STATS201.stats 20120 Probability and probability distributions

Anna Helga Jónsdóttir
Sigrún Helga Lund

December 16, 2012

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

1 Probability 3
1.1 Randomness 3
1.2 Events, outcomes and outcome space. 3
1.3 Disjoint events 4
1.4 Union and intersection of events 4
1.5 The complement of an event 4
1.6 Probability 5
1.7 Equally likely outcomes 5
1.8 Formulas 6
1.9 Conditional probability 6
1.10 Independent events 6
2 Random variables 7
2.1 Random variable 7
2.2 Discrete and continuous random variables 7
2.3 Syntax for the probability of random variables 8
2.4 Probability distribution of random variables 8
2.5 Types of probability distributions 9
2.6 Parameter 9
2.7 Short summary 10
2.8 Independent random variables 10
2.9 Expected value of a random variable 11
2.10 Expected value of a discrete random variable 11
2.11 Variance of random variables 12
3 Discrete probability distributions 12
3.1 Probability distributions of random variables 12
3.2 Mass function 13
3.3 Barplot of a mass function 13
3.4 Formulas for discrete random variables 13
3.5 Bernoulli trial 14
3.6 The binomial distribution 14
3.7 The binomial distribution 15
3.8 The binomial distribution 16
3.9 Expected value and variance of a binomial distribution 17
3.10 The Poisson distribution 18
3.11 The Poisson distribution 18
3.12 The Poisson distribution 18
3.13 Changing units 19
3.14 The expected value and variance of a Poisson distribution 20
4 Continuous probability distributions 20
4.1 Probability distributions of random variables 20
4.2 Probability of continuous random variables 21
4.3 Density function, distribution function and density curve 21
4.4 Density function, distribution function and density curve 22
4.5 Normal distribution 22
4.6 Normal distribution 22
4.7 Normal distribution 23
4.8 Normal distribution 23
4.9 The 68-95-99.7\% rule 24
4.10 The 68-95-99.7\% rule 24
4.11 Standardized normal distribution 25
4.12 Probability of normally distributed random variables 25
4.13 Probability of normally distributed random variables 26
4.14 Probability of normally distributed random variables 26
4.15 Using the table for the standardized normal distribution 26
4.16 Using the table for the standardized normal distribution 28
4.17 The relationship of X and Z 28
4.18 The syntax z_{a} 29
4.19 Normal probability plot 29
4.20 Normal probability plot 29
4.21 Normal probability plot 30
4.22 t-distribution 30
4.23 t-table 30
4.24 t-distribution 31
$4.25 \chi^{2}$-distribution 31
$4.26 \chi^{2}$-table 32
$4.27 \quad \chi^{2}$-distribution 32
4.28 F-distribution 32
4.29 F-table 33
4.30 F-distribution 33
5 A statistic 34
5.1 Statistics 34
5.2 Sampling distribution 34
5.3 Example 35
5.4 Example 35
5.5 Expected value of the sum of two random variables 35
5.6 Variance of the sum of two random variables 36
5.7 Expected value and variance of the mean 36
5.8 Standard error 36
5.9 The probability distribution of the mean of normally distributed random variables 37
5.10 Central limit theorem 37
5.11 Central limit theorem 37
5.12 Central limit theorem 38
5.13 Estimators and test statistics 38

1 Probability

1.1 Randomness

- Descriptive statistics describe the sample that we have obtained
- Statistical inference uses the sample to draw conclusion about the whole population.
- The variables that we measure are influenced by some ran domness.
- We therefore look at every measurement as a random phenomena
- In this lecture we look closer at random phenomena.

1.2 Events, outcomes and outcome space.

Which are the possible outcomes when a coin is tossed twice?
The possible outcomes are four, so Ω has four elements:

1. First heads, then tails
2. First heads, then heads
3. First tails, then tails
4. First tails, then heads

1.3 Disjoint events

```
Disjoint events
We say that events }A\mathrm{ and }B\mathrm{ are
disjoint if they contain no com-
mon outcome.
```

If we toss a coin twice, are the following events disjoint?

A: To get at least one tail
B : To get no tails

Since we cannot have none and one tail at the same time the events are disjoint.

1.4 Union and intersection of events

```
Union of events
The union of events}A\mathrm{ and }B\mathrm{ is
The union of events A and B is
denoted
B or both of them.
```

Intersection of events
The Intersection of events A and
B is denoted $A \cap B$. It is the set
of al outcomes that are in both
A and B. If A and B are disjoint,

Let A be the event: "outcome on the interval $(-3,4)$ " and B be the event "outcome in the interval $(2,8)$ ". Fin the union and the intersection of the events A and B.

The union of A and $B, A \cup B$ is "outcome in the interval $(-3,8)$ ".
The intersection of A and $B, A \cap B$ is "outcome in the interval $(2,4)$ ".

