stats2201sampling 625.2 - Samples, distributions and convergence

Gunnar Stefansson

23. september 2021

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Efnisyfirlit

1 Sampling, distributions and convergence 3
1.1 Random sample 3
1.1.1 Definition of a random sample 3
1.1.2 Handout 3
1.2 Convergence concepts and Chebychev's theorem 3
1.2.1 Handout 3
1.3 Estimators 4
1.3.1 Handout 4
1.4 Almost sure convergence 6
1.4.1 Handout 6
2 Order statistics 9
2.1 Order statistics 9
2.1.1 Handout 9
3 Random number generation 11
3.1 Continuous distributions 11
3.1.1 Handout 11
3.2 Discrete distributions 11
3.2.1 Handout 11
4 Central limit theorem 12
4.1 Lemma on m.g.f.s and c.d.f.s 12
4.1.1 Handout 12
4.2 A note on Tavlor series 12
4.2.1 Handout 12
4.3 A lemma on limits 12
4.3.1 Handout 12
4.4 Central limit theorem 12
4.4.1 Handout 12
4.5 Slutsky's theorem 15
4.5.1 Handout. 15
4.6 The Delta method 18
4.6.1 Handout 18

1 Sampling, distributions and convergence

1.1 Random sample

1.1.1 Definition of a random sample

A random sample is a collection of random variables which are independent and identically distributed (i.i.d.).

1.1.2 Handout

Definition 1.1. A collection of random variables X_{1}, \ldots, X_{n} are a random sample if they are independent and identically distributed.

Typical usage: "let X_{1}, \ldots, X_{n} be i.i.d.or "let $X_{1}, \ldots, X_{n} \sim f_{\theta}$ be i.i.d.or "let $X_{1}, \ldots, X_{n} \sim F$ be i.i.d.or "let X_{1}, \ldots, X_{n} be i.i.d. $\mathrm{n}(0,1)$ ".
In this type of usage, $\left\{f_{\theta}\right\}$ refers to a family indexed by the unknown parameter θ and F is a cumulative distribution function (c.d.f.).

1.2 Convergence concepts and Chebychev's theorem

1.2.1 Handout

Convergence concepts

Theorem 1.1 (Chebychev or Markov's inequality) Let X be a continuous random

 variable and $g \geq 0$ be a continuous function. Then for $r \geq 0$:$$
P[g(X) \geq r] \leq \frac{\mathbb{E}[g(X)]}{r}
$$

Sönnun.

$$
\begin{aligned}
\mathbb{E}[g(X)] & =\int_{-\infty}^{+\infty} g(x) f(x) d x \quad[f \text { is the density of } X] \\
& =\int_{\{x: g(x)<r\}} g(x) f(x) d x+\int_{\{x: g(x) \geq r\}} g(x) f(x) d x \\
& \geq \int_{\{x: g(x) \geq r\}} g(x) f(x) d x \quad[g \geq 0] \\
& \geq \int_{\{x: g(x) \geq r\}} r f(x) d x=r \int_{\{x: g(x) \geq r\}} f(x) d x \\
& =r P[g(X) \geq r]
\end{aligned}
$$

Where the integral over $\{x: g(x) \geq r\}$ is well defined since $\{x: g(x) \geq r\}=g^{-1}(]-\infty, r[)$ and g is continuous. Similarly for $\{x: g(x)<r\}$.

Definition 1.2. A sequence of random variables X_{1}, \ldots, converges to the random variable X in probability if $P\left[\left|X_{n}-X\right|<\varepsilon\right] \underset{n \rightarrow \infty}{\longrightarrow} 1$ is true for all $\varepsilon>0$. We write $X_{n} \xrightarrow{P} X$.

Theorem 1.2 (weak law of large numbers) If X_{1}, X_{2}, \ldots are independent and identically distributed (iid) random variables with $\mathrm{E} X_{i}=\mu$ and $\mathrm{V} X_{i}=\sigma^{2}<\infty$, then:

$$
\bar{X}_{n} \xrightarrow{P} \mu,
$$

where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Sönnun. $P\left[\left|\bar{X}_{n}-\mu\right|>\varepsilon\right] \leq \frac{\sigma^{2} / n}{\varepsilon^{2}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$ (from the Chebychev inequality).

1.3 Estimators

1.3.1 Handout

Definition 1.3. An estimator is a (measurable) function of random variables X_{1}, \ldots, X_{n}. Commonly "an estimator" is of the form $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$, where X_{1}, X_{2}, \ldots is a sequence of random variables, i.e. term "the estimator" actually refers to a sequence of estimators.
An estimator T is said to be unbiased for a parameter θ if $\mathrm{E} T_{n}=\theta$. An estimator T_{n} is said to be consistent for θ if $T_{n} \xrightarrow{P} \theta$.

