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1 Probability

1.1 Randomness

e Descriptive statistics describe
the sample that we have
obtained

e Statistical inference uses the
sample to draw conclusions
about the whole population.

e The variables that we measure
are influenced by some ran-
domness.

e We therefore look at every
measurement as a random
phenomena.

e In this lecture we look closer
at random phenomena.

1.2 Events, outcomes and outcome space.

Outcome and outcome space
Every random phenomena has
certain possibl@utcomes The
set of all possible outcomes is
theoutcome spacen is denoted
with Q.

Event

An Eventis a particular outcome
or a set of particular outcomes of
arandom phenomena.

Which are the possible outcomes when a coin is tossed twice?

The possible outcomes are four,Qdas four elements:

First heads, then tails
First heads, then heads

First tails, then tails

R

First tails, then heads



1.3 Disjoint events

Disjoint events

We say that eventé and B are
disjoint if they contain no com-
mon outcome.

If we toss a coin twice, are the following events disjoint?

A: To get at least one tail

B: To get no tails

Since we cannot have none and one tail at the same time thtseverdisjoint.

1.4 Union and intersection of events

Union of events

The union of eventsA andB is
denotedAUB. It is the set of all
outcomes that are isither A or
B or both of them.

Intersection of events
TheIntersection of eventsA and
B is denotedAnB. Itis the set
of al outcomes that are ihoth
AandB. If AandB are disjoint,
then their intersection ismpty.

Let A be the event: "outcome on the interval (-3,4)" @Me the event "outcome in the interval (2,8)".
Fin the union and the intersection of the evehtndB.

The union ofA andB, AUB is "outcome in the interval (-3,8)".

The intersection oA andB, AN B is "outcome in the interval (2,4)".

1.5 The complement of an event

Complement of an event

The Complementof an eventA
is denotedAC. It s the set of all
outcomes i that arenot it A.

We toss a coin twice. Lek andB be the events:



A: To have at lest one tail.

B: To have two tails.

Find the union, intersection and the complement of the event
The intersection oA andB is { ,tall, tail* }.

The union ofA andB is { ,tail, tail, ,tail, heads", ,heads, tails?.
The complement oA is {,heads, heads"

The complement oB is { ,heads, heads", ,tails, heads", ,heads, tai}s"

1.6 Probability

Probability

The probability of a certain out-
come of a certain outcome of a
random phenomena is the propor-
tion of the cases when that the
random phenomena gets that out-
come when the phenomena is re-
peated often enough. This ratio
can be at minimunzero and at
maximumone:

Probability of an event

The probability of an event A,
denotedP(A), is the probability
that the observed outcome will be
inA

1.7 Equally likely outcomes

Equally likely outcomes

Equally likely outcomes are
only defined for random phenom-
ena withfinite Q. Then the prob-
ability of every outcome i is
the same.

Probability of events when all
outcomes are equally likely

If all of the outcomes of a random
phenomena areequally likely,
then the probability of an evest
are:

number of outcomes iA

PA= number of outcomes i@

What is the probability of getting one "tail" when two coingdlipped?

The event ,to get exactly one tail“, has two outcom@shas in total four equally likely outcomes the
the probability is 2/4 or 50 %.



1.8 Formulas

Formulas

1. P@Q) =1
2. P(AC) =1-P(A)

3. P(AUB) = P(A) +
P(B)— P(ANB)

4. If AandB are dis-
joint, P(AUB) =
P(A)+P(B)

1.9 Conditional probability

Conditional probability

With P(A|B) we denote the prob-
ability that eventA occurs, given
that eventB has occurred. The
probability of P(A|B) can be cal-

culated with
_ P(ANB) .
P(AB) = =) if P(B) > 0.

Probability of intersection of
events

P(ANB) =P(AB)P(B), ifP(B)>(

1.10 Independent events

Independent events

We say that eventé andB are
independent if the probability
that an eventA occurs does not
change even though the evedit
has occurred and vice versa.

Probability of independent
events
If AandB are independent, then

P(ANB) = P(A) - P(B)

Beta has 8 balls in a bag, three red and five white. She takdsadinend then returns it and then draws



another ball.

2.1

. What is the probability that she draws tw red balls?
. What is the probability that the balls have different ¢8lo

. Since Beta returns the first ball the the draws are indepp@ndhe probability of getting two red

balls are:
33 9

8 8 64
approx. 14%.

LetaA be the event "first red, then white" adbe the event "first white, then red". Then the

probability of getting balls with different color equal #&aJB. SinceA andB are disjoint we get:
35 35 15 15 30
P(AUB):P(A)+P(B):§.§+§.§: e
approx. 47 %.