1.5 The complement of an event

```
Complement of an event
The Complement of an event }
s denoted A}\mp@subsup{A}{}{C}\mathrm{ . It s the set of all
outcomes in \Omega}\mathrm{ that are not it }A\mathrm{ .
```

We toss a coin twice. Let A and B be the events:

A: To have at lest one tail.
B : To have two tails.

Find the union, intersection and the complement of the events.
The intersection of A and B is $\{$,,tail, tail" $\}$.
The union of A and B is $\{$,,tail, tail", „tail, heads", „heads, tails" $\}$.
The complement of A is $\{$,,heads, heads" $\}$.
The complement of B is $\{$,,heads, heads", „tails, heads", „heads, tails" $\}$.

1.6 Probability

Probability

he probability of a certain out-
come of a certain outcome of a
random phenomena is the propor-
andom phenom the
come when the phenomena is re-
peated often enough. This ratio
can be at minimum zero and at
maximum one.

Probability of an event
The probability of an event A, denoted $P(A)$, is the probability hat the observed outcome will be in A.

1.7 Equally likely outcomes

> Equally likely outcomes
> Equally likely outcomes are
> only defined for random phenom-
> ena with finite Ω. Then the prob-
> ability of every outcome in Ω is
> the same.

Probability of events when all
outcomes are equally likely
henomena are equally likely,
hen the probability of an event A
are:
$P(A)=\underline{\text { number of outcomes in } A}$
$(A)=\frac{\text { number of outcomes in } \Omega}{}$

What is the probability of getting one "tail" when two coins are flipped?
The event „to get exactly one tail", has two outcomes. Ω has in total four equally likely outcomes the the probability is $2 / 4$ or 50%.

1.8 Formulas

1.9 Conditional probability

$$
\begin{aligned}
& \text { Conditional probability } \\
& \text { With } P(A \mid B) \text { we denote the prob- } \\
& \text { ability that event } A \text { occurs, given } \\
& \text { that event } B \text { has occurred. The } \\
& \text { probability of } P(A \mid B) \text { can be cal- } \\
& \text { culated with } \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0 .
\end{aligned}
$$

Probability of intersection of events
$P(A \cap B)=P(A \mid B) P(B), \quad$ if $P(B)>$

1.10 Independent events

Beta has 8 balls in a bag, three red and five white. She takes one ball and then returns it and then draws
another ball.

1. What is the probability that she draws tw red balls?
2. What is the probability that the balls have different color?
3. Since Beta returns the first ball the the draws are independent. The probability of getting two red balls are:

$$
\frac{3}{8} \cdot \frac{3}{8}=\frac{9}{64}
$$

approx. 14%.
2. Leta A be the event "first red, then white" and B be the event "first white, then red". Then the probability of getting balls with different color equal to $A \cup B$. Since A and B are disjoint we get:

$$
P(A \cup B)=P(A)+P(B)=\frac{3}{8} \cdot \frac{5}{8}+\frac{3}{8} \cdot \frac{5}{8}=\frac{15}{64}+\frac{15}{64}=\frac{30}{64}
$$

approx. 47%.

2 Random variables

2.1 Random variable

```
Random variable
Random variable describes the
outcome of a variable before it is
measured
```

$$
\begin{aligned}
& \text { Syntax for random variables } \\
& \text { Random variables are denoted } \\
& \text { with capital letters, often } X \\
& \text { Values that a random variable } \\
& \text { has received are denoted with } \\
& \text { lower-case letters, often } x \\
& \text { The same letter is always used for } \\
& \text { a random variable and the value it } \\
& \text { has received. }
\end{aligned}
$$

2.2 Discrete and continuous random variables

> Discrete random variables
> Discrete random variables describe discrete variables. They have a finite set of possible outcomes on every limited interval.

Continuous random variables

 Continuous random variables describe continuous variables. some interval.
2.3 Syntax for the probability of random variables

2.4 Probability distribution of random variables

```
Probability distribution ran-
dom variables
The Probability distribution of
    random variable is a rule that
    ells us which values a random
    variable can receive and further-
    more:
    P(X=a) for all values a it can
        receive if the proba-
        ility distribution is
        discrete.
    P(a\leqX\leqb) for all values a
        and b if the proba-
        bility distribution is
        continuous.
```

The probability distribution of a random
variable gives us all available information
possible of the random variable!
Why do you think that we define the proba
bility distribution in a different manner de
pending on whether the random variable is
discrete or continuous?