Example 1.1. If X_{1}, X_{2}, \ldots are i.i.d. and $\mathrm{E} X_{i}^{4}<\infty$, then

$$
S_{n}^{2} \xrightarrow{p} \sigma^{2},
$$

where

$$
\begin{gathered}
S_{n}^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}, \\
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
\end{gathered}
$$

This is true since

$$
P\left[\left|S_{n}^{2}-\sigma^{2}\right| \geq \varepsilon\right] \leq \frac{V\left[S_{n}^{2}\right]}{\varepsilon^{2}} \xrightarrow[n \rightarrow \infty]{ } 0
$$

if $V\left[S_{n}^{2}\right] \rightarrow 0$, which holds since

$$
V\left[S^{2}\right]=\frac{1}{n}\left(\Theta_{4}-\frac{n-3}{n-1} \Theta_{2}^{2}\right) \rightarrow 0
$$

(see e.g. example in Casella and Berger.)
Recall that if the variables are also Gaussian, then

$$
W_{n}:=\frac{(n-1) S_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

so that

$$
V\left[W_{2}\right]=2(n-1)
$$

and

$$
V\left[S^{2}\right]=V\left[\frac{\sigma^{2}}{n-1} W\right]=\frac{\sigma^{4}}{(n-1)^{2}} \cdot V[W]=\frac{\sigma^{4}}{(n-1)^{2}} 2(n-1)=\frac{2 \sigma^{4}}{n-1} \rightarrow 0
$$

Theorem 1.3 If $X_{n} \xrightarrow{P} X$ and h is a continuous function, then $h\left(X_{n}\right) \xrightarrow{P} h(X)$.

The proof is left to the reader (use the definition of continuity).

Example 1.2. Toss a biased coin n times with independent tosses to obtain the random variables $X_{n} \sim b(n, p)$. Define $\hat{p}_{n}:=\frac{X_{n}}{n}$. This will have the same distribution as \bar{Y}_{n} where Y_{1}, Y_{2}, \ldots are the outomes of individual tosses and Y_{1}, Y_{2}, \ldots are i.i.d. Thus we have

$$
\hat{p}_{n} \xrightarrow{P} p,
$$

i.e. $P\left[\left|\hat{p}_{n}-p\right|>\varepsilon\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$ for all $\varepsilon>0$.

Example 1.3. $X_{n}: \underbrace{[0,1]}_{\omega} \rightarrow \mathbb{R}, X_{n}(u)=u^{n}$ and use Borel-measure on $[0,1]$, i.e. $P[[a, b]]=$ $b-a$ if $0 \leq a<b \leq 1$. Then the c.d.f. of X_{n} is given by

$$
\begin{aligned}
F_{n}(x) & =P\left[X_{n} \leq x\right]=P\left[\left\{w: X_{n}(\omega \leq x\}\right.\right. \\
& =P\left[\left\{\omega: \omega^{n} \leq x\right\}=P\left[0, x^{\frac{1}{n}}\right]=x^{\frac{1}{n}} .\right.
\end{aligned}
$$

Thus

$$
X_{n}(\omega] \underset{n \rightarrow \infty}{=} \begin{cases}0 & 0 \leq \omega<1 \\ 1 & \omega=1,\end{cases}
$$

so if we define the random variable X with

$$
X(\omega)= \begin{cases}0 & 0 \leq \omega<1 \\ 1 & \omega=1\end{cases}
$$

then obviously

$$
P\left[\left|X_{n}-X\right| \geq \varepsilon\right] \xrightarrow[n \rightarrow \infty]{1}
$$

for all $\varepsilon>0$.
Note that we do, however, have a much stronger convergence in this example since

$$
X_{n}(\omega) \rightarrow X(\omega) \text { for all } \omega \in \Omega=[0,1] .
$$

This is convergence of functions, not just convergence in probability.

1.4 Almost sure convergence

1.4.1 Handout

Definition 1.4. A sequence of random variables X_{1}, X_{2}, \ldots converges almost surely to the random variable X if

$$
P\left[\lim _{n \rightarrow \infty}\left|X_{n}-X\right|<\varepsilon\right]=1 \quad \forall \varepsilon>0
$$

Note: Recall that the random variables are functions, $X_{i}: \Omega \rightarrow \mathbb{R}$ and we can therefore write

$$
\left\{\omega \in \Omega: \lim _{n \rightarrow \infty}\left|X_{n}(\omega)-X(\omega)\right|>\varepsilon\right\}=A_{\varepsilon}
$$

We see that X_{n} converges almost surely to X if and only if $P\left[A_{\varepsilon}\right]=0$ for all $\varepsilon>0$.
We write $X_{n} \rightarrow X$ a.s.
If we define

$$
A:=\left\{\omega: X_{n}(\omega) \rightarrow X(\omega)\right\}, A_{\varepsilon}:=\left\{\omega: \lim _{n \rightarrow \infty}\left|X_{n}(\omega)-X(\omega)\right|<\varepsilon\right\}
$$

then

$$
A=\bigcap_{j=1}^{n} A_{1 / j}
$$

and we obtain

$$
\begin{align*}
P[A] & =P\left[\bigcap_{j=1}^{\infty} A_{1 / j}\right] \\
& =\lim _{j \rightarrow \infty} P\left[A_{1 / j}\right]=1 \tag{*}
\end{align*}
$$

((*): Since $A_{1_{j}}$ form a decreasing sequence of sets it is fairly easy to prove (*).) In other words, $X_{n}(\omega) \rightarrow X(\omega)$ except on a set $\omega \in A \subseteq \Omega$ which has probability zero. For this reason this type of convergence is commonly described as $X_{n} \rightarrow X$ with probability one. The following has been covered:

- $X_{n} \xrightarrow{P} X$ if $\lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right| \geq \varepsilon\right]=0$ for all $\varepsilon>0$.
- Weak law of large numbers: X_{1}, X_{2}, \ldots iid, $V X_{i}<\infty$ implies $\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mu:=$ $\mathrm{E} X_{i}$.
- h cont, $X_{n} \xrightarrow{P} X$ implies $h\left(X_{n}\right) \rightarrow h(X)$.
- Almost sure convergence: $X_{n} \rightarrow X$ a.s. if $P\left[\lim _{n \rightarrow \infty}\left|X_{n}-X\right| \geq \varepsilon\right]=0$ for all $\varepsilon>0$.
- Recall: $X_{n} \rightarrow X$ a.s. implies $X_{n} \xrightarrow{P} X$.

