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1 Sampling, distributions and convergence

1.1 Convergence concepts and Chebychev’s theorem
1.1.1 Handout

Convergence concepts

SOnnun.
+o00

Elg(x) =/ gx)f(x)dx  [f is the density oK]

—00

= X) f (X) dx+ X) f(X)dx
{X:g(X)<r}g( 1) /{X:g(X)zr}g( 1)

> X) f(X)dx >0

=y M- CLCLECED

> rf(x)dx=r f(x)dx
— J{xg(x)>r} ) /{Xi9(><)2r} )
= rP[g(X) >1]

Where the integral ovelix : g(x) > r} is well defined sincéx: g(x) > r} =g~1(] —oo,r[)
andg is continuous. Similarly fofx: g(x) <r}. O

Definition 1.1. A sequence of random variabl¥s, ..., converges to the random varial§le
X in probability if P[[X, —X| < €] —— 0Ois true for alle > 0. We writeX, X,

Soénnun. BX,—p| > €] < iﬁ" —— 0 (from the Chebychev inequality). O
€ n—oo

1.2 Estimators
1.2.1 Handout



Definition 1.2. An estimatoris a (measurable) function of random variab¥gs. . ., X
Commonly “an estimator” is of the forfly, = h(Xy, ..., X,), whereXy, Xo, ... is a sequ
ence of random variables, i.e. term “the estimator” acjuedfers to a sequence [pf
estimators.

An estimatorT is said to beunbiasedfor a parametef if ET, = 6. An estimatorT, is

said to beconsistenfor 0 if T, Po.

Example 1.1. If X3,Xp, ... are i.i.d. and K4 < o, then
SRS

whereSﬁ = nTll YL X —Xn),in = %z{‘:m. This is true since

P -0 >¢] < [S%]—>O

n—oo

if V[SE] — 0, which holds since

V[ == (94——92) -0

n n—-1

(see e.g. example in Casella and Berger.)
Recall that if the variables are also Gaussian, Weﬁ ”—1)8% xn 1 SO thatV Ws] =

2(n—1) andV[S?] = [nfflw} = 04)2 VW] = )22(n 1) = 204 ‘0.

Theorem 1.3 If X, = X andh s a continuous function, them(X,) LN h(X).

The proof is left to the reader (use the definition of contiyui

Example 1.2. Toss a biased coin times with independent tosses to obtain the ranliom
variablesX, ~ b(n, p). Definepy := % This will have the same distribution &swhere
Y1, Yo, ... are the outomes of individual tosses afidY», ... are i.i.d. Thus we have

pn_>p7

i.e. P[|pnpp| > € — Oforalle > 0.




Example 1.3. X, : [0,1] — R, X,(u) = u" and use Borel-measure 1], i.e. P[[a,b]] =
——
w
b—aif 0 <a<b<1. Thenthe c.d.f. oK, is given by

Fn(X) = PXn <X = P[{w: Xn(w < X}
=P{w: 0" <x} = P[O,x%] — X,

Thus

so if we define the random variab¥ewith

0 0<w<1
x(w):{l w=1

then obviously
PlIX—X| > &] =

forall € > 0.
Note that we do, however, have a much stronger convergertbesiaxample since

Xn(w) — X(w) for all we Q = [0, 1].

This isconvergence of functionsot just convergence in probability.

1.3 Almost sure convergence
1.3.1 Handout

Definition 1.3. A sequence of random variablgsg, X», . .. convergeslmost surelyo the
random variable if

Plim X —X| <€ =1 ve>0.

Note: Recall that the random variables are functiods; Q — R and we can therefore
write

{weQ: lim [Xn(w) - X(w)| > &} = Ae.

We see thak, converges almost surely ¥if and only if P[A¢] = O for alle > 0.
We write X, — X a.s.



If we define

A= {w: Xa(0) = X(w)}, A 1= {01 lim [Xn(w) — X(w)| < &}

then
n
A=Ay
j=1
and we obtain
PAI =P | Ayj
j=1
= lim PA ] =1 *)

((*): Since Aq; form a decreasing sequence of sets it is fairly easy to provelf other
words, Xh(w) — X(w) except on a se € A C Q which has probability zero. For this
reason this type of convergence is commonly describeg as X with probability one
The following has been covered:

o Xn 2 Xiflim e P[|Xa—X| > €] =0foralle > 0.

e Weak law of large numbers{;, Xo, ... iid, VX < o implies)?n = %z{;lxi L M=
EX;.

h cont, X, & X impliesh(Xn) — h(X).