2.5 Types of probability distributions

2.6 Parameter

2.7 Short summary

- One can talk about the prob ability that a random variab receives certain values
- That probability is described by the probability distribution of the random variables, that give all information available about the random variables.
- Many random variables hav probability distributions of known type
- Every type of probability dis tribution is described with numbers that are called parameters
- To every type of probabil ity distributions belong certain parameters and they are nor mally one or two
- If we know the type of the probability distribution of a random variable, the values of its parameters give all information available about the random variables

2.8 Independent random variables

```
Independent random variables We say that two random variables re independent if the outcome of one random variable does not ffect the outcome of the oth andom variable
```

Dependent random variable
ependent raw onables We say that two random variables are dependent if they are not in-
dependent, that is, if the outcome of one random variable does not ffect the outcome of the other random variable or vice versa.

Independent and identically distributed random variable
We say that random variables
x_{1}, \ldots, X_{n} are independent if
each of them is independent to all of the others and identically distributed if they all have the same probability distribution.

2.9 Expected value of a random variable

```
Expected value of a random
variables
Expected value of a random
ariable is the true mean of the
andom variable. It is either de-
noted with \(\mu\) or \(E[X]\). It is also called population mean when appropriate.
```

Law of large numbers
As the number of measurements
of a
denoted \bar{x} gets closer to the expected value of the random vari able, denoted μ or $E[X]$.

2.10 Expected value of a discrete random variable

```
Expected value of a discrete
random variable
If a random variable is discrete
is expected value is the weighted
mean of all of its possible out-
comes, where the weight of each
outcome is the probability that he random variable receives that outcome.
```

$$
\begin{aligned}
& \text { Formula for the expected value } \\
& \text { of a discrete random variable } \\
& \text { If a random variable } X \text { is discrete, } \\
& \text { then its expected value is } \\
& \qquad \mu=\sum x_{i} \cdot P\left(X=x_{i}\right) \\
& \text { where we sum over all possible } \\
& \text { outcomes of the random variable. }
\end{aligned}
$$

What is the expected value of the random variable "the sum from tossing two dies"?
When we add the outcomes from tossing two dies the outcomes are not equally likely. The probabilities

are | Value | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Probability | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | $\frac{4}{36}$ | $\frac{5}{36}$ | $\frac{6}{36}$ | $\frac{5}{36}$ | $\frac{4}{36}$ | $\frac{3}{36}$ | $\frac{2}{36}$ |

The expected value is:

$$
\begin{aligned}
& \sum x_{i} \cdot P\left(X=x_{i}\right)= \\
& 2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+4 \cdot \frac{3}{36}+5 \cdot \frac{4}{36}+6 \cdot \frac{5}{36}+7 \cdot \frac{6}{36} \\
& +8 \cdot \frac{5}{36}+9 \cdot \frac{4}{36}+10 \cdot \frac{3}{36}+11 \cdot \frac{2}{36}+12 \cdot \frac{1}{36}=7 .
\end{aligned}
$$

2.11 Variance of random variables

```
Variance of random variables,
Var[X]
As random variables have true
means, they also have a true
ariance. It is either denoted
with }\mp@subsup{\sigma}{}{2}\mathrm{ , or }\operatorname{Var[X]. It is also
called the population variance
when appropriate.
```

Formula for the variance of a
discrete random variable
The variance of a discrete ran-
dom variable is
$\sigma^{2}=\sum\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right)$
where we sum over all possible
outcomes of the random variable.

What is the variance of the random variable "tossing a die"?
The expected value is equal to 3.5 .
The variance is:

$$
\begin{aligned}
\sum\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right)= & (1-3.5)^{2} \cdot \frac{1}{6}+(2-3.5)^{2} \cdot \frac{1}{6}+(3-3.5)^{2} \cdot \frac{1}{6} \\
& +(4-3.5)^{2} \cdot \frac{1}{6}+(5-3.5)^{2} \cdot \frac{1}{6}+(6-3.5)^{2} \cdot \frac{1}{6}=2.92
\end{aligned}
$$

3 Discrete probability distributions

3.1 Probability distributions of random variables

- Many random variables have
probability distributions of a
known type. known type
- The probability distributions of random variables are discrete if the random variable are discrete and continuous if not.
- Let us look at the two most common discrete probability distributions:
- The binomial distribution
- The Poisson distribution
- We will see how these two probability distributions can probability distributions can
be used to describe several random phenomena.

3.2 Mass function

3.3 Barplot of a mass function

3.4 Formulas for discrete random variables

$$
\begin{aligned}
& \text { Formulas fyrir discrete ran- } \\
& \text { dom variables } \\
& \text { When calculating probabilities } \\
& \text { for a discrete random variable } \\
& X \text { calculations can often be sim- } \\
& \text { plified by "turning around" the } \\
& \text { probabilities } \\
& \begin{array}{l}
P(X \leq k) \quad=\quad 1-P(X>k) \\
P(X<k) \quad=\quad 1-P(X \geq k) \\
P(X \geq k) \quad=\quad 1-P(X<k) \\
P(X>k) \quad=\quad 1-P(X \leq k)
\end{array} \\
& \begin{array}{l}
\text { where } k \text { can be any number in the } \\
\text { outcome space of } X \text {. }
\end{array}
\end{aligned}
$$

3.5 Bernoulli trial

3.6 The binomial distribution

- We are often interested in cal culating how many success ful events are among a set of Bernoulli trials.
- We would for example wan to calculate the probability of receiving two sixes (which would be the success) when a dice is thrown five times.
- We view the total number of successful events as a random variable X.
- It has a known probability distribution that is called the binomial distribution and it described with the parameter n which is the total number of Bernoulli trials that are con ducted, and p which is the probability that is the prob ability of success within the Bernoulli trials.