Theorem 1.4 (Strong law of large numbers) If X_{1}, X_{2}, \ldots are i.i.d. with

$$
\mathrm{E} X_{i}=\mu \underbrace{\mathrm{V} X_{i}=\sigma^{2}<\infty}_{\text {not needed }}
$$

and $\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, then:

$$
P\left[\lim _{n \rightarrow \infty}\left|\bar{X}_{n}-\mu\right|<\varepsilon\right]=1 \quad \forall \varepsilon>0
$$

i.e. $\bar{X}_{n} \rightarrow \mu$ a.s. [proof omitted].

Definition 1.5. If X_{1}, X_{2}, \ldots is a sequence of random variables and X is a random variable such that $F_{n}(x)=P\left[X_{n} \leq x\right]$ and $F(x)=P[X \leq x]$ satisfy $F_{n}(x) \rightarrow F(x)$ whenever F is continuous at x, then X_{n} converges to X in distribution, denoted $X_{n} \xrightarrow{D} X$.

Example 1.4. Let $X_{n} \sim b\left(n, p_{n}\right)$ where $p_{n}=\frac{\lambda}{n}$. We want to show that

$$
X_{n} \xrightarrow{D} X \sim P(\lambda)
$$

We have:
$P\left[X_{n}=x\right]=\binom{n}{x} p_{n}^{x}\left(1-p_{n}\right)^{n-x}=\frac{n!}{x!(n-x)!} \frac{\lambda^{x}}{n^{x}}\left(1-\frac{\lambda}{n}\right)^{n-x}=\frac{\lambda^{x}}{x!}\left(1-\frac{\lambda}{n}\right)^{n} \frac{n!}{n^{x}(n-x)!}$
$\left.1-\frac{\lambda}{n}\right)^{-x}$
We know that $\left(1-\frac{\lambda}{n}\right)^{n} \xrightarrow[n \rightarrow \infty]{ } e^{-\lambda}$. We also get:

$$
\frac{n!}{n^{x}(n-x)!}=\frac{n(n-1) \cdot \ldots \cdot(n-x+1)}{n^{x}}=\frac{n}{n} \cdot \frac{n-1}{n} \cdot \ldots \cdot \frac{n-x+1}{n} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

We therefore conclude that

$$
P\left[X_{n}=x\right]=\frac{\lambda^{x}}{x!}\left(1-\frac{\lambda}{n}\right)^{n} \frac{n!}{n^{x}(n-x)!}\left(1-\frac{\lambda}{n}\right)^{-x} \underset{n \rightarrow \infty}{\longrightarrow} e^{-\lambda} \frac{\lambda^{x}}{x!}=P[X=x]
$$

where $X \sim P(\lambda)$.
Since we have shown that $\lim _{n \rightarrow \infty} P\left[X_{n}=x\right]=P[X=x]$, we also see that $\lim _{n \rightarrow \infty} P\left[X_{n} \leq x\right]=P[X \leq x]$ (these are finite sums and each element converges).
It follows that the sequence X_{n} converges in distribution to X, or

$$
X_{n} \xrightarrow{D} X \sim P(\lambda) .
$$

Theorem 1.5 $X_{n} \xrightarrow{P} X \Rightarrow X_{n} \xrightarrow{D} X$ [see exercise 5.40].

Theorem 1.6 $X_{n} \xrightarrow{D} c \Rightarrow X_{n} \xrightarrow{P} c$ if $c \in \mathbb{R}$.

Copyright 2021, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

2 Order statistics

2.1 Order statistics

2.1.1 Handout

Suppose X_{1}, \ldots, X_{n} are i.i.d., i.e. are a random sample.

Definition 2.1. Define the random variable $X_{(n)}:=\max \left\{X_{1}, \ldots, X_{n}\right\}$.

Note 2.1. Sometimes (n) is defined as the random variable which corresponds to the largest element in $\left(X_{1}, \ldots, X_{n}\right)$.

Definition 2.2. We define $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ to be be the n order statistics of the random sample X_{1}, \ldots, X_{n}.

Note: Formally, since each random variable is really a function, these new variables need to be defined as new functions...

Example 2.1. If $X_{i} \sim U(0,1)$ then we have for $0 \leq \omega \leq 1$:

$$
\begin{aligned}
P\left[X_{(n)} \leq \omega\right] & =P\left[X_{1} \leq \omega_{1}, \ldots, X_{n} \leq \omega\right] \\
& =P\left[X_{1} \leq \omega\right]^{n} \quad(\text { iid }) \\
& =\omega^{n} \xrightarrow[n \rightarrow \infty]{ } \begin{cases}0 & 0 \leq \omega<1 \\
1 & \omega=1\end{cases}
\end{aligned}
$$

so that $X_{(n)} \xrightarrow{D} X$ with $P[X=1]=1$, i.e. $X_{(n)} \xrightarrow{D} 1$, and it follows that

$$
P[X \leq x]= \begin{cases}0 & x<1 \\ 1 & x \geq 1\end{cases}
$$

Note:

$$
\begin{aligned}
P\left[X_{(1)} \leq \omega\right] & =1-P\left[X_{(1)}>\omega\right]=1-P\left[X_{1}>\omega\right]^{n} \\
& =1-(1-w)^{n} \xrightarrow[n \rightarrow \infty]{ } \begin{cases}0 & \omega=0 \\
1 & 0<\omega \leq 1\end{cases}
\end{aligned}
$$

so that $X_{(1)} \xrightarrow{D} 0$.

