∼ N(0,1).

4.12 Probability of normally distributed random variables

• The probability of normally
distributed random variables
can be calculated as the area
under the density curve.

• If one wishes to find the prob-
ability that a normally dis-
tributed random variable lies
on the interval froma tob one
need to integrate the density
function froma to b. That is
not done by hands, but with ta-
bles or computer software.

Before one can use the table, the normal
distribution needs to be transformed to a
standardized form. The table shows the
probability

Φ(z) = P(Z < z),

that is, it shows the probability that a ran-
dom variableZ that follows standardized
normal distributionwill receive a value less
then the numberz, often calledz-value.
This can be though of as if the table is look-
ing to the left.
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z

P(Z < z)

Figure 7: Normal distribution

z

P(Z > z)

a b

P(a < Z < b)

Figure 8:P(Z > z) andP(a< Z < b) whereZ ∼ N(0,1)

4.13 Probability of normally distributed random variables

4.14 Probability of normally distributed random variables

4.15 Using the table for the standardized normal distribution

Using the table for finding
probability
When finding the probability that
belongs to a certainz-value:

If the value follows standardized
normal distribution that value is
the z-value itself. If it does not
follow the standardized normal
distribution we need to find a
standardizedz-value with

z=
x−µ

σ

We find thez-value in the table
(in bold) and the probability is the
Φ(z) value on it’s right side.

Let us assume that the test scores of students in US on the SAT test follow normal distribution with
mean 1026 and standard deviation 209. We useX to denote the test scores,X ∼ N(1026,2092).
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a) Find the probability that student chosen at random has lower grade than 720, that isP(X ≤ 720).

b) Calculate the probability that a student, chosen at random, has higher score that 820, that isP(X ≥
820).

c) Calculate the probability that a randomly chosen studenthas a grade on the interval 720 og 820, that
is P(720≤ X ≤ 820).

a)
P(X < 720).

We need to starty by standardizing:
720−1026

209
=−1.46

P(X < 720) = P(Z <−1.46)

We use the normal distribution table and get 0.0721, that is approx. 7 %.

b)
P(X > 820).

We need to start by standardising:
820−1026

209
=−0.99

P(X > 820) = P(Z >−0.99) = 1−P(Z<−0.99)

We use the normal distribution table and get 1-0.1611 = 0.8389, that is approx. 84%.

c)
P(720< X < 820).

We use the standardised values from a) and b)

P(720< X < 820) = P(−1.46< Z <−0.99) = P(Z <−0.99)−P(Z<−1.46)

We use the normal distribution table and get:

0.1611−0.0721= 0.089

that is approx. 9%.
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4.16 Using the table for the standardized normal distribution

Using the table for finding
values
If we wish to find whichz-value
corresponds to a certain proba-
bility:

We find the probability, or the
probability closest to it, among
the Φ(z)-values in the table and
thez-value is (in bold) on its left
side.

If the value does not follow the
standardized normal distribution
we need to transform thez-value
back to the original distribution,
such that the value becomes

x= µ+zσ

Which does a student need to get at minimum in order to be in thetop 10% of the students?

Now we need the z-value. Remember that the table looks to the left so we need to find whichz-value
corresponds to 90% (then there are 10% above). We see that thez-value is 1.28.

The grades do not follow that standard normal distribution so we need to transform thez-value:

x= µ+ zσ

so
Minimum grade= 1026+1.28·209= 1292.5 points.

4.17 The relationship ofX andZ

The relationship of X and Z
If a random variableX follows
normal distribution with meanµ

and varianceσ2 then

P(X ≤ x) = P(Z ≤ z)

Where z =
x−µ

σ and Z follows
the standardized normal distribu-
tion.
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4.18 The syntaxza

The syntaxza
With za is denoted thez-value
that is such that a random vari-
able that follows standardized
normal distribution has the prob-
ability a of receiving a values that
is less thenza. This can be writ-
ten as:

a= P(Z < za).

whereZ follows the standardized
normal distribution.za is there-
fore the a-th percentile of the
standardized normal distribution.

Notið töflu staðlaðrar normaldreifingar til að finnaz0.95.

Hér þekkjum við líkurnar en okkur vantarz-gildið. Við finnum því 0.95 meðalΦ-gildanna í töflunni og
lesum z-gildið við hlið þess. Í töflunni má sjá aðz0.95 = 1.64.

4.19 Normal probability plot

• Many statistical methods rely
on that the measurements or
some derived quantities fol-
low a normal distribution.

• When applying these methods
we need to ensure that this is
the case.

• There are several methods to
do so, a common one is the
normal probability plot.

• The normal probability plot is
a graphical method to inves-
tigate whether data follows a
normal distribution or not.

• Normal probability plots are
not drawn in statistical soft-
wares, not by hand, but it is
important to know how to in-
terpret them.