3.7 The binomial distribution

Benni likes to toss coins. Calculate the probability that he will get exactly two "heads" when he tosses a coin four times.

We let X represent the number of heads. X follows a binomial distribution with $n=4, p=0.5, X \sim$ $B(4,0.5)$.

We start by finding the value of the binomaial coefficient:

$$
\binom{n}{k}=\binom{4}{2}=\frac{4!}{2!(4-2)!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot(2 \cdot 1)}=6
$$

and then we use the mass function of the binomial distribution to calculate the probability:

$$
P(X=2)=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{4}{2} 0.5^{2}(1-0.5)^{4-2}=6 \cdot 0.5^{2} \cdot 0.5^{2}=0.3750
$$

The probability is 37.5%.

3.8 The binomial distribution

- We have now seen that the probability that the random variable X receives a certai value k can be calculated.
- In addition to calculating $P(X=k)$ we are often
interested in calculating
- $P(a \leq X \leq b)$ or $P(a<X<b)$
- $\begin{aligned} &P(X \leq k)) \\ & P(X<k)\end{aligned}$

- We can calculate all of those probabilities by using the for mula for the mass function of a binomial distribution along with the rules on slide 3.4.

Helga throws a coin 10 times. We use X to represent the number of "heads", $X \sim B(10,0.5)$.
a) What is the probability that Helga gets between 4 and 6 heads?
b) What is the probability that Helga gets 3 or less heads?
c) What is the probability that Helga gets 8 or more heads?
d) What is the probability that Helga gets more than 2 heads?
a) $P(4 \leq X \leq 6)$

We need to add the probabilities that she will geet 4,5 and 6 heads or

$$
\begin{gathered}
P(4 \leq X \leq 6)=P(X=4)+P(X=5)+P(X=6) \\
P(4 \leq X \leq 6)=0.2051+0.2461+0.2051=0.6563
\end{gathered}
$$

b) $P(X \leq 3)$

We need to add the probability of getting $0,1,2$ and 3 heads:

$$
P(X \leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)
$$

$$
P(X \leq 3)=0.0010+0.0098+0.0439+0.1172=0.1719
$$

c) $P(X \geq 8)$.

We need to ass the probability of getting 8,9 , or 10 heads:

$$
\begin{aligned}
& P(X \geq 8)=P(X=8)+P(X=9)+P(X=10) \\
& P(X \geq 8)=0.0439+0.0098+0.0010=0.0547
\end{aligned}
$$

d) $P(X>2)$.

We can calculate the probability as:

$$
P(X>2)=P(X=3)+P(X=4)+\ldots+P(X=10)
$$

but it is easier to rewrite the probability and get:

$$
\begin{gathered}
P(X>2)=1-P(X \leq 2)=1-(P(X=2)+P(X=1)+P(X=0)) \\
P(X>2)=1-(0.0439+0.0098+0.0010)=0.9453
\end{gathered}
$$

3.9 Expected value and variance of a binomial distribution

```
Expected value and variance of
a binomial distribution
If }X\mathrm{ follows a binomial distribu-
tion, X~B(n,p) then
    E[X]=np
    Var[X]=np(1-p)
```

John is going to toss a die 900 times. We use X to denote the number of times a four comes up, $X \sim B(900,1 / 6)$. Find $\mathrm{E}[X]$ and $\operatorname{Var}[X]$.

$$
\begin{aligned}
\mathrm{E}[X] & =n p=900 \cdot 1 / 6=150 \\
\operatorname{Var}[X] & =n p(1-p)=125 .
\end{aligned}
$$

3.10 The Poisson distribution

- The Poisson distribution is of ten used to describe the num-
ber of random phenomena that occur within a certain unit occur within a certain unit
but the number of possible outcomes has no upper limit.
- The units can be time intervals, spatial intervals some physical object.
- As an example we can men tion the number of phone tion the number of phon minute, the number of rein deers per each square kilome ter or the number of typos on each page.