We also obtain:

$$
\begin{aligned}
P\left[\left|X_{(n)}-1\right| \leq \varepsilon\right] & =P\left[1-\varepsilon \leq X_{(n)} \leq 1+\varepsilon\right] \\
& =P\left[X_{(n)} \geq 1-\varepsilon\right]=1-P\left[X_{(n)} \leq 1-\varepsilon\right] \\
& =1-(1-\varepsilon)^{n} \xrightarrow[n \rightarrow \infty]{ }
\end{aligned}
$$

if $0<\varepsilon<1$, and hence $X_{(n)} \xrightarrow{P} X$. We have $X_{(n)}^{\prime} \xrightarrow{D} 1$ and $X_{(n)} \xrightarrow{P} 1$.
The density of $X_{(n)}$ is given by

$$
\begin{aligned}
f_{n}(x) & =F_{n}^{\prime}(x)=\frac{d}{d x} F(x)^{n} \\
& =n f(x) F(x)^{n-1}=n x^{n-1} I_{[0,1]}(x) .
\end{aligned}
$$

The expected value of $X_{(n)}$ is therefore

$$
\mathrm{E} X_{(n)}=\int_{0}^{1} x n x^{n-1} d x=\ldots=\frac{n}{n+1} \underset{n \rightarrow \infty}{ } 1
$$

and the variance is obtained by first evaluating

$$
E\left[X_{(n)}^{2}\right]=\int_{0}^{1} x^{2} n x^{n-1} d x=\ldots=\frac{n}{n+2}
$$

from which we see that

$$
\mathrm{V}\left[X_{(n)}\right]=\frac{n}{n+2}-\left(\frac{n}{n+1}\right)^{2}=\frac{n}{(n+1)^{2}(n+2)},
$$

i.e. $\mathrm{V}\left[X_{(n)}\right]$ "behaves like" $\frac{1}{n^{2}}$.

Since $X_{(n)}$ converges to 1 in distribution and the standard deviation behaves like $1 / n, \mathrm{i}$ is of interest to see what happens to the distribution of the random variable $\frac{X_{(n)}-1}{1 / n}$ or simply $n\left(1-X_{(n)}\right)$. We would expect this transformed random variable to have (approximately) mean zero and variance one, so it should converge to a proper non-constant random variable.
We obtain:

$$
P\left[n\left(1-X_{(n)}\right) \leq t\right] \underset{n \rightarrow \infty}{\longrightarrow} 1-e^{-t}
$$

(this is a popular exam question).
Copyright 2021, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

3 Random number generation

3.1 Continuous distributions

3.1.1 Handout

Let $U \sim U(0,1)$. If F is increasing, continuous and

$$
\begin{aligned}
& 0 \leq F(x) \leq 1, x \in \mathbb{R} . \\
& F(x) \xrightarrow[x \rightarrow \infty]{ } \\
& F(x) \\
& \underset{x \rightarrow 0}{\longrightarrow}
\end{aligned}
$$

and we set

$$
Y:=F^{-1}(U)
$$

then we see that

$$
P[Y \leq y]=P\left[F^{-1}(U) \leq y\right]=P[U \leq F(y)]=F(y)
$$

so that $Y \sim F$.

Example 3.1 (Example of usage). If $U \sim U(0,1)$ and

$$
\underbrace{\Phi(x)}_{\text {pnorm(x)inR }}:=\int_{-\infty}^{\infty} \underbrace{\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}}_{\text {dnorm(t) }} d t
$$

then

$$
\Phi^{-1}(U) \sim \underbrace{n(0,1)}_{\text {morm }(1) \text { in } \mathrm{R}}
$$

Note: Recall that we can write

$$
g(x)=\sum_{i=0}^{\infty} \frac{g^{(i)}(a)}{i!}(x-a)^{i}, \quad x \in(a-r, a+r)
$$

if g if infinitely differentiable and $g^{(n)}(x)$ disappears "fast enough" as $n \rightarrow \infty$ [specifically $\exists A>0$ s.t. $\left.g^{(n)}(x) \leq A^{n} \forall n\right]$.

3.2 Discrete distributions

3.2.1 Handout

Discrete distributions:

Define $F^{-1}(u):=\inf \{x: F(x) \geq u\}$ and note that if F is a c.d.f. then F is continuous from the right so the infimum is a minimum.
Suppose F "jumps" at x, so that $P[X=x]>0$, i.e. $F\left(x_{-}\right)<F\left(x_{+}\right)=F(x)$, then $F(x)<u \leq$ $F(x) \Rightarrow F^{-1}(u)=x$. In that case $X:=F^{-1}(U)$ has a point mass probability of $P[X=x]$ at x.
Copyright 2021, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

4 Central limit theorem

4.1 Lemma on m.g.f.s and c.d.f.s

4.1.1 Handout

Lemma

If X_{n} each have c.d.f. F_{n} and m.g.f. M_{n}, defined in $]-h, h[$ and there is a c.d.f. F which corresponds to m.g.f. M and $M_{n}(t) \underset{n \rightarrow \infty}{\rightarrow} M(t)$ for $|t|<h$ then $X_{n} \xrightarrow{D} X$ if X has c.d.f. F.
Note: A corresponding lemma holds for characteristic functions.