4.20 Normal probability plot

Normal probability plot
If the points on the normal prob-
ability plot lie close the straight
line that is shown on the plot
and the end points on both sides
do not bend critically up and/or
down from the line then it is rea-
sonable to assume that the data is
normally distributed.
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4.21 Normal probability plot

Histogram data 1 Histogram data 2 Histogram data 3

Normal probability plot data 1 Normal probability plot data 2 Normal probability plot data

4.22 t-distribution

• The t-distribution, or the Stu-
dent’s t, is a continuous prob-
ability distribution that resem-
bles the normal distribution.

• It is bell shape, symmetrical
about the mean of the distri-
bution, which is 0. The t-
distribution is used for statis-
tical inference.

• The t-distribution has one pa-
rameter, that is called thede-
grees of freedom. We usek to
denote the number of degrees
of freedom. A t-distribution
with k degrees of freedom is
denoted witht(k) .

4.23 t-table

• We look up in the table after
the number of degrees of free-
dom. The values we read are
denoted withta,(k).

• For ta,(k) holds that a ran-

dom variable that follows t-
distribution withk degrees of
freedom has the probabilitya
of receiving a values that is
less thenor equal tota,(k).

• The column is determined by
the a-value, but the line by
the number of degrees of free-
dom.

• As the number of degrees of
freedom grows, the more the
t-distribution resembles the
standardized normal distribu-
tion.

Find t0.95,(17).
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We use a t-table witha= 0.95 (column) andk= 17 (line) and get thatt0.95,(17) = 1.740.

4.24 t-distribution

−6 −4 −2 0 2 4 6

N(0,1)
t(30)
t(10)
t(5)

Figure 9: A few t-distributions

4.25 χ2-distribution

• The χ2-distribution, is a con-
tinuous probability distribu-
tion and commonly used for
statistical inference.

• It is not symmetrical as the
normal distribution.

• The χ2-distribution has one
parameter, the number of de-
grees of freedom, that is de-
noted withk.

• χ2-distribution with k is de-

noted withχ2
(k)

.

• The mean of the χ2-
distributions equals its
number of degrees of free-
dom.
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4.26 χ2-table

• We look up in the table by
the number of degrees of free-
dom. The values that we
read from the table are de-
noted withχ2

a,(k).

• For χ2
a,(k)

holds that a ran-

dom variable that follows a
χ2-distribution withk degrees
of freedom has the probability
a of receiving a value that is

less thenχ2
a,(k)

.

• We choose a column with the
a-value and the line with the
number of degrees of free-
dom.

Find χ2
0.95,(4).

We useχ2-table. We chosea= 0.95 (column) andk= 4 (line) and get thatχ2
0.95,(4) = 9.488.

4.27 χ2-distribution

0 1 2 3 4 5 6

χ(1)
2

χ(2)
2

χ(3)
2

χ(4)
2

Figure 10: A fewχ2-distributions

4.28 F-distribution

• The F-distribution is a contin-
uous probability distribution
also commonly used for statis-
tical inference.

• It is not symmetrical as the

χ2-distribution.

• The F-distribution has two pa-
rameters that are called the de-
grees of freedom and denoted
with v1 andv2.

• F-distribution withv1 andv2
degrees of freedom is denoted
with F(v1,v2)

.
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4.29 F-table

• There are four tables for four
different a-values, a= 0.90,
a= 0.95, a= 0.975 and
a= 0.99.

• The columns in the tables rep-
resent different values ofv1
and the lines different values
of v2.

• The values that are read from
the table are denoted with
Fa,(v1,v2)

.

• For Fa,(v1,v2)
holds that a

random variable that follows
F-distribution with v1 and
v2 degrees of freedom has
the probability a of receiv-
ing a value that isless then
Fa,(v1,v2)

.

FindF0.95,(7,12).

We use theF-table wherea = 0.95. We chose a columnv1 = 7 and linev2 = 12 and getF0.95,(7,12) =
2.913.

4.30 F-distribution

0 1 2 3 4 5

F(1,1)
F(2,1)
F(5,2)
F(10,10)

Figure 11: A few F-distributions
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5 A statistic

5.1 Statistics

Statistic
A statistic is a number that is cal-
culated by some method from our
data.

• We look at our measurements
as random variables because
the outcome can change each
time the experiment is re-
peated.

• Statistics are calculated from
our measurements.

• If the outcomes change, the
statistics can also change!

• That means that statistics are
in fact random variables!

5.2 Sampling distribution

Sampling distribution
Every statistic is a random vari-
able and has therefore some prob-
ability distribution. That distribu-
tion is called thesampling distri-
bution of the statistic.

The sampling distribution depends on

• The probability distribution
of the measurementsthat the
statistic is calculated for.

• The number of measure-
ments.