Random variables

Random variable

Random variable

Random variable describes the
outcome of a variable before it is
measured

Syntax for random variables
Random variables are denoted
with capital letters, ofterX

Values that a random variable
has receivedare denoted with
lower-caseletters, ofterx

The same letter is always used for
arandom variable and the value it
has received.

2.2

Discrete and continuous random variables

Discrete random variables
Discrete random variablesde-
scribe discrete variables. They
have a finite set of possible out-
comes on every limited interval.

Continuous random variables
Continuous random variables
describe continuous variables.
They can obtain any outcome on
some interval.




2.3 Syntax for the probability of random variables

Syntax for the probability of
random variables

P(X <a): Denotes the proba-
bility that the out-
come of a random
variable X will be
less or equal then
the valuea.

P(X >a): Denotes the prob-
ability that the
outcome of a ran-
dom variableX will
be greater or equal
then the value.

P(a<X <b): Denotes the
probability that the
outcome of a ran-
dom variableX will
be betweenaand b,
both values included

P(X =a): Denotes the proba-
bility that the out-
come of a random
variable X will be
exactlythe valuea.

2.4  Probability distribution of random variables

Probability distribution ran-
dom variables

The Probability distribution of

a random variable is a rule that
tells us which values a random
variable can receive and further-
more:

P(X =a) for all valuesait can
receive if the proba-
bility distribution is
discrete

P(a<X<b) for all valuesa
and b if the proba-
bility distribution is
continuous

The probability distribution of a random
variable gives us all available information
possible of the random variable!

Why do you think that we define the proba-
bility distribution in a different manner de-
pending on whether the random variable is
discrete or continuous?

10



2.5 Types of probability distributions

Types of probability distribu-
tions

The randomness of many of the
variables that we investigate are
similar by nature.

Then the random variables that
they describe behave similarly.

As a consequence, they will have
similar probability distributions.

Then we say that the probability
distributions of the random
variables are of the same type.

2.6 Parameter

Parameter

Every type of probability distri-
bution is described with numbers
that are called thparametersof
the probability distribution.

Different parameters describe
different probability distributions

Normally the parameters are only
one or two.

If we know the type of the prob-
ability distribution of a random
variable, the values of its parame-
ters give all information available
about the random variables.




2.7 Short summary

e One can talk about the prob-
ability that a random variable
receives certain values.

e That probability is described
by the probability distribution
of the random variables, that
give all information available
about the random variables.

e Many random variables have
probability distributions of a
known type.

e Every type of probability dis-
tribution is described with
numbers that are called pa-
rameters.

e To every type of probabil-
ity distributions belong certain
parameters and they are nor-
mally one or two.

e If we know the type of the
probability distribution of a
random variable, the values
of its parameters give all in-
formation available about the
random variables.

2.8 Independent random variables

Independent random variables
We say that two random variables
areindependent if the outcome
of one random variable does not
affect the outcome of the other
random variable.

Dependent random variables

We say that two random variables
aredependentif they are not in-
dependent, that is, if the outcome
of one random variable does not
affect the outcome of the other
random variable or vice versa.

Independent and identically
distributed random variables

We say that random variables
X1ees Xn are independent if
each of them is independent to
all of the others anddentically
distributed if they all have the
same probability distribution.




2.9 Expected value of a random variable

Expected value of a random
variables

Expected value of a random
variable is thetrue mean of the
random variable. It is either de-
noted withp or E[X]. It is also
called population mean when
appropriate.

Law of large numbers

As the number of measurements
of a random variableX grows,
the mean of the measurements,
denotedx, gets closer to thex-
pected valueof the random vari-
able, denotegl or E[X].

2.10 Expected value of a discrete random variable

Expected value of a discrete
random variable

If a random variable igliscrete
its expected value is the weighted
mean of all of its possible out-
comes, where the weight of each
outcome is the probability that
the random variable receives that
outcome.

Formula for the expected value
of a discrete random variable

If arandom variabl« is discrete,
then its expected value is

H=Yyx P(X=x)

where we sum over all possible
outcomes of the random variable.

What is the expected value of the random variable "the sum fossing two dies"?

When we add the outcomes from tossing two dies the outcoreasaiequally likely. The probabilities
Value| 2 3 4 5 6 9 10 11 12

7 8
are - 1 2 3 4 5 6 5 4 3 2 1
Probability | 55 55 3 3 35 35 35 36 3 3 36

The expected value is:

ZXi-P(X:xi):

1 .2 3 _4 5 _&6
2361336 36 >3 %31 "3
5 4 3 2 1

13



Variance of random variables,
Var[X]

As random variables have true
means, they also have t@ue
variance. It is either denoted
with 2, or Var[X]. It is also
called thepopulation variance
when appropriate.