4.2 A note on Taylor series

4.2.1 Handout

Recall that we can write

$$
\left.g(x)=\sum_{i=0}^{\infty} \frac{g^{(i)}(a)}{i!}(x-a)^{i}, x \in\right] a-r, a+r[
$$

if g is infinitely differentiable and $g^{(n)}(x)$ disappears "fast enough"as $n \rightarrow \infty$ (i.e. $\exists A>0$ s.t. $\left.g^{(n)}(x) \leq A^{n}\right)$.

4.3 A lemma on limits

4.3.1 Handout

If $\left(a_{n}\right)$ is a sequence of numbers s.t. $a_{n} \rightarrow 0$ then $\lim _{n \rightarrow \infty}\left(1+\frac{x+a_{n}}{n}\right)^{n}=e^{x}$

4.4 Central limit theorem

4.4.1 Handout

Theorem 4.1 (Central limit theorem, CLT) Let X_{1}, X_{2}, \ldots be iid random variables such that the common moment generating function M exists in a neighborhood of 0 . Let $\mathrm{E} X_{i}=\mu, \mathrm{V} X_{i}=\sigma^{2}>0$ and define $\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. If

$$
G_{n}(x):=P\left[\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq x\right]
$$

then

$$
\lim _{n \rightarrow \infty} G_{n}(x)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

i.e. if $Z \sim n(0,1)$ then

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \xrightarrow{D} Z .
$$

Proof. Assume that $M(t)=E\left[e^{t X}\right]$ exists for $|t|<h$. Define $Y_{i}=\frac{X_{i}-\mu}{\sigma}$ and let Y be a random variable with the same distribution as all Y, so the m.g.f. of Y is

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right]=E\left[e^{t Y_{i}}\right]=E\left[e^{t \frac{X_{1}-\mu}{\sigma}}\right] \\
& =E\left[e^{\frac{t}{\sigma} X_{1}} e^{-\frac{\mu}{\sigma} t}\right]=e^{-t \frac{\mu}{\sigma}} E\left[e^{\frac{t}{\sigma} X_{1}}\right]=e^{-t \frac{\mu}{\sigma}} M\left(\frac{t}{\sigma}\right)
\end{aligned}
$$

which exists for $|t|<h \sigma$.
Now define

$$
\begin{aligned}
Z_{n}:=\frac{X_{n}-\mu}{\sigma / \sqrt{n}} & =\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma / \sqrt{(n)}} \\
& =\frac{\sqrt{(n)}}{n} \sum_{i=1}^{n}=\frac{1}{\sqrt{(n)}} \sum_{i=1}^{n} Y_{i}
\end{aligned}
$$

Next look at the m.g.f of Z_{n}

$$
\begin{aligned}
M_{Z_{n}}(t) & =E\left[e^{\left.\frac{t}{\sqrt{(n)}} \sum_{i=1}^{n} Y_{i}\right]}\right. \\
& =E\left[e^{\frac{t}{\sqrt{(n)}} Y_{1}} e^{\frac{t}{\sqrt{(n)}} Y_{2}} \ldots e^{\frac{t}{\sqrt{(n)}} Y_{n}}\right] \\
& =\prod_{i=1}^{n} E\left[e^{\frac{t}{\sqrt{(n)}}} Y_{i}\right] \\
& =\left(E\left[e^{\frac{t}{\sqrt{(n)}} Y_{1}}\right]\right)^{n} \\
& =M_{Y}\left(\frac{t}{\sqrt{(n)}}\right)^{n}
\end{aligned}
$$

which exists if $\left|\frac{t}{\sqrt{(n)}}\right|<h \sigma$.
Now we use the note on Taylor series to write

$$
M_{Y}\left(\frac{t}{\sqrt{(n)}}\right)=\sum_{k=1}^{\infty} M_{Y}^{k}(0) \frac{\left(t / \sqrt{(n))^{k}}\right.}{k!}
$$

which holds if $|t|<h \sigma \sqrt{(} n)$. Recall that $M_{Y}(0)=1, M_{T}^{\prime}(0)=E[Y]=0, M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=$ 1 and we can write the series as the first parts plus a remainder such as

$$
M_{Y}\left(\frac{t}{\sqrt{(n)}}=1+0+1 \frac{(t / \sqrt{(n)})^{2}}{t!}+R\left(\frac{t}{\sqrt{(n)}}\right)\right.
$$

where R is the remainder that satisfies

$$
\frac{R(x)}{x^{2}} \underset{x \rightarrow 0}{\rightarrow} 0 \text { i.e. } \frac{t}{\left(t / \sqrt{(n))^{2}}\right.} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

[Note: We do not use the full Taylor expansion].