When certain criteria are fulfilled the sam-
pling distribution of some statistics follow
certain known types. Statistical inference
normally relies on that fact.
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5.3 Example

Let X1 and X2 be random variables that
describe the outcome when a dice is
thrown.

Below are shown all possible outcomes of
the statisticX1+X2.

(6,1)
(5,1) (5,2) (6,2)

(4,1) (4,2) (4,3) (5,3) (6,3)
(3,1) (3,2) (3,3) (3,4) (4,4) (5,4) (6,4)

(2,1) (2,2) (2,3) (2,4) (2,5) (3,5) (4,5) (5,5) (6,5)
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

2 3 4 5 6 7 8 9 10 11 12

5.4 Example

2 3 4 5 6 7 8 9 10 11 12

0
50

0
10

00
15

00
20

00

Sum of two dies

F
re

qu
en

cy

Figure 12: Simulation of 10000 throws of two dice.

5.5 Expected value of the sum of two random variables

Formulas for the expected
value of random variables
If X and Y are two random
variables, then

E[X+Y] = E[X]+E[Y]

E[X−Y] = E[X]−E[Y]

What is the expected value of the sum of two die tosses?

The expected value when tossing one die is 3.5. LetX andY be random variables describing one die
toss, then

E[X+Y] = E[X]+E[Y] = 3.5+3.5= 7
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5.6 Variance of the sum of two random variables

Formulas for the variance of
random variables
If X andY are two independent
random variables then

Var[X+Y] =Var[X]+Var[Y]

Var[X−Y] =Var[X]+Var[Y]

What is the variance of the result of tossing two dies?

We useX andY to represent tossing a single die. The variance ofX andY is 2.92 (calculated in the
lecture on random variables).

Var[X+Y] =Var[X]+Var[Y] = 2.92+2.92= 5.84,

5.7 Expected value and variance of the mean

Expected value and variance of
the mean
If X1, . . .,Xn are independent
and identically distributed ran-
dom variables with expected
value E[Xi ] = µ and variance

Var[Xi ] = σ2, then the following
holds for the mean of them, de-
notedX̄:

E[X̄] = µ

Var[X̄] =
σ2

n

5.8 Standard error

Standard error
If X̄ is the mean ofX1, . . .,Xn,
independent and identically dis-
tributed random variables with
varianceVar[Xi ] = σ2, then their
standard error is

σ/
√

n

It is the standard deviation of the
mean of the measurements.
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5.9 The probability distribution of the mean of normally distributed random
variables

The probability distribution
of the mean of normally dis-
tributed random variables
If X1, . . .,Xn are normally
distributed random variables
with mean µ and varianceσ2,
then X̄ follows also a normal
distribution, with meanµ and

varianceσ2/n.

That is if Xi ∼N(µ,σ2) then X̄ ∼N(µ,σ2/n).

Grades of students on a standardized test follow a normal distribution withµ= 5 andσ = 2. What is the
probability distribution of the average of 10 randomly chosen students?

The average grade of 10 students follows a normal distribution with µ= 5 andσ2/n= 4/10= 0.4.

5.10 Central limit theorem

Central limit theorem
If X1, . . .,Xn are independent and
identically distributed variables
then X̄ follows normal distribu-
tion with mean µ and variance

σ2/n

X̄ ∼ N(µ,σ2/n)

if n is large enaugh.

Notice that we do not need to know the
probability distribution of the measure-
ments!

5.11 Central limit theorem

0.0 0.1 0.2 0.3 0.4 0.5

The population

0.0 0.1 0.2 0.3 0.4 0.5

The sampling distribution of the 
 population mean, n= 5

0.0 0.1 0.2 0.3 0.4 0.5

The sampling distribution of the 
 population mean, n= 10

0.0 0.1 0.2 0.3 0.4 0.5

The sampling distribution of the 
 population mean, n= 30

Figure 13: The sampling distribution of a mean when the random variables follow a very skewed distribution.
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5.12 Central limit theorem

0 10 20 30 40

The population

0 10 20 30 40

The sampling distribution of the 
 population mean, n= 5

0 10 20 30 40

The sampling distribution of the 
 population mean, n= 10

0 10 20 30 40

The sampling distribution of the 
 population mean, n= 30

Figure 14: The sampling distribution of a mean when the random variables follow a slightly skewed distribution.

5.13 Estimators and test statistics

There are two groups of important statis-
tics.

• Estimators estimate the
parameters of the probability
distribution that the random
variables follow.
Example: Estimator that
estimatesµ when the mea-
surements are normally
distribution.
Example: Estimator that
estimatesp when the mea-
surements are binomially
distributed.

• Test statistics allow us to
make statistical inference.
Example: Test statistic that al-
lows us to infer whether the
variance of two population is
the same.
Example: Test statistic that al-
lows us to infer whether the
mean of a population differs
from 20.
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