Formula for the variance of a
discrete random variable

The variance of a discrete ran-
dom variable is

%= 3 (6 - W?-PX =)

where we sum over all possible
outcomes of the random variable.

2.11 Variance of random variables

What is the variance of the random variable "tossing a die"?

The expected value is equal to 3.5.

The variance is:

3 (6 — W2 P(X =x) :(1—3.5)2-é+(2—3.5)2%+(3—3.5)2-

e Many random variables have

probability distributions of a
known type.

e The probability distributions

of random variables are dis-
crete if the random variables
are discrete and continuous if

not.

e Let us look at the two most

common discrete probability

distributions:

— The binomial dis-
tribution

- The Poisson dis-
tribution

e We will see how these two
probability distributions can

be used to describe several

random phenomena.

+(4—35)

2.1

14

ol =

(5—3.5)2. % +(6—3.5)2.

3 Discrete probability distributions

3.1 Probability distributions of random variables

ol

=292



3.2 Mass function

Mass function

Discrete probability distributions
are described with anass func-
tion and we will use it to cal-
culate that probability of cer-
tain outcomes of discrete random
variables. We denote the mass
function with f(x) and it can be
written as

The following holds for the mass
function:

yfir%ll X

We use barplots to represent mass|
functions graphically.

3.3 Barplot of a mass function

Probabilies
0.2

0.1

0.0

3
Possible outcomes

3.4 Formulas for discrete random variables

Formulas fyrir discrete ran-
dom variables

When calculating probabilities
for a discrete random variable
X calculations can often be sim-
plified by "turning around” the

probabilities

PX<k) = 1-P(X>k
PX<k) = 1-P(X>k)
PX>k) = 1-P(X<k
PX>k) = 1-P(X<k

wherek can be any number in the
outcome space of.

15



3.5 Bernoulli trial

Bermoulli trial

Every event in a group of re-
peated events is classified as a
Bernoulli trial if the following
holds:

1. Every event has
only two possible
outcomes.  These
outcomes are tra-
ditionally called
successand failure.
An event is success-
ful if the outcome
is a success and
unsuccessful if its
outcome is dailure .

2. The probability of a
success are the same
for every event. The
probability of a fail-
ure is therefore the
same for all events
as the probability of
a failure is always 1
minus the probabil-
ity of a success.

3. An outcome in one
event does not influ-
ence the outcome of
another event, that is
the events are inde-
pendent.

3.6 The binomial distribution

e We are often interested in cal-
culating how many success-
ful events are among a set of
Bernoulli trials.

e We would for example want
to calculate the probability of
receiving two sixes (which
would be the success) when a
dice is thrown five times.

e We view the total number of
successful events as a random
variableX.

e Ithas aknown probability dis-
tribution that is called théi-
nomial distribution and it is
described with the parameters
nwhich is the total number of
Bernoulli trials that are con-
ducted, andp which is the
probability that is the prob-
ability of success within the
Bernoulli trials.




3.7 The binomial distribution

The binomial

distribution

Let the random
variable X denote
the number of
successful events
from n Bernoulli

trials. ThenX fol-

lows a binomial
distribution with

the parameters
n and p, writ-

ten X~ B(n,p),

where p is the

probability of

success within
each event.

The probability
that the random
variable X re-

ceives the valuk

€ 0,1,2,..n can

be calculated with
the mass function
of the binomial
distribution:

P(X =k) = (E) p(1—p|" K, k=0,1,2,..n
(k) the binomial

coefficient. It is

the probability of
receiving k posi-

tive outcomes im

events and calcu-
lated with

()~ e

Wherek! =k- (k—
1)-(k—=2)-...- (D).
Notice that 0= 1.

Benni likes to toss coins. Calculate the probability thatileget exactly two "heads" when he tosses
a coin four times.

We let X represent the number of heads.follows a binomial distribution witm =4, p=0.5,X ~
B(4,0.5).

17



We start by finding the value of the binomaial coefficient:

@>_@)_Nﬁ¥ﬂ‘;f5$‘6

and then we use the mass function of the binomial distributiacalculate the probability:

P(X=2)= <E) pk(1—p)" K= (‘21) 0.52(1—0.5)*2=6-0.5%-0.52 = 0.3750

The probability is 37.5 %.