3.11 The Poisson distribution

The Poisson distribution
The Poisson distribution has one
parameter that is called λ. If
X follows a Poisson distribution
with the parameter λ the proba-
bility that the random variable X
wes the mass function of the
Poisson distribution:

$$
P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

We write $X \sim \operatorname{Pois}(\lambda)$. The sam-
ple space of X is $\Omega=\{0,1,2, \ldots\}$.
The parameter λ is the expected
hat is, its true mean. It describe
how many successful outcomes
ve expect on average per each
we ex.

3.12 The Poisson distribution

We have now seen that th probability that a random variable X that follows the Pois on distribution receives a ce tain value k can be calculated with the mass function of the Poisson distribution.

- We are often interested in cal culating other probabilities:
- $P(a \leq X \leq b)$ or $P(a<X<b)$
- $\quad \begin{aligned} & P(X \leq k) \\ & k)\end{aligned}$ or $P(X<$ k)
- $\begin{aligned} & P(X \geq k) \text { or } P(X> \\ & k) .\end{aligned}$

We can calculate all of these probabilitie with the mass function of the Poisson dis tribution.

3.13 Changing units

- When calculating the probaility hat a random var able that follows a Poisso distribution receives a certain value w λ in ther it the the one we wish to use.
- We could for example know hat the number of car cidents in Reykjavik ever week, but we wish to know Then λ reed to be adjusted to new unit.
a new unit.
- If the new unit is a times the old unit, then

$$
\lambda_{\text {new }}=a \cdot \lambda_{\text {old }}
$$

Where $\lambda_{\text {old }}$ is the "old λ " and $\lambda_{\text {new }}$ is the "new λ " adjusted to a new unit.

Anna is in a hurry and wonders how long time she has to wait in line in a supermarket. Average number of customers to get help there are 1.5 per minute.

Find the probability that:
a) 3 customers arrive at the resister in one minute.
b) 4 customers arrive at the resister in two minutes.
c) No more than 2 customers arrive at the register in one minute.
d) At least 1 customer arrives at the register in one minute.
a) We know that the average number of customers in one minute is 1.5 , so $\lambda=1.5$.

$$
P(X=3)=\frac{e^{-1.5} 1.5^{3}}{3!}=0.1255
$$

b) We know that the average number of customers is per minute is $1.5=\lambda$. We need the average number of customers in two minutes. Since the average number of customers in one minute is 1.5 we expect on average $2 \cdot 1.5=3$ customers to arrive in two minutes. We use $\lambda=3$ and get:

$$
P(X=4)=\frac{e^{-3} 3^{4}}{4!}=0.1680
$$

c)

$$
\begin{aligned}
P(X \leq 2) & =P(X=0)+P(X=1)+P(X=2) \\
& =0.2231+0.3347+0.2510 \\
& =0.8088
\end{aligned}
$$

d)

$$
P(X \geq 1)
$$

We need to rewrite the probability:

$$
\begin{aligned}
P(X \geq 1) & =1-P(X<1) \\
& =1-P(X=0) \\
& =1-0.2231 \\
& =0.7769 .
\end{aligned}
$$

3.14 The expected value and variance of a Poisson distribution

Let X denote a random variable that follows a Poisson distribution with $\lambda=2$. Find the expected value and variance of X.

$$
\begin{aligned}
\mathrm{E}[X] & =\lambda=2 \\
\operatorname{Var}[X] & =\lambda=2 .
\end{aligned}
$$

4 Continuous probability distributions

4.1 Probability distributions of random variables

- Many random variables fol low probability distribution of known types.
- The probability distributions of random variables are continuous if the random variables are continuous.
- We will look closely at the most common continuous probability distribution:
- $\begin{aligned} & \text { Normal distribu- } \\ & \text { tion }\end{aligned}$ tion
- And also look at three continuous distributions that we will use for statistical inference:
- t-distribution
- χ^{2}-distribution
- F-distribution

4.2 Probability of continuous random variables

4.3 Density function, distribution function and density curve

$$
\begin{aligned}
& \text { Density function, distribution } \\
& \text { function and density curve } \\
& \text { Continuous distributions are de- } \\
& \text { scribed with a density function, } \\
& \text { denoted with } f(x) \text {. We use a } \\
& \text { so-called distribution function, } \\
& \text { which is the integral of the den- } \\
& \text { sity function, to calculate the } \\
& \text { probability that a continuous ran- } \\
& \text { dom variable } X \text { receives a value } \\
& \text { that is less then a specific refer- } \\
& \text { ence value } x \text {. The distribution } \\
& \text { function is denoted with } F(x) \text { and } \\
& \text { can be written as } \\
& \qquad F(x)=P(X<x) \\
& \\
& \text { Density curve is described graph- } \\
& \text { ically with a density curve. The } \\
& \text { area under the density curve be- } \\
& \text { tween two values } a \text { and } b \text { equals } \\
& \text { the probability that a random } \\
& \text { variable receives a value between } \\
& a \text { and } b \text {. The total area under the } \\
& \text { whole curve is always equal to } 1 \text {. }
\end{aligned}
$$

4.4 Density function, distribution function and density curve

4.5 Normal distribution

- The Normal distribution is the most frequently used distribu tion within statistics.
- All sorts of phenomenas can be described with the norma distribution such as heig blood pressure, weight a and so forth.
- We will also get to know the importanse of the normal dis tribution in lecture 090 when we study the central limit the orem.
- The density curve of the mal distribution is bell shaped and has two parameters that determine its shape.