Almost sure convergence, — X a.s. ifP[limp_,« |Xn — X| > €] =0 foralle > 0.

Recall: X, — X a.s. impliesX, Pox.

Definition 1.4. If X1, Xo, ... is a sequence of random variables ahid a random variabl
such thatFy(X) = P[Xn < X] andF (x) = P[X < X] satisfy Fy(X) — F(X) wheneverF is
continuous ax, thenX, converges to X in distributiondenotedX, Dox.




Example 1.4. Let X, ~ b(n, pn) wherep, = % We want to show that

Xq 2 X ~P(A)
We have:
Pi=x = () a2 pn)" = s (1-2) T =2 1

We know that(1—2)" — e*. We also get:
n—oo

MTon
ﬁ) < (n—x)!

WhereX ~ P(A). SinceX, converge in probability t&X we know that:

Xn 2 X ~P(A)

n! ~nn-1)-...-(n—=x+1) n n-1 n—x+1 .1
“(n—x)! X “n on n o noe
We therefore conclude that
AX AN\ n! AN X AN
P[%—X]—;(l-a) 7nx (n—x)! (1-5) —>n_>°° e ;—P[X—X]

A
R

2 Order statistics

2.1 Order statistics
2.1.1 Handout

SupposeXy, ..., X, are i.i.d., i.e. are a random sample.

Definition 2.1. Define the random variab,) := max{Xy,...,Xn}.

Note 2.1. Sometimegn) is defined as the random variable which corresponds to thedar

element in(Xy,...,Xy).

s



Definition 2.2. We defineX(1) < X5 < --- < X(p) to be be then order statisticof the
random sampl&y, ..., Xn.

Note: Formally, since each random variable is really a functibese new variables need
to be defined as new functions...

Example 2.1. If X; ~U(0,1) then we have for & w < 1:
PXm) <0 =P[Xg < 0y,..., % < W)
=PXy <" (iid)

_ 0 0<fw<«l
o )1 =1

SO thatX(n) D, x with PX=1]=1, i.e.X(n) b, 1, and it follows that

0 x<1
1 x>1

P[ng]:{

Note:
P[X(l) <w=1- P[X(l) >w =1-P[X; > w]“

0 w=0
=1-(1-w)"—
n—e 171 O<w<l1

so thatXy) 5.

We also obtain:

PHX(n) -1 <¢g]=P[l-€e< X(n) <1l+¢]
P[X(n) > 1—8] =1- P[X(n) < 1—8]
1 1

—-(1-¢)"—
n—o0

[0 2 LandX © 1.

if0 <& <1, and henc&p 5 X. we haveX,,

The density o, is given by
() = o) = o F 0"
f : dx
=nf)F ()" =nx""tg q(x).
The expected value of, is therefore

n
e e —
N1 n—o

)

1
EX(n) :/0 xm¥~tdx=...

8



and the variance is obtained by first evaluating
1
EXG) :/0 X tdx=... = ——

from which we see that

n n \?2 n
VXl =——=-—=) =
X n+2 (n+1) (N+1)2(n+2)’
i.e. V[Xn] “behaves likes. Itis therefore of interest to consider the distributiorthod

x—1
random variablel% or simplyn(1—X))-
We obtain:P[n(1— X)) <t] — 1— e (this is a popular exam question).

3 Random number generation

3.1 Continuous distributions

3.1.1 Handout

LetU ~U(0,1). If F is increasing, continuous and
0<F(X) <1xeR.

F(x) — 0,
X—00

F(x) — 1,
x—0

and we set

then we see that

so thaty ~ F.

Example 3.1 (Example of usage)If U ~U(0,1) and

© ] 2
d(x ::/ — e /24,
\(,—2 —o0 4/ 2TT
pnorm(x)nR
dnorm(t)

then

o HU)~ n(0,1)
N——
rnorm(1) in R

Note: Recall that we can write

g(x) = i g(‘:!(a) (x—a)', xe(a—ra+r)

i=0

if gifinfinitely differentiable andy" (x) disappears “fast enough” as- « [specifically
JA > 0s.t.gM(x) < A"Vn].