3.8 The binomial distribution

e We have now seen that the
probability that the random
variable X receives a certain
valuek can be calculated.

e In addition to -calculating
P(X = k) we are often
interested in calculating

- P@<X<b) or
Pa<X<b)

- P(X < k) or
P(X <k)

- P(X > k) or
P(X > k)

e We can calculate all of those
probabilities by using the for-
mula for the mass function of
a binomial distribution along
with the rules on slide 3.4.

Helga throws a coin 10 times. We uXeo represent the number of "headX"~ B(10,0.5).

a) What is the probability that Helga gets between 4 and 63#ad
b) What is the probability that Helga gets 3 or less heads?
¢) What is the probability that Helga gets 8 or more heads?

d) What is the probability that Helga gets more than 2 heads?

a)P(4<X<6)
We need to add the probabilities that she will geet 4, 5 anda@$er

P(4< X <6) = P(X =4)+P(X =5) + P(X =6).

P(4 <X <6) =0.2051+ 0.2461+ 0.2051= 0.6563

b)P(X <3)
We need to add the probability of getting 0, 1, 2 and 3 heads:
PX<3)=PX=0)+PX=1)+P(X=2)+P(X=3)

18



P(X < 3) =0.0010+0.0098+ 0.0439+0.1172=0.1719

c) P(X > 8).
We need to ass the probability of getting 8, 9, or 10 heads:

P(X > 8) = P(X = 8) +P(X = 9) + P(X = 10)

P(X > 8) = 0.0439+ 0.0098+ 0.0010= 0.0547

d)P(X > 2).

We can calculate the probability as:
P(X>2)=P(X=3)+P(X =4)+...+ P(X = 10)

but it is easier to rewrite the probability and get:

P(X>2)=1-P(X <2)=1-(P(X=2)+P(X = 1)+ P(X = 0)).

P(X > 2) = 1— (0.0439+ 0.0098+ 0.0010 = 0.9453

3.9 Expected value and variance of a binomial distribution

Expected value and variance of
a binomial distribution

If X follows a binomial distribu-
tion, X ~ B(n, p) then

E[X] =np
Var[X] =np(1-p)

John is going to toss a die 900 times. We isé¢o denote the number of times a four comes up,
X ~B(9001/6). Find §X] and VafX].

E[X] = np = 900-1/6= 150
Var[X] np(l—p) = 125

19



3.10 The Poisson distribution

e The Poisson distribution is of-
ten used to describe the num-
ber of random phenomena that
occur within acertain unit
but the number of possible
outcomes has no upper limit.

e The units can betime in-
tervals, spatial intervals or
somephysical object

e As an example we can men-
tion the number of phone
calls an office receives every
minute, the number of rein-
deers per each square kilome-
ter or the number of typos on
each page.

3.11 The Poisson distribution

The Poisson distribution

The Poisson distribution has one
parameter that is called. If

X follows a Poisson distribution
with the parameteh the proba-
bility that the random variablX
receives a valug, k=0,1,2,...
with the mass function of the
Poisson distribution:

e Mk

P =k = S

We writeX ~ PoigA). The sam-
ple space oK is 2 ={0,1,2,...}.
The parameteh is the expected
value of the random variabl¥,
that is, its true mean. It describe
how many successful outcomes
we expect on average per each
unit.

3.12 The Poisson distribution

e We have now seen that the
probability that a random vari-
ableX that follows the Pois-
son distribution receives a cer-
tain valuek can be calculated
with the mass function of the
Poisson distribution.

e \We are often interested in cal-
culating other probabilities:

- P@< X <b) or
Pla<X <b)

— P(X<k)orP(X <
3

- P(X=k)jorP(X >
K).

We can calculate all of these probabilities
with the mass function of the Poisson dis-
tribution.

20



3.13 Changing units

e When calculating the prob-

ability that a random vari-
able that follows a Poisson
distribution receives a certain
value, we often have given the
value ofA in another unit then
the one we wish to use.

We could for example know
that the number of car in-
cidents in Reykjavik every
week, but we wish to know the
number of incidents per day.
ThenA need to be adjusted to
anew unit.

If the new unit isa times the
old unit, then

Anew=a-Ag|q

WhereAg)q is the "oldA” and
Anew is the "newA” adjusted
to a new unit.

Annais in a hurry and wonders how long time she has to waihmiln a supermarket. Average number
of customers to get help there are 1.5 per minute.

Find the probability that:
a) 3 customers arrive at the resister in one minute.

b) 4 customers arrive at the resister in two minutes.