4.6 Normal distribution

Normal distribution

The density function of the nornal distribution is often denoted with $\phi(x)$ and may be written as
$f(x)=\phi(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$

The function has two parame-
ters, μ and $\sigma . \mu$ is the mean of
ters, μ and σ. μ is the mean of
the normal distribution and deter-
he normal distribution and deter-
mines its location. σ^{2} is the vari-
mines its location. σ^{2} is the vari-
ance of the distribution and de-
ermines its spread. If a random
variable X follows normal distri-
bution with mean μ and variance
σ^{2} we write that $X \sim N\left(\mu, \sigma^{2}\right)$.
The distribution function of the normal distribution is denoted with $\Phi(x)$.
4.7 Normal distribution

Figure 4: Two normal distributions with the same mean but different variances

4.8 Normal distribution

Figure 5: Three normal distributions with the same variance but different means.
4.9 The 68-95-99.7\% rule

4.10 The 68-95-99.7\% rule

Figure 6: The 68-95-99.7\% rule

4.11 Standardized normal distribution

Normal distribution with mean $\mu=0$ and standard deviation $\sigma=1$ is called the standardized normal distribution.
Standardized normal distribution If a random variable X follows normal distribution with mean μ, standard deviation σ and variance σ^{2}, written $X \sim N\left(\mu, \sigma^{2}\right)$ then $Z=\frac{X-\mu}{\sigma}$ follows a normal distribution with mean $\mu=0$ and standard deviation $\sigma=1$, written $Z \sim N(0,1)$

4.12 Probability of normally distributed random variables

- The probability of normally distributed random variables can be calculated as the ar
under the density curve. under the density curve.
- If one wishes to find the probability that a normally distributed random variable lies on the interval from a to b one need to integrate the density function from a to b. That is not done by hands, butwit

Before one can use the table, the normal distribution needs to be transformed to standardized form. The table shows the probability
$\Phi(z)=P(Z<z)$,
that is, it shows the probability that a ran dom variable Z that follows standardized normal distribution will receive a value les then the number z, often called z-value This can be though of as if the table is looking to the left.

Figure 8: $P(Z>z)$ and $P(a<Z<b)$ where $Z \sim N(0,1)$

4.13 Probability of normally distributed random variables

4.14 Probability of normally distributed random variables

4.15 Using the table for the standardized normal distribution

```
Using the table for finding
probability
When finding the probability that
elongs to a certain z-value:
If the value follows standardized
ormal distribution that value is
```



```
he z-value itself. If it does not
```



```
istri
tandardized z-value with
    z=\frac{x-\mu}{\sigma}
We find the z-value in the table
(in bold) and the probability is the
\Phi(z) value on it's right side.
```

Let us assume that the test scores of students in US on the SAT test follow normal distribution with mean 1026 and standard deviation 209. We use X to denote the test scores, $X \sim N\left(1026,209^{2}\right)$.
a) Find the probability that student chosen at random has lower grade than 720 , that is $P(X \leq 720)$.
b) Calculate the probability that a student, chosen at random, has higher score that 820 , that is $P(X \geq$ 820).
c) Calculate the probability that a randomly chosen student has a grade on the interval 720 og 820 , that is $P(720 \leq X \leq 820)$.
a)

$$
P(X<720) .
$$

We need to starty by standardizing:

$$
\frac{720-1026}{209}=-1.46
$$

$$
P(X<720)=P(Z<-1.46)
$$

We use the normal distribution table and get 0.0721 , that is approx. 7%.
b)

$$
P(X>820) .
$$

We need to start by standardising:

$$
\begin{gathered}
\frac{820-1026}{209}=-0.99 \\
P(X>820)=P(Z>-0.99)=1-P(Z<-0.99)
\end{gathered}
$$

We use the normal distribution table and get $1-0.1611=0.8389$, that is approx. 84%.
c)

$$
P(720<X<820)
$$

We use the standardised values from a) and b)

$$
P(720<X<820)=P(-1.46<Z<-0.99)=P(Z<-0.99)-P(Z<-1.46)
$$

We use the normal distribution table and get:

$$
0.1611-0.0721=0.089
$$

that is approx. 9%.