Next consider the limit of m.g.fs

$$
\begin{aligned}
\lim _{n \rightarrow \infty} M_{Y}\left(\frac{t}{\sqrt{n}}\right)^{n} & =\lim _{n \rightarrow \infty}\left[1+\frac{t^{2}}{2 n}+2 \frac{2}{\sqrt{n}}\right]^{n} \\
& =\lim _{n \rightarrow \infty}\left[1+\frac{t^{2} / 2+2 n(t / \sqrt{n})}{n}\right]^{n} \\
& =\lim _{n \rightarrow \infty}\left[1+\frac{t^{2} / 2+a_{n}}{n}\right]^{2}
\end{aligned}
$$

where a_{n} is a sequence which satisfies $a_{n} \rightarrow 0$. According to lemma we obtain

$$
\lim _{n \rightarrow \infty} M_{Z}(t)=e^{t^{2} / 2}
$$

and this holds for $t \in \mathcal{R}$.
If $Z \sim n(0,1)$ then $M_{Z}(t)=e^{t^{2} / 2}$, i.e. $M_{Z_{n}}(t) \rightarrow M_{Z}(t)$ and therefore $Z_{n} \xrightarrow{D} Z$ i.e.

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{D} Z \sim n(0,1)
$$

We have looked at

- Almost sure convergence
- Convergence in probability
- Convergence in distribution

This is always based on a sequence X_{1}, X_{2}, \ldots (not always independent) e.g.

$$
\begin{gathered}
Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
Y_{n} \xrightarrow{\text { a.s. }} \mu=\mathrm{E}\left[X_{i}\right]
\end{gathered}
$$

if

$$
\mathrm{V}\left[X_{i}\right]<\infty
$$

such that

$$
Y_{n} \xrightarrow{P} \mu
$$

We now have

$$
\begin{aligned}
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{\mathcal{D}} & Z \sim n(0,1) \\
& X_{1}, X_{2}, \ldots \mathrm{iid} \\
& V\left[X_{i}\right]<\infty
\end{aligned}
$$

This last conclusion was obtained by looking at the moment generating function of Z_{n}, where

$$
Z_{n}=\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma} .
$$

$$
\begin{align*}
M(t) & =\mathrm{E}\left[e^{t X}\right] \\
& =\mathrm{E}\left[1+\frac{t X}{1!}+\frac{t X^{2}}{2!}+\cdots\right] \\
M_{Z_{n}}(t) & =\mathrm{E}\left[\exp \left[t \sqrt{n} \frac{\overline{X_{n}}-\mu}{\sigma}\right]\right] \\
& =\mathrm{E}\left[\exp \left[t \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma}\right]\right] \\
& =\mathrm{E}\left[\prod_{i=1}^{n} \exp \left[t \frac{1}{\sqrt{n}} \frac{X_{i}-\mu}{\sigma}\right]\right] \\
& =\left(\mathrm{E}\left[\exp \left[t \frac{1}{\sqrt{n}} \frac{X-\mu}{\sigma}\right]\right]\right)^{n} \tag{iid}\\
& =\left(\mathrm{E}\left[1+\frac{1}{1!}\left(\frac{t}{\sqrt{n}} \frac{X-\mu}{\sigma}\right)+\frac{1}{2!}\left(\frac{t}{\sqrt{n}} \frac{X-\mu}{\sigma}\right)^{2}+\cdots\right]\right)^{n} \\
& \approx\left(\mathrm{E}\left[1+\frac{1}{2!}\left(\frac{t}{\sqrt{n}}\right)^{2}\left(\frac{X-\mu}{\sigma}\right)^{2}\right]\right)^{n} \\
& =\left(1+\frac{t^{2}}{2 n} \cdot 1\right)^{n} \frac{X^{2}}{n \rightarrow \infty} e^{\frac{t^{2}}{2}}
\end{align*}
$$

4.5 Slutsky's theorem

4.5.1 Handout

Theorem 4.2 (Slutzky) If

$$
X_{n} \xrightarrow{\mathcal{D}} X \text { og } Y_{n} \xrightarrow{\mathcal{P}} a
$$

then

$$
X_{n} Y_{n} \xrightarrow{\mathcal{D}} a X \text { og } X_{n}+Y_{n} \xrightarrow{\mathcal{D}} a+X
$$

Example 4.1. We know that if $X_{n} \sim b(n, p)$ then

$$
\hat{p}_{n}:=\frac{X_{n}}{n} \xrightarrow{\mathcal{D}} p
$$

and we know that the function

$$
x \mapsto \sqrt{x(1-x)}
$$

is continuous so that

$$
\sqrt{\hat{p}_{n}\left(1-\hat{p}_{n}\right)} \xrightarrow{p} \sqrt{p(1-p)}
$$

We also know that X_{n} can be written as a sum

$$
X_{n} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{n} Y_{i}
$$

where Y_{i} are independent and Bernoulli, $Y_{i} \sim b(1, p)$ i.i.d. and \hat{p}_{n} therefore has the same distribution as an average,

$$
\hat{p}_{n} \stackrel{\mathcal{D}}{=} \frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

so

$$
\frac{\hat{p}_{n}-E[\hat{p}]}{\sqrt{V[\hat{p}]}} \xrightarrow{\mathcal{D}} n(0,1)
$$

But $V[\hat{p}]=\frac{p(1-p)}{n}$ and so we can use Slutsky's theorem to conclude

$$
\frac{\hat{p}_{n}-p}{\sqrt{\hat{p}(1-\hat{p}) / n}} \xrightarrow{\mathcal{D}} n(0,1)
$$

On assumptions:

1) When should we use t-distribution?