¢) No more than 2 customers arrive at the register in one minut

d) Atleast 1 customer arrives at the register in one minute.

a) We know that the average number of customers in one migdt&j soh = 1.5.

P(X=3) =

871.51'53
3!

=0.1255

b) We know that the average number of customers is per mialt&i=A. We need the average number
of customers in two minutes. Since the average number ofgests in one minute is 1.5 we expect on
average 21.5 = 3 customers to arrive in two minutes.We use 3 and get:

e 334

c)

d)

We need to rewrite the probability:
PX>1) =

P(X =4) =

4

=0.1680

PX=0)+P(X=1)+P(X=2)
0.2231+0.3347+0.2510

0.8088

P(X >

21

1).

1-P(X < 1)
1—P(X =0)
1-0.2231
0.7769



3.14 The expected value and variance of a Poisson distriboti

Expected value and variance of
a Poisson distribution
If X follows a Poisson distribu-
tion, X € PoigA) then

E[X]=A
Var[X] =A.

Let X denote a random variable that follows a Poisson distributiith A = 2. Find the expected value
and variance oX.

4  Continuous probability distributions

4.1 Probability distributions of random variables

e Many random variables fol-
low probability distribution of
known types.

e The probability distributions
of random variables are con-
tinuous if the random vari-
ables are continuous.

o We will look closely at the
most common  continuous
probability distribution:

— Normal distribu-
tion

e And also look at three contin-
uous distributions that we will
use for statistical inference:

— t-distribution
- xz-d\stribution

— F-distribution

22



4.2 Probability of continuous random variables

For continuous random variables holds that

This equation tells us that the probability
of a continuous random variable receiving
any specific value is always zero, no matter
what the value is. Therefore it holds that

Pa<X<b)=Pla<X<b)=P@a<X<b)=P@<X<b)

whenX is continuous. Remember that this
does not generally apply to discrete ran-
dom variables!

Formulas for continuous ran-
dom variables

The following rules hold for con-
tinuous random variables and are
often useful.

P(X>a)=1-P(X<a)

Pla<X<b)=P(X<b)—P(X <a).|

4.3 Density function, distribution function and density cuve

Density function, distribution
function and density curve
Continuous distributions are de-
scribed with adensity function,
denoted withf(x). We use a
so-calleddistribution function ,
which is the integral of the den-
sity function, to calculate the
probability that a continuous ran-
dom variableX receives a value
that is less then a specific refer-
ence valuex. The distribution
function is denoted witF (x) and
can be written as

F(x) =P(X <x)

Density curve is described graph-
ically with a density curve The
area under the density curve be-
tween two values andb equals
the probability that a random
variable receives a value between
aandb. The total area under the
whole curve is always equal to 1.
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4.4  Density function, distribution function and density cuve

4.5 Normal distribution

e The Normal distributioniis the
most frequently used distribu-
tion within statistics.

e All sorts of phenomenas can
be described with the normal
distribution such as height,
blood pressure, weight and so
and so forth.

e We will also get to know the
importanse of the normal dis-
tribution in lecture 090 when
we study the central limit the-
orem.

e The density curve of the nor-
mal distribution is bell shaped
and has two parameters that
determine its shape.

4.6 Normal distribution

Normal distribution

The density function of the nor-
mal distribution is often denoted
with @(x) and may be written as

1 _1xHy2
f(x):q)(x):me 2\

The function has twgparame-
ters, pando. pis the mean of
the normal distribution and deter-
mines its locationo“ is the vari-
ance of the distribution and de-
termines its spread. If a random
variableX follows normal distri-
bution with mearp and variance
a2 we write thatX ~ N(u, 02).
The distribution function of the
normal distribution is denoted
with ®(x).
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4.7 Normal distribution

Figure 4: Two normal distributions with the same mean bufed#nt variances

4.8 Normal distribution

Figure 5: Three normal distributions with the same varianaedifferent means.
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4.9 The 68-95-99.7% rule

The 68-95-99.7% rule

For every normal distribution
with meanp and standard devia-
tion o holds that

® approx. 68% of
the measurements
will lie within one
standard ~ deviation
from the mean

® approx. 95% of
the measurements
will lie within two
standard deviations
from the mean

e approx. 99.7% of
the measurements
will lie within three
standard deviations
from the mean

4.10 The 68-95-99.7% rule

7 N
1 N

n-o 1+

Figure 6: The 68-95-99.7% rule
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4.11 Standardized normal distribution

Normal distribution with meam = 0 and
standard deviatioa = 1 s called the stan-
dardized normal distribution.