3.2 Discrete distributions
3.2.1 Handout

Discrete distributions:

DefineF ~1(u) := inf{x: F(x) > u} and note that if is a c.d.f. therF is continuous from
the right so the infimum is a minimum.

Supposé “jumps” atx, so thatP[X =x] > 0, i.e.F(x_) < F(x;) =F(x), thenF(x) < u <
F(x) = F~1(u) = x. In that cas&X := F~1(U) has a point mass probability BfX = x| at
X.

4 Central limit theorem

4.1 Lemmaon m.g.f.sandc.d.f.s
4.1.1 Handout

Lemma
If X, each have c.d.fR, and m.g.f.M,, defined in] — h,h[ and there is a c.d.fF which

corresponds to m.g.f. Marldy(t) — M(t) for [t| <hthenX, B X if X has c.d.f.F.
Note: A corresponding lemma holds for characteristic fioms.

4.2 A note on Taylor series
4.2.1 Handout

Recall that we can write

@ g

gx) =Y i'(a>(x—a)i,xe]a—r,a+r[
i—o I

if g is infinitely differentiable andy™ (x) disappears "fast enough"as— o (i.e. 3A >0
s.t.gW(x) < AM.

4.3 Alemma on limits

4.3.1 Handout

If (a) is a sequence of numbers 2. 0 then lim (1-+ *&n)" = e

4.4 Central limit theorem
4.4.1 Handout

Theorem 4.1 (Central limit theorem, CLT) Let Xp,Xp,... be iid random variabIeL
such that the common moment generating functibrexists in a neighborhood of P.
Let EX = W, VX = 02 > 0 and define, := 151 | X. If

Gn(X) := P{

10



Proof. Assume thaM(t) = E[¢] exists for|t| < h. DefineY; = 2= and letY be a random
variable with the same distribution as ¥ll so the m.g.f. o¥ is

My (t) =E[e"] = E[e"] = E[" 5]
—Eleie 8 = e bE[eR] = e M ()

which exists foijt| < ho.

Now define
Z, = Xn—ll:'_l‘i§1()('_u)
o/VA o/ \/ln)
IR R
n i=1 (n)él

which exists if ——| < ho.
7

Now we use the note on Taylor series to write

<fn) S w0t

which holds ifit| < hay/(n). Recall thaMy (0) = 1, M (0) = E[Y] = 0,M{(0) = E[Y?| =1
and we can write the series as the first parts plus a remainderas

t (t/ym)® t
Mv(m—l—I—OJrl T +R<ﬂn))

11




where R is the remainder that satisfies

@ — Ol.e.

— — 0
X2 x>0 (t/\/(n))Z n—soo

[Note: We do not use the full Taylor expansion].
Next consider the limit of m.g.fs

t)" o2 2"
ImMy|{—) =Ilm |1+ —+2—
s Y(Vﬁ) L R ¢J
[ t?242 A
)
n—o0 n
- 2
. t2/2
=|lim |1+ ﬂ]
n—o0 n
wherea, is a sequence which satisfigs— 0. According to lemma we obtain
n— o0

. . 2/2
rllmo Mz(t) = et

and this holds fot € .
If Z ~n(0,1) thenMz(t) = &°/2, i.e. Mz, (t) — Mz(t) and therefor&, > Z i.e.

2

—H
a/v/n

B z~n(0,1).

We have looked at
e Almost sure convergence
e Convergence in probability
e Convergence in distribution
This is always based on a sequexgeXp, ... (not always independent) e.¥; = %Z(i =

1",
Yo 225 u=E[X]ifV [X] < o s.t.

Yn £> u
We now have
X_n—l-l D
N —Z~n(0,1)
X1, Xo,. iid
V[X] < o0

This last conclusion is obtained by looking at the momenegating function of,, where
Z0= VA

12



M(t) = E[¢”], og med Taylor-lidun:

E':exp{ LX)y i)

2
/\/E_I\/\/'\
H
+
N
7N
‘ﬂ
>
N——
N
/N
X
Q|
-
~— N
N

4.5 Slutsky’s theorem
4.5.1 Handout

Example 4.1. We know that ifX, ~ b(n, p) then g, := %o 2, p and we knowx

n
VX(1=x) is continuous so thgfpn(1— Pn) —>/p(1— p)

Also we know thatX, 2 .znjlYi whereY; ~ b(n, p) are independent angh, = Y;, so
1=

A~

pn - E[f’] 2} n(O, 1)

VVIB)
ButV[p] = M and so we can use Slutsky’s theorem to conclude
PP 20,1
p(L—p)/n

On assumptions:

13



1) When to use t-distribution?