$$
\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \sim t_{n-1}
$$

This holds exactly if $X_{1}, . ., X_{n} \sim n\left(\mu, \sigma^{2}\right)$, iid.
2) But if n is "large"then this still holds as an approximation, based on combining the CLT and Slutzky's theorem:

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim \dot{\sim} n(0,1)
$$

Here we just need X_{i} iid with finite σ^{2} - we do not need the original random variables to be Gaussian.
Slutzky's theorem has a series of consequences. If X_{1}, X_{2}, \ldots are iid with

$$
\mathrm{E}\left[X^{2}\right]<\infty
$$

(so that $\sigma^{2}=V[X]<\infty$) then the mean $\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ has the property that

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{\mathcal{D}} n(0,1)
$$

and we also know that

$$
\mathrm{S}_{n}^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

Further, $S_{n}^{2} \xrightarrow{\mathcal{P}} \sigma^{2}$ and hence $S_{n} \xrightarrow{\mathcal{P}} \sigma$ so Slutzky's theorem implies:

$$
\begin{aligned}
\frac{\bar{X}_{n}-\mu}{\mathrm{S}_{n} / \sqrt{n}} & =\frac{\sqrt{n} \frac{\bar{x}_{n}-\mu}{\sigma}}{\mathrm{S}_{n} / \sigma} \\
& =\underbrace{\frac{\sigma}{\mathrm{S}_{n}} \sqrt{n}}_{\xrightarrow{\mathcal{P}} 1} \frac{\bar{X}_{n}-\mu}{\sigma} \xrightarrow{\mathcal{D}} n(0,1) .
\end{aligned}
$$

Note that this implies that we can approximate probabilities of events such that

$$
\mathrm{P}\left[\bar{X}_{n}-\kappa \frac{\mathrm{S}_{n}}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+\kappa \frac{\mathrm{S}_{n}}{\sqrt{n}}\right]=\mathrm{P}\left[-\kappa \leq \frac{\bar{X}_{n}-\mu}{\mathrm{S}_{\mathrm{n}} / \sqrt{n}} \leq \kappa\right]
$$

by corresponding $n(0,1)$ probabilities, i.e.

$$
\mathrm{P}\left[\bar{X}_{n}-\kappa \frac{\mathrm{S}_{n}}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+\kappa \frac{\mathrm{S}}{\sqrt{n}}\right] \approx 1-\alpha
$$

where $\kappa=z_{1-\frac{\alpha}{2}}$. This is an approximation.
Finally, if $X_{i} \sim n\left(\mu, \sigma^{2}\right)$ iid already know that

$$
T_{n}:=\frac{\bar{X}_{n}-\mu}{\mathrm{S} / \sqrt{n}}=\frac{\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} /(n-1)}}
$$

and $\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$ so that

$$
P\left[\bar{X}_{n}-\kappa \frac{\mathrm{S}}{\sqrt{n}} \leq \mu \leq \bar{X}_{n}+\kappa \frac{\mathrm{S}}{\sqrt{n}}\right]=1-\alpha
$$

where $\kappa=t_{n-1,1-\frac{\alpha}{2}}$. This is exact but requires the assumption of normality of the data.

Example 4.2. $X_{i}=\left\{\begin{array}{ll}0 \\ 1\end{array} \quad, P\left[X_{i}=1\right]=p=1-P\left[X_{i}=0\right], X_{i}\right.$ iid, i.e. $X_{i} \sim b(1, p)$ iid and $Y_{n}:=\sum_{i=1}^{n} X_{i} \sim b(n, p)$.

We know that $\frac{\frac{1}{\frac{1}{Y}} Y_{n}-\mu}{\sigma / \sqrt{n}} \xrightarrow{\mathcal{D}} n(0,1)(\mathrm{CLT})$ since $\mu=\mathrm{E}\left[Y_{n}\right] / n=p$ and $\sigma=\mathrm{V}\left[\frac{Y_{n}}{n}\right]=\frac{1}{n^{2}} n p(1-$ p) i.e. if $\hat{p}_{n}=\frac{1}{n} Y_{n}$ then

$$
\frac{\hat{p}-p}{\sqrt{n p(1-p)}} \xrightarrow{\mathcal{D}} n(0,1)
$$

We could use $\mathrm{P}\left[-z_{1-\frac{\alpha}{2}} \leq \frac{\hat{p}-p}{\sqrt{n p(1-p)}} \leq z_{1-\frac{a l p h a}{2}}\right] \approx 1-\alpha$ to obtain intervals of the form

$$
\mathrm{P}\left[f_{1}(\hat{p}) \leq p \leq f_{2}(\hat{p})\right] \approx 1-\alpha,
$$

but since we know that $\hat{p}_{n} \xrightarrow{P} p$ we obtain using Slutzky's theorem

$$
\begin{equation*}
\frac{\hat{p}-p}{\sqrt{n \hat{p}(1-\hat{p})}} \xrightarrow{\mathcal{D}} n(0,1) \tag{1}
\end{equation*}
$$

[more exactly: $\hat{p} \xrightarrow{P} p$ and $s \mapsto \frac{1}{\sqrt{s(1-s)}}$ is continuous

$$
\Rightarrow \frac{1}{\sqrt{\hat{p}(1-\hat{p})}} \stackrel{P}{\rightarrow} \frac{1}{\sqrt{p(1-p)}}
$$

and (1) is therefore a consequence of Slutzky's theorem] i.e. we obtain:

$$
\mathrm{P}\left[\hat{p}-z_{1-\frac{\alpha}{2}} \sqrt{n \hat{p}(1-\hat{p})} \leq p \leq \hat{p}+z_{1-\frac{\alpha}{2}} \sqrt{n \hat{p}(1-\hat{p})}\right] \approx 1-\frac{\alpha}{2}
$$