Standardized normal distribu-
tion

If a random variableX follows
normal distribution with mean,
standard deviatioa and variance

02, written
X~N(it.0%)
then x
z-2H
[

follows a normal distribution
with meanp= 0 and standard de-
viationo = 1, written

Z~N(0,2).

4.12 Probability of normally distributed random variables

e The probability of normally
distributed random variables
can be calculated as the area
under the density curve.

e If one wishes to find the prob-
ability that a normally dis-
tributed random variable lies
on the interval froma tob one
need to integrate the density
function froma to b. That is
notdone by hands, but with ta-
bles or computer software.

Before one can use the table, the normal
distribution needs to be transformed to a
standardized form. The table shows the
probability

D(2) =P(Z < 2),

that is, it shows the probability that a ran-
dom variableZ that follows standardized
normal distributionwill receive a value less
then the numbee, often calledz-value.
This can be though of as if the table is look-
ing to the left.
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Figure 7: Normal distribution

/\& A
z a b

Figure 8:P(Z > z) andP(a < Z < b) whereZ ~ N(0,1)

4.13 Probability of normally distributed random variables
4.14 Probability of normally distributed random variables

4.15 Using the table for the standardized normal distributon

Using the table for finding
probability

When finding the probability that
belongs to a certairvalue:

If the value follows standardized
normal distribution that value is
the z-value itself. If it does not
follow the standardized normal
distribution we need to find a
standardized-value with

We find thez-value in the table
(inbold) and the probability is the
®(2) value on it's right side.

Let us assume that the test scores of students in US on theeSATotlow normal distribution with
mean 1026 and standard deviation 209. WeXise denote the test score$,~ N(1026 209).
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a) Find the probability that student chosen at random haergrnade than 720, that B(X < 720).

b) Calculate the probability that a student, chosen at namdias higher score that 820, thaPiex >
820).

c) Calculate the probability that a randomly chosen stutiesta grade on the interval 720 og 820, that
is P(720< X < 820).

a)
P(X < 720).
We need to starty by standardizing:
720—1026 146
209 7

P(X <720 =P(Z < —1.46)
We use the normal distribution table and get 0.0721, thatpsax. 7 %.

b)
P(X > 820).
We need to start by standardising:
820— 1026
~—%09 = —0.99

P(X >820)=P(Z> —-0.99)=1—P(Z < —0.99)
We use the normal distribution table and get 1-0.1611 = @88t is approx. 84%.

c)
P(720< X < 820).

We use the standardised values from a) and b)

P(720< X < 820) = P(—1.46 < Z < —0.99) = P(Z < —0.99) — P(Z < —1.46)

We use the normal distribution table and get:
0.1611-0.0721=0.089

that is approx. 9%.
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4.16 Using the table for the standardized normal distributon

Using the table for finding
values

If we wish to find whichz-value
corresponds to a certain proba-
bility:

We find the probability, or the
probability closest to it, among
the ®(z)-values in the table and
thez-value is (in bold) on its left
side.

If the value does not follow the
standardized normal distribution
we need to transform thevalue
back to the original distribution,
such that the value becomes

X=U+20

Which does a student need to get at minimum in order to be itofh&0% of the students?

Now we need the z-value. Remember that the table looks teethed we need to find whickvalue
corresponds to 90% (then there are 10% above). We see thav#hge is 1.28.

The grades do not follow that standard normal distributmme need to transform thevalue:
X=U+270

so
Minimum grade= 1026+ 1.28- 209= 12925 points

4.17 The relationship ofX andzZ

The relationship of X and Z

If a random variableX follows
normal distribution with meam
and variance? then

PX<x)=P(Z<2)

Wherez = %1 and Z follows

the standardized normal distribu-
tion.
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4.18 The syntaxzy

The syntaxza

With zz is denoted thez-value
that is such that a random vari-
able that follows standardized
normal distribution has the prob-
ability aof receiving a values that
isless thenza. This can be writ-
ten as:

a=P(Z<z).

whereZ follows the standardized
normal distribution.zg is there-
fore the a-th percentile of the
standardized normal distribution.

Notid téflu stadladrar normaldreifingar til ad finaggs.

Hér pekkjum vid likurnar en okkur vantagildio. Vid finnum pvi 0.95 medab-gildanna i téflunni og
lesum z-gildi® vid hlid pess. I téflunni ma sja ags = 1.64.

