STATS240.1 A shortcourse in R

Gunnar Stefansson, Asta Jenny Sigurdardottir and LorneiTay

October 17, 2012

Copyright This work is licensed under the Creative Commons AttritluBhareAlike License. To view a copy of
this license, visit http://creativecommons.org/licesibg-sa/1.0/ or send a letter to Creative Commons, 559 Natha

Abbott Way, Stanford, California 94305, USA.

ACKNOWLEDGEMENTS

This course has been developed in part as
has been taught at the Univ. Iceland Dept.
of Biology http://www:.hi.is

Contents

1

Introduction and installation
1.1 ADBOULR . . .
1.2 Introduction e
1.3 Documentation
1.4 WorkingwithR
Introduction to data analysis in R
2.1 Startingup e e e
2.2 Beforeyoubegin e
2.3 Datavectorsin R
2.4 Deletingandlistingobjects L
2.5 Enteringdataintoafile e
2.6 ReadingdataintoR
2.7 DatasummarieSinR
2.8 RandomnumbersinR
2.9 SimpledataplotsinR e
2.10 Randemacs i
Command files
3.1 Repeatedcommands e e,
3.2 Commandfiles
3.3 Runningcommandsstoredinafile oL
3.4 Batchruns
Functions in R
4.1 Introductiontofunctionsin R e
4.2 Functionsincommandfiles e
4.3 Plotting functions e e
4.4 Runcommands e
Statistical models
5.1 Linearstatisticalmodels e
5.2 Nonlinear statisticalmodels e

© O o o O

10
11
12
13
13
14

17
17
17
18
18

19
19
19
20
21

5.3 Miscellaneous statisticalmodels
5.4 Furtherreading
6 Data structuresin R

6.1 MeCtors e
6.2 Namingvectorelements e
6.3 Indexingvectors
6.4 Arraysandmatrices e
6.5 Indexingarraysandmatrices i
6.6 Namesofrowsandcolumns
6.7 LiStS . . .
6.8 Dataframes

7 Advanced data manipulation in R

7.1 Tabularsummariesin R e

7.2 Frequency tables

7.3 Rowandcolumnsummaries i e e e e
7.4 Operationsondatacolumns e
7.5 Othertabular functions e e

8 Plotting with R
8.1 Somecommonplotcommands
8.2 Moreplotcommands
9 Programming R
9.1 Theifstatement e
9.2 Loops-for e e
9.3 Storingloopresults e e
9.4 Loops-while

10 Further reading

10.1 Reading material

27
27
27
28
28
29
30
30
31

36
36
36
37
38
38

40
40
41

43
43
43
44
45

47

1 Introduction and installation

1.1 AboutR

A general purpose statistical package
e Datahandling
e Visualization
e Linear models
e Other models

e Bioinformatics/molecular
biology
(http://www.bioconductor.org)

e Population dynamics (Epoc,
FLR, Gadget stuff)

e Financial mathematics
e Simulation, bootstrapping etc

e General programming

The R package is free software, copyrighted by the GNU GéReitalic License.
It can be obtained from the R project web page: http://wwwaject.org/ as a binary or source code.
Installation should be a trivial exercise.

Note that R is available for most operating system. The falionotes emphasize running R under
Linux, but the differences only appear when R connects tmfierating system (e.g. through reading
data files).

R is an open source extensible general purpose statisdcébge. It can thus be used for simple and
elaborate data analysis, and R excels at visualization.

Several web pages are dedicated to R. These include the &phgmepage, http://www.r-project.org.

Since R is extensible and has its own programming langueggmniin principle be used for any arbitrary
computations.

Many scientific fields have chosen R as the primary tool. Tlsar for this is the combination of
extensibility with access to a large collection of toolstsas statistical and plotting routines.

In fishery science, Epoc is an ecosystem simulator and FLRyenaral stock assessment tool, both
written in R. Output from the ecosystem toolbox Gadget diti@nally analysed using R and a simulator
has been written in R to generate simple versions of Gadgatlptions. R has also been used to
simulate the effects of management measures such as meosteetpd areas etc.

Statistics in molecular biology is a field which extensiveges R and has a large web site dedicated to
using R for the analysis of data on gene expression as weégswany other uses. It is even possible
to find an interesting DNA-sequence and use R to find abstcdqgtsiblications which refer to this
sequence.

Statistical models in R include the usual linear models l&a anclude nonlinear models along with
models with error structures other than Gaussian, e.g.rgkred linear models (GLMs), generalized
additive models (GAMS) etc.

Naturally R has simulation routines and can generate randambers from all sorts of distributions.
Combined with the programming environment this makes R seéted as a simulation tool. In this case
R is also easily implemented on computer clusters wherelations are commonly run in parallel on

dozens of computers simultaneously.

1.2 Introduction

Obtain R from http://www.r-project.org/
Read instructions and install

The R package is free software, copyrighted by the GNU GéReitalic License.
It can be obtained from the R project web page: http://wwwaject.org/ as a binary or source code.
Installation should be a trivial exercise.