4.6 The Delta method

4.6.1 Handout

Theorem 4.3 (Delta method, (5.5.24)) Let $Y_{1}, Y_{2} \ldots$ be a sequence of random variables such that

$$
\sqrt{n}\left(Y_{n}-\theta\right) \xrightarrow{\mathcal{D}} n\left(0, \sigma^{2}\right)
$$

and assume that g is a function such that $g^{\prime}(\theta) \neq 0$. Then:

$$
\sqrt{n}\left(g\left(Y_{n}\right)-g(\theta)\right) \xrightarrow{\mathcal{D}} n\left(0,\left(g^{\prime}(\theta)\right)^{2} \sigma^{2}\right) .
$$

Note: $g\left(Y_{n}\right)=g(\theta)+g^{\prime}(\theta) \frac{Y_{n}-\theta}{1!}+g^{\prime \prime}(\theta) \frac{\left(Y_{n}-\theta\right)^{2}}{2!}+\cdots$ so we can "approximate" $\mathrm{V}\left[g\left(Y_{n}\right)\right]$ með $\mathrm{V}\left[g\left(Y_{n}\right)\right]=\mathrm{E}\left[\left(g\left(Y_{n}\right)-g(\theta)\right)^{2}\right] \approx \mathrm{E}\left[\left(g^{\prime}(\theta)\left(Y_{n}-\theta\right)\right)^{2}\right]$

Example 4.3. Recall that

$$
\sqrt{n}(\hat{p}-p) \xrightarrow{\mathcal{D}} n(0, p(1-p))
$$

since

$$
\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and

$$
\mathrm{V}[\sqrt{n} \hat{p}]=n \frac{p(1-p)}{n}=p(1-p)
$$

This can now be used to derive the properties of the arc sine square root transformation

$$
\arcsin \sqrt{\hat{p}} \xrightarrow{\mathcal{D}} ?
$$

Example 4.4 (5.5.25). Assume that $\left(\bar{X}_{n}-\mu\right) \sqrt{n} \xrightarrow{\mathcal{D}} n\left(0, \sigma^{2}\right)$ and $\mu \neq 0$.
Consider the function $g(\mu):=\frac{1}{\mu}$ with $g^{\prime}(\mu)=\frac{1}{\mu^{2}}$ to obtain

$$
\sqrt{n}\left(\frac{1}{\bar{X}_{n}}-\frac{1}{\mu}\right) \xrightarrow{\mathcal{D}} n\left(0, \frac{\sigma^{2}}{\mu^{4}}\right)
$$

but of course we would prefer a random variable which is not a function of σ^{2}, e.g.:

$$
\frac{\sqrt{n}\left(\frac{1}{\bar{X}_{n}}-\frac{1}{\mu}\right)}{S_{n} / \bar{X}_{n}^{2}} \xrightarrow{\mathcal{D}} n(0,1)
$$

and we obtain by applying a few theorems:

$$
\left\{\begin{array} { l }
{ \overline { X } _ { n } \xrightarrow { P } \mu } \\
{ S _ { n } \xrightarrow { P } \sigma }
\end{array} \Rightarrow \left\{\begin{array}{l}
\bar{X}_{n}^{2} \xrightarrow{P} \mu^{2} \\
\frac{1}{S_{n}} \xrightarrow{P} \frac{1}{\sigma}
\end{array} \quad \Rightarrow \frac{\bar{X}_{n}^{2}}{S_{n}} \xrightarrow{P} \frac{\mu^{2}}{\sigma} .\right.\right.
$$

This included using Slutzki with

$$
\frac{\sqrt{n}\left(\frac{1}{\bar{X}_{n}}-\frac{1}{\mu}\right)}{\sigma / \mu^{2}} \xrightarrow{\mathcal{D}} n(0,1) .
$$

Sönnun. Recall Slutsky's theorem: If $X_{n} \rightarrow X$ in distribution and $Z_{n} \rightarrow a, a$ constant, then: $X_{n} Z_{n} \rightarrow a X$ in distribution, and $X_{n}+Y_{n} \rightarrow X_{n}+a$ in distribution

Now, the Taylor expansion of $g\left(Y_{n}\right)$ around $Y_{n}=\theta$ is

$$
g\left(Y_{n}\right)=g(\theta)+g^{\prime}(\theta)\left(Y_{n}-\theta\right)+R
$$

where R is the remainder and $R \rightarrow 0$ as $Y \rightarrow \theta$. From the assumption that Y_{n} satisfies the standard Central Limit Theorem, we have $Y_{n} \rightarrow \theta$ in probability, so it follows that $R \rightarrow 0$ in probability as well. Rearranging the terms we have:

$$
\sqrt{n}\left(g\left(Y_{n}\right)-g(\theta)\right)=g^{\prime}(\theta) \sqrt{n}\left(Y_{n}-\theta\right)+R
$$

Applying Slutsky's theorem with X_{n} as $g^{\prime}(\theta) \sqrt{n}\left(Y_{n}-\theta\right)$ and Z_{n} as R, we have the right hand side converging to $n\left(0, \sigma^{2} g^{\prime}(\theta)^{2}\right)$.

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