4.19 Normal probability plot

e Many statistical methods rely
on that the measurements or
some derived quantities fol-
low a normal distribution.

o When applying these methods
we need to ensure that this is
the case.

e There are several methods to
do so, a common one is the
normal probability plot.

e The normal probability plot is
a graphical method to inves-
tigate whether data follows a
normal distribution or not.

e Normal probability plots are
not drawn in statistical soft-
wares, not by hand, but it is
important to know how to in-
terpret them.

4.20 Normal probability plot

Normal probability plot

If the points on the normal prob-
ability plot lie close the straight
line that is shown on the plot
and the end points on both sides
do not bend critically up and/or
down from the line then it is rea-
sonable to assume that the data is
normally distributed.
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4.21 Normal probability plot

Histogram data 1

Histogram data 2

Histogram data 3

Normal probability plot data 1

Normal probability plot data 2

Normal probability plot data

4.22

t-distribution

e The t-distribution, or the Stu-

dent's t, is a continuous prob-
ability distribution that resem-
bles the normal distribution.

e It is bell shape, symmetrical

about the mean of the distri-
bution, which is 0. The t-
distribution is used for statis-
tical inference.

e The t-distribution has one pa-

rameter, that is called thee-
grees of freedom We usek to

denote the number of degrees

of freedom. A t-distribution
with k degrees of freedom is
denoted with(k>.

4.23

t-table

We look up in the table after

the number of degrees of free-
dom. The values we read are
denoted wimaA(k).

For ta (k) holds that a ran-
dom variable that follows t-
distribution withk degrees of
freedom has the probability
of receiving a values that is
less thenor equal ma.(k)'

The column is determined by
the a-value, but the line by

the number of degrees of free-
dom.

As the number of degrees of
freedom grows, the more the
t-distribution resembles the
standardized normal distribu-
tion.

Find t0_95’(17> .
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We use a t-table with = 0.95 (column) ank = 17 (line) and get theth g5 (17) = 1.740.

4.24 t-distribution

Figure 9: A few t-distributions

4.25 x>2-distribution

. Thexz-distribution, is a con-
tinuous probability distribu-
tion and commonly used for
statistical inference.

e It is not symmetrical as the
normal distribution.

e The xz-distribution has one
parameter, the number of de-
grees of freedom, that is de-
noted withk.

o x2-distribution withk is de-

noted withx%k) .

e The mean of the xz—
distributions  equals its
number of degrees of free-
dom.
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4.26 x>-table

e We look up in the table by
the number of degrees of free-
dom. The values that we
read from tzhe table are de-
noted W'thxa.(k)'

e For Xg(k) holds that a ran-

dom variable that follows a

xz-distribution withk degrees

of freedom has the probability

a of receiving a value that is
2

less lhenxa.(k).

e We choose a column with the
a-value and the line with the
number of degrees of free-
dom.

Find )(5.957(4).

We usex?-table. We chosa = 0.95 (column) and = 4 (line) and get thaxg_%‘([l) =9.488.

4.27 x>-distribution

—
e st)
ng)
X

Figure 10: A fewxzfdislributions

4.28 F-distribution

e The F-distributionis a contin-
uous probability distribution
also commonly used for statis-
tical inference.

e It is not symmetrical as the
xz—distrihulion.

o The F-distribution has two pa-
rameters that are called the de-
grees of freedom and denoted
with vy andvy.

e F-distribution withvy andvyp
degrees of freedom is denoted

with F(V1.V2) .
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4.29 F-table

There are four tables for four
different a-values, a= 0.90,
a=095 a=0975 and
a=0.99.

The columns in the tables rep-
resent different values ofy
and the lines different values
of vp.

e The values that are read from
the table are denoted with

EXURAL

e For FaA(vl.vz) holds that a
random variable that follows
F-distribution with vy and
vo degrees of freedom has
the probabilitya of receiv-
ing a value that idess then

EXURAL

Find Fo g5(7,12)-

We use the--table wherea = 0.95. We chose a columw = 7 and linevz = 12 and geFy g5 (7,12 =
2.913.

4.30 F-distribution

— Fay
- Fey

| Fs2)

Fuo.10)

Figure 11: A few F-distributions
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5 A statistic

5.1 Statistics

Statistic

A statisticis a number that is cal-
culated by some method from our
data.

e We look at our measurements
as random variables because
the outcome can change each
time the experiment is re-
peated.

e Statistics are calculated from
our measurements.

e If the outcomes change, the
statistics can also change!

e That means that statistics are
in fact random variables!

5.2 Sampling distribution

Sampling distribution

Every statistic is a random vari-
able and has therefore some prob-
ability distribution. That distribu-
tion is called thesampling distri-
bution of the statistic.