X—u t
S/\/ﬁ n—1
if X1,..,%n ~ Nn(0,1) and are iid.
2) If nis "large"then _
X—H
% ~ n(O, l)

If X; are iid with finiteg?

Slutzky’s theorem has a series of consequences§., Xo, . .. are iid with
EX" < o

(so thato? = V[X] < «) then the meaiX, := %Z{‘lei has the property that

§< |

o/ \/_ n(O, 1)

and we also know that

‘ -

=R

Further, § -2 62 and hence, -2+ o so Slutzky’s theorem implies:

Xo—p _ Yt
S/vn S/o
0 Xa—H o
_gﬁ - —n(0,1)
——
2

Note that this implies that we can approximate probabdiGéevents such that

_ S, — S X_n—H
PG <us e Svn="

by corresponding(0, 1) probabilities, i.e.

=P|—k<

wherek = Z g.
if X; ~ n(y,0?) iid then we know that

§< |

Thi= 0/‘/_
5/\/_ \/Z. 1)(| X)2

(n—l)

14



~X2_; so that
P Y-

if K :tn_l’l_%1 holdsn.

Example 4.2. X; = {2 ,PXi=1]=p=1-P[X =0],X iid, i.e. X ~ b(1,p) iid and

=X X~ b(n IO)
We know thatn 2, n(0,1) (CLT) sincep= E[Yn]/n= pandc =V [%] = Snp(1—

/\f
p)i.e. if ph= Yn then
_ PP 2 n(0,1)
np(1-p)
o ﬁ_p ~ B . .
We could use% Z_a < s <Z apha 1 — a to obtain intervals of the formj

but since we know thapn“£> p we obtain using Slutzky’s theorem
p—p
VNp(1-p)

is continuous

25 n(0,2) @)

[more exactly:pAg p ands—

ver=
N 1 £> 1
VB(1-p)  p(1-p)

and (1) is therefore a consequence of Slutzky’s theorem]
i.e. we obtain:

Note: g(Ya) = 9(8) +¢'(8) Y22 +g'(8) % o 8% L ... so we can “approximate” Yg (Yn)]
med V(g (Ya)] = E[(9(Ya) —9(8))) ~ E [(g’( ) (Ya—6))?]

15



Example 4.3. Recall that

Vi(p—p) 2 n(0,p(1— p))

sincep’= Yo = 131, X and V[\/np| = n2EE — p(1—p).

Example 4.4 (5.5.25).Assume thafX, — )/n -2 n(0,02) andp # 0.
Consider the functiog(y) := & with ¢/ (1) = u_12 to obtain

(-3 2o

but of course we would prefer a random variable which is noretfion ofo?, e.g.:

a3,
_ \X W o2 2, n(0,1)
S/X2
and we obtain by applying a few theorems:
X Z 2 P 2 (2 2
PG Lo R s
S>o 11 S ©

1 1
Al ),
Now use Slutzki wﬂhT“ —n(0,1).

4.6 The Delta method
4.6.1 Handout

Proof. Recall Slutsky’s theorem: X, — X in distribution andZ, — a, a constant, then:
XnZn — aXin distribution, andX, + Y, — X, +ain distribution

Now, the Taylor expansion @f(Y,) aroundY, =6 is

9(Yn) =9(6) +g'(6)(Ya—6) +R

whereR is the remainder an® — 0 asY — 6. From the assumption th#t satisfies the
standard Central Limit Theorem, we ha¥g— 0 in probability, so it follows thaR — 0
in probability as well. Rearranging the terms we have:

Vvn(g(Yn) —g(8)) = d'(6)v/n(Ya—6) +R

Applying Slutsky’s theorem witb, asg’(0)/n(Y, — 6) andZ, asR, we have the right
hand side converging (0, 0%g/(6)?) .

16
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