Note that R is available for most operating system. The falonotes emphasize running R under
Linux, but the differences only appear when R connects tmflerating system (e.g. through reading
data files).

1.3 Documentation

See http://cran.r-project.org/manuals.html
or various books on R.

The R project home page contains several manuals and linksrtftter material (see http://cran.r-
project.org/manuals.html or various books on R).

Documentation on Splus is also applicable to R as most cordgane exactly the same.

1.4 Working with R

Emacs editor

Command file

Edit commands R graphics window

=

Edit data

(Interactive R)
R session (shell window)
> date-read able
summary(imi
S
i

Data file

LaTeX report

R graphics file
includegraphics .

include...

N/

Although R can be used in many environments, by far the mastymtive way to use R is by running
R under Linux, using emacs for editing command files and uisaigeX for all word processing.

The details of how analyses are undertaken and how repastiigne will vary. However, in order to
work in a structured and organized manner it is essentiagéépka record of the commands used in the
analysis. Hence command files are needed to store commabdsdeused.

Similarly, graphical output is best stored in files ratharttonly viewed on-screen. Thus, normally
plots are first generated interactively on-screen and, lasethe proper plots appear, these get stored in
file. Commands to generate the plots are also stored in filgshas it is possible to revisit the entire
analysis at a later stage.

Command files are used to keep a record of work and to storadrely-used commands. For exam-
ple, when developing models, the approach is to first dewalogels interactively until an appropriate
model is found. Then the corresponding commands are stor@(ile so as to provide a record of pre-
cisely which model was used. Similarly, often-complex inppmmands are stored in files. A “source”
command is used to execute the commands in the file. Thereweatreasons for this:

e Avoiding repetition

e Typographical errors are minimized

e Aformalrecord is kept of the commands used
Similarly, graphical output is best stored in graphics filagher than only viewed on-screen. Thus,
normally plots are first generated interactively on-scraea later, as the proper plots appear, these get

stored in file. Commands to generate the plots are also sitofiels and thus it is possible to revisit the
entire analysis at a later stage.

R users shouldever use copy and paste to take a plot from a plotting window intaedvprocessor.
There are simply much better ways to do this. R can generatipla wide variety of different formats
and these are best stored in files once the plot is consideraglete and the word processor is then
asked to use the plot in the file.

An experienced R user will always have a complete recordwfdwery plot was generated: A command
file will exist to show exactly how the plot was made and plaiced plot file. The word processing file
will contain a link to the plot in a plot file.

References
The R project on-line manuals http://cran.r-project.orghuals.html

%T An Introduction to R %A W. N. Venables, D. M. Smith %D 2002 #é¢twork Theory Ltd. %P
156pp ISBN: 0954161742

%T Introductory Statistics with R %A Peter Dalgaard %D 2002%ringer-Verlag %P 288pp ISBN:
0387954759

2 Introduction to data analysis in R

2.1 Starting up

Linux: Enter "R" at the shell prompt
Windows: Find R in the startup menu

Under Linux, start up a command (shell) window and then dieecommand "R" (note the upper case).
Under Windows, find R in the startup menu or as an icon somex(eeg. on the desktop).

R will then start up and wait for the user to enter commands.

2.2 Before you begin

“>"is the R prompt
Comments are marked with #

To get detailed information about a func-
tion, type:

> help(“function name")
Notice that most R commands are actually

calls tofunctions which implies that they
are followed by parentheses.

The prompt from R is “>", which means that R is ready to accemiramand from the user. If you type
in examples from the text be sure to omit the prompt character
Comments are marked with #

To get detailed information about a function, type:

> help(“function name")

R is normally command-orientated. This means that R exjBetaser to type in a command from the
keyboard, rather than clicking with the mouse at buttonsairous places on the screen.

These commands are entered at the R command prompt (or st@@umand files). When a command
has been given it is possible to re-run the same command by tre arrow keys to "back up" through
the command history and hit enter at the command to be relrigmalso possible to edit the commands
in the history list and run the modified command. This is theoremended method of running R
interactively.

In particular, the user shouldever enter a complex command twice Rather, the previously run
version should simply be edited. This greatly reduces thbaility of new errors being entered.

R in Linux

Under Linux it is customary to begin in a command (shell) vawd This can normally be started up
by right-clicking on the background and selecting the apgede item, or manually firing up gnome-
terminal (better than xterm).

This Linux command window is now ready to accept any commdrata the user. Usually this is
indicates by a dollar-sign. For example one can give the canatils” to list files, “mkdir newdir” to

create a new directory (folder) etc. Select a directory fovdRk and go to that directory, for example:

cd

mkdir test
cd test
mkdir R
cd R

©hH BH BH BH LH

The next step is to start up emacs or xemacs. For this tut@rahcs will be used.
$ xemacs test.r &

This command tells xemacs to start up a new window where thétékt.r” is to be edited. This will
be opened as a new file if it does not already exist. The apeésaihe end of the line is an indication
to the Linux shell that xemacs is to run in background. If ikisot done, then the shell will wait for
xemacs to complete before we can give any new commands.