The sampling distribution depends on

e The probability distribution
of the measurementghat the
statistic is calculated for.

e The number of measure-
ments

When certain criteria are fulfilled the sam-
pling distribution of some statistics follow

certain known types. Statistical inference
normally relies on that fact.
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5.3 Example

Let X1 and Xy be random variables that
describe the outcome when a dice is
thrown.

Below are shown all possible outcomes of
the statistickq +Xp.

(6,1)
(6.1 (62) (6.2
@41 @2 (43 (63 (63)
B1) (B2 (33 (34) (44 (G4 (64)
21 (22 (3 (249 (25 (@85 (@45 (55  (65)
@y @12 (a3 (a4 1y (16 (26 (36 (46 (56 68
2 3 4 5 6 7 8 9 10 11 12

5.4 Example

Frequency
1000 1500 2000
. . )

500
L

Sum of two dies

Figure 12: Simulation of 10000 throws of two dice.

5.5 Expected value of the sum of two random variables

Formulas for the expected
value of random variables

If X and Y are two random
variables, then

E[X] +E[Y]
EX]-E[Y]

What is the expected value of the sum of two die tosses?

The expected value when tossing one die is 3.5.X.andY be random variables describing one die
toss, then

EX+Y] =E[X]+E[Y] =35+35=7
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5.6 Variance of the sum of two random variables

Formulas for the variance of
random variables

If X andY are two independent
random variables then

Var[X +Y] =Var[X] +Var[Y]
Var[X — Y] =Var[X] +Var[Y]

What is the variance of the result of tossing two dies?

We useX andY to represent tossing a single die. The varianc& @ndY is 2.92 (calculated in the
lecture on random variables).

Var[X +Y] =Var[X] +Var[Y] = 292+ 2.92= 5.84,

5.7 Expected value and variance of the mean

Expected value and variance of
the mean

If Xq,....,Xn are independent
and identically distributed ran-
dom variables with expected
value E[X] = u and variance
Var(Xj] = a2, then the following
holds for the mean of them, de-
notedX:

m

X
Il
Nz

Var(X]

BT

5.8 Standard error

Standard error

If X is the mean ofXy, ..., Xn,
independent and identically dis-
tributed random variables with
variancevar[X;] = 02, then their
standard error is

a/vn

Itis the standard deviation of the
mean of the measurements.
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5.9 The probability distribution of the mean of normally distributed random
variables

The probability distribution
of the mean of normally dis-
tributed random variables

If X3,....Xn are normally
distributed random variables
with mean p and varianceo”,
then X follows also a normal
distribution, with meanp and
varianceuz/n‘

Thatis if X ~N(1,62) then X ~N(u a2/n|.

Grades of students on a standardized test follow a normtaldison withu=5 ando = 2. What is the
probability distribution of the average of 10 randomly chiostudents?

The average grade of 10 students follows a normal distabuwiiith p = 5 ando?/n = 4/10= 0.4.

5.10 Central limit theorem

Central limittheorem

FXg,.., Xn are independent and
identically distributed variables
then X follows normal distribu-

tion with meanp and variance

cz/n

>Z~N(u.02/n)

if nis large enaugh.

Notice that we do not need to know the
probability distribution of the measure-
ments!

5.11 Central limit theorem

The sampling distribution of the
The population population mean, n=5

I T t T T f f T T |
00 01 02 03 04 05 00 01 02 03 04 05
The sampiing distribution of the “The sampling distribution of the
population mean, n= 10 population mean, n=30
r l(ml T T T | r T T T |
00 01 02 03 04 0s 00 o1 02 03 04 05

Figure 13: The sampling distribution of a mean when the ramdariables follow a very skewed distribution.
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5.12

Central limit theorem

Ine sampiing aistrioution of tne

The population population mean, n=5
0 10 20 30 40 0 10 20 20 40
“The sampling distribution of the ‘The sampiing distribution of the
population mean, n= 10 population mean, n= 30
0 10 20 30 40 0 10 20 0 40

5.13

Figure 14: The sampling distribution of a mean when the ramdariables follow a slightly skewed distribution.

Estimators and test statistics

tics.

There are two groups of important statis-

e Estimators estimate the
parameters of the probability
distribution that the random
variables follow.

Example: Estimator that
estimateg when the mea-
surements are  normally
distribution.

Example: Estimator that
estimatesp when the mea-
surements are binomially
distributed.

e Test statistics allow us to

make statistical inference.
Example: Test statistic that al-
lows us to infer whether the
variance of two population is
the same.
Example: Test statistic that al-
lows us to infer whether the
mean of a population differs
from 20.
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