4.16 Using the table for the standardized normal distribution

```
Using the table for finding
values
If we wish to find which z-value
corresponds to a certain proba-
bility:
We find the probability, or the
robability closest to it, among
M(z)-vis(in the mols
he z-value is (in bold) on its left
side.
If the value does not follow the
tandardized normal distribution
we need to transform the z-value
we need to transform the z-value
such that the value becomes
    x= \mu+z\sigma
```

Which does a student need to get at minimum in order to be in the top 10% of the students?
Now we need the z-value. Remember that the table looks to the left so we need to find which z-value corresponds to 90% (then there are 10% above). We see that the z-value is 1.28 .

The grades do not follow that standard normal distribution so we need to transform the z-value:

$$
x=\mu+z \sigma
$$

so
Minimum grade $=1026+1.28 \cdot 209=1292.5$ points.

4.17 The relationship of X and Z

```
The relationship of }X\mathrm{ and }
If a random variable X follows
normal distribution with mean }
and variance }\mp@subsup{\sigma}{}{2}\mathrm{ then
    P(X\leqx)=P(Z\leqz)
Where z=\frac{x-\mu}{\sigma}\mathrm{ and }Z\mathrm{ follows}
he standardized normal distribu-
the sta
```


4.18 The syntax z_{a}

```
The syntax za
With za is denoted the z-value
hat is such that a random vari-
ble that follows standardized
normal distribution has the prob-
bility a of receiving a values that
less then za}\mathrm{ . This can be writ
is less
    a=P(Z<za).
here Z follows the standardized
ormal distribution. za is there-
fore the a-th percentile of the
standardized normal distribution.
```

Notið töflu staðlaðrar normaldreifingar til að finna $z_{0.95}$.
Hér pekkjum við líkurnar en okkur vantar z-gildið. Við finnum pví 0.95 meðal Φ-gildanna í töflunni og lesum z-gildið við hlið pess. Í töflunni má sjá að $z_{0.95}=1.64$.

4.19 Normal probability plot

- Many statistical methods rely on that the measurements or some derived quantities follow a normal distribution.
- When applying these method we need to ensure that this is the case
- There are several methods to do so, a common one is the normal probability plot.
- The normal probability plot is a graphical method to inves tigate whether data follows normal distribution or not.
- Normal probability plots ar not drawn in statistical soft not drawn in statistical soft
wares, not by hand, but it i wares, not by hand, but it is
important to know how to interpret them.

4.20 Normal probability plot

> Normal probability plot
> If the points on the normal probability plot lie close the straight line that is shown on the plot and the end points on both sides do not bend critically up and//or down from the line then it is reasonable to assume that the data is normally distributed.

4.21 Normal probability plot

4.22 t-distribution

- The t -distribution, or the Student's t , is a continuous probability distribution that resem-
bles the normal distribution
- It is bell shape, symmetrical about the mean of the distri bution, which is 0 . The distribution is used for statis tical inference.
- The t -distribution has one pa rameter, that is called the degrees of freedom. We use k to denote the number of degrees of freedom. A t-distribution with k degrees of freedom is denoted with $t_{(k)}$

4.23 t-table

- We look up in the table after the number of degrees of free dom. The values we read are denoted with ${ }_{a,(k)}$.
- For $t_{a,(k)}$ holds that a ran dom variable that follows t-
distribution with k degrees of freedom has the probability a of receiving a values that is less then or equal to $t_{a,(k)}$.
- The column is determined by the a-value, but the line by the a-value, but the line by the number of dgrees dom.
- As the number of degrees of freedom grows, the more the t -distribution resembles th standardized normal distribu tion

Find $t_{0.95,(17)}$.

We use a t-table with $a=0.95$ (column) and $k=17$ (line) and get that $t_{0.95,(17)}=1.740$.

4.24 t-distribution

$4.25 \quad \chi^{2}$-distribution

- The χ^{2}-distribution, is a continuous probability distribu-
tion and commonly used for statistical inference.
- It is not symmetrical as the normal distribution.
- The χ^{2}-distribution has one parameter, the number of de-
grees of freedom, that is degrees of free
noted with k.
- χ^{2}-distribution with k is de noted with $\chi_{(k)}^{2}$.
- The mean of the χ^{2} distributions equals it number of degrees of free dom.

$4.26 \quad \chi^{2}$-table

- We look up in the table by the number of degrees of freedom. The values that we read from the table are denoted with $\chi_{a,(k)}^{2}$
- For $\chi_{a,(k)}^{2}$ holds that a ran dom variable that follows a χ^{2}-distribution with k degrees of freedom has the probability a of receiving a value that is less then $\chi_{a,(k)}^{2}$.
- We choose a column with the a-value and the line with the a-value and the line with the number of degrees of fre dom

Find $\chi_{0.95,(4)}^{2}$.
We use χ^{2}-table. We chose $a=0.95$ (column) and $k=4$ (line) and get that $\chi_{0.95,(4)}^{2}=9.488$.

$4.27 \quad \chi^{2}$-distribution

4.28 F-distribution

- The F-distribution is a continuous probability distribution also commonly used for statistical inference.
- It is not symmetrical as the χ^{2}-distribution.
- The F-distribution has two pa rameters that are called the de rameters that are called grees of freed

新

- F-distribution with v_{1} and v_{2} degrees of freedom is denote with $F_{\left(v_{1}, v_{2}\right)}$

4.29 F-table

- There are four tables for four different a-values, $a=0.90$, different a-values, $a=0.90$,
$a=0.95, \quad a=0.975$ and $a=0.9$,
$a=0.99$
- The columns in the tables represent different values of v_{1} and the lines different values of v_{2}.
- The values that are read from the table are denoted with $F_{a,\left(v_{1}, v_{2}\right)}$.
- For $F_{a,\left(v_{1}, v_{2}\right)}$ holds that a random variable that follows random dariable withat follow
v_{1} and v_{2} degrees of freedom has v_{2} degrees of freedom has
the probability a of receiving a value that is less then $F_{a,\left(v_{1}, v_{2}\right)}$

Find $F_{0.95,(7,12)}$.
We use the F-table where $a=0.95$. We chose a column $v_{1}=7$ and line $v_{2}=12$ and get $F_{0.95,(7,12)}=$ 2.913.

$4.30 \quad$ F-distribution

5 A statistic

5.1 \quad Statistics

5.2 Sampling distribution

Sampling distribution

Every statistic is a random vari-
able and has therefore some prob-
ability distribution. That distribution is called the sampling distribution of the statistic

The sampling distribution depends on

- The probability distribution of the measurements that the statistic is calculated for
- The number of measure-
ments. ments.

When certain criteria are fulfilled the sampling distribution of some statistics follow certain known types. Statistical inference normally relies on that fact

5.3 Example

5.4 Example

Figure 12: Simulation of 10000 throws of two dice.

5.5 Expected value of the sum of two random variables

```
Formulas for the expected
value of random variables
value of random variables
variables, then
E[X+Y] = E[X]+E[Y]
E[X-Y] = E[X]-E[Y]
```

What is the expected value of the sum of two die tosses?
The expected value when tossing one die is 3.5 . Let X and Y be random variables describing one die toss, then

$$
E[X+Y]=E[X]+E[Y]=3.5+3.5=7
$$

5.6 Variance of the sum of two random variables

```
Formulas for the variance of
random variables
If }X\mathrm{ and }Y\mathrm{ are two independent
random variables then
    Var[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]
    Var[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]
```

What is the variance of the result of tossing two dies?
We use X and Y to represent tossing a single die. The variance of X and Y is 2.92 (calculated in the lecture on random variables).

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]=2.92+2.92=5.84
$$

5.7 Expected value and variance of the mean

5.8 Standard error

5.9 The probability distribution of the mean of normally distributed random variables

```
The probability distribution
tributed random variables
If }\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}\mathrm{ are normally
Ntrbuted random variables
ith mean }\mu\mathrm{ and variance 
|
stribution, with mean }\mu\mathrm{ and
variance \sigma}\mp@subsup{\sigma}{}{2}/n\mathrm{ .
That is if }\mp@subsup{X}{i}{}~N(\mu,\mp@subsup{\sigma}{}{2})\mathrm{ then }\overline{X}~N|u,\mp@subsup{\sigma}{}{2}/
``` probability distribution of the average of 10 randomly chosen students?

The average grade of 10 students follows a normal distribution with \(\mu=5\) and \(\sigma^{2} / n=4 / 10=0.4\).

\subsection*{5.10 Central limit theorem}
```

Central limit theorem
If X1,···,\mp@subsup{X}{n}{}}\mathrm{ are independent and
identically distributed variables
then \overline{X}\mathrm{ follows normal distribu-}
then }X\mathrm{ follows normal distribu-
\sigma
\overline{X}~N(\mu,\mp@subsup{\sigma}{}{2}/n)
if }n\mathrm{ is large enaugh.

```

Notice that we do not need to know the probability distribution of the measurements!

\subsection*{5.11 Central limit theorem}

\subsection*{5.12 Central limit theorem}

Figure 14: The sampling distribution of a mean when the random variables follow a slightly skewed distribution.

\subsection*{5.13 Estimators and test statistics}

\section*{There are two groups of important statis tics.}
- Estimators estimate the parameters of the probability parameters of that the random distribution that the random
variables follow. variables follow.
Example: Estimator that estimates \(\mu\) when the measurements are normally surements
distribution
Example: Estimator th estimates \(p\) when the mea surements are binomially distributed.
- Test statistics allow us to make statistical inference. Example: Test statistic that allows us to infer whether th variance of two population is the same.
Example: Test statistic that al
lows us to infer whether the
mean of a population differs from 20.```