When reading in data from files (or running scripts) it is oft®nvenient to start R in, or close to, the
directory the files are stored in.

To quit R:
qO

You will be given 3 optionsy/n/c

y saves the ‘objects’ you have created and exits.
n just exits.
c cancels the quit command.

For now you can just use

In R you can repeat, and recall and edit previous commandg tfs¢ up and down arrows.
Help

When in R, for help on individual commands do e.g.:

help(mean)
7 mean

within help use

<space- to page down the help

q to quit help
f to move forwards
b to move backwards

At the end of help you will find examples of how the commandsueed.

R in Windows

R can also be run in Windows with the R gui opened either froritan or a menu.
To select the directory in which R is started:

File — Change dir ...

To quit R:
qO

You will be given the option of saving the workspace.

Help

When in R, for help on individual commands do eg:
help(mean)
? mean

At the end of help you will find examples of how the commandsueed.

2.3 DatavectorsinR

A typical session
> x<-42>x
1

42> The object x contains the single num-
ber 42. Typing the name of an object dis-
plays the content.

Some command<-c(1,5,3,6) myseq<-
1:5 longseq<-10:100 fractions<-
(1:150)/100 x<-1:4 y<- -1:4 z<-c(Xy)
w<-c(55,4,y,43,x) z<-c(z,2)

The symbol "<-" denotes assignment. Thus, "x<-1" meanddatke numerical value 1 to the object
x". In simple words this means that "x" contains the singleber "1" after the operation.

The assignment operator is used to assign numerical, dka@cmore complex values to objects. If
the object on the left hand side of the assignment existsoéswritten. If it does not exist it will be
overwritten.

Alternatively, one can use the equals sign for assignmeRt ihis, however, better practice to use “<-"
since this should be thought of as a left-arrow symbol anarfeean only mean an assignment. Earlier
versions of S and Splus did not allow a single equals sigrhisrurpose but instead permitted the use
of an underscore. The only symbol which works in all casesi84nd it is therefore the recommended
version.

Example: To put a number into a variable enter the command
x<-1

To display the contents of such an object just type the nartteeadbject. The entire session could look
like this:

> x<-42
> X
[1] 42
>

To enter a series of numbers:
x<-c¢(1,5,3,6)
Shorthand for a sequence:

myseq<-1:5
longseq<-10:100
fractions<-(1:150)/100

where the last line actually generates the numbers 0.02, 0.01.50.
The “c” command can be used to combine one or more series df@rsm
x<-1:4

y<- -1:4

z<-c(x,y)

w<-c(55,4,y,43,x)
z<-c(z,z)

The user should try all of these commands until they becomeptately natural.

2.4 Deleting and listing objects

Is() - list objects
rm() - remove objects

To get a list of available object use the “Is()”-command. &bete files, use the “rm()"-command.

Notice that most R commands are actually call§utactions which implies that they are followed by
parentheses, as in “rm(x)” to delete the object “x”.

Notice also that merely typing the name of a function:
> 1s

just outputs the “Is” function itself - not the list of object

Note: A very common source of confusion is where commands are giRecommands can only be
given to R, normally at the R prompt. Linux shell commandsgiven to a Linux shell only.

Some of these commands are similar enough that beginneeRgsommands to the shell and shell
commands to R. Itis important to remember that R commandswigrbe given while R is running and
this is always indicated by the “>" prompt.

Commands can be continued onto a second line if needed. Riavihis automatically and assume a
continuation line is intended when a command is obvioustycomplete. For example, the following
may describe a session:

> x<-c(1,2,
+ 3,4)

> X

[1] 1234
> y<-1:4

> X+

ty

[1] 2468
>

Notice, therefore that if a user incorrectly enters e.g. rithraetic symbol at the end of a line, then R
will assume that a continuation is required and start the liexwith a plus-symbol. In the case us such
an error, the user should hit control-C to cancel the command

10

2.5 Entering data into a file

First enter data using an editor

e Windows: Notepad or emacs

e Linux: Emacs or vi

Data are normally first entered into data files and subsetyueretd into the program which is to be
used to analyse the data. It is almost always a poor idea év data directly into an analysis program
without maintaining an external data file.

Small data sets are commonly entered by hand using a tert.eBdrmatting programs such as Word,
WordPerfect or StarOffice should not be used for data enthe data file should contain only data,
though a single line at the top of the file, describing whatisach column, can be useful. For the same
reason, spreadsheets should not be used to enter data.

A data file should thus never contain formatting commandsodored blocks of text etc. It should
contain only numbers or codes to be used in analysis. Whersithiple rule is adhered to the data can
be entered into any package whatsoever and can be validsitegistandard programs.

To enter data undaindows one would normally use Notepad, though a much better apprisao
obtain some version of emacs for Windows.

A still better approach is to install a more data-orientatpdrating system such as Linux (or any Unix
variant, but Linux happens to be free). The reason for treégpence is that the sheer number of small
programs for simple data manipulation under Linux far oudlve the time taken to install the operating
system, if the intent is to do considerable data analysis.

With the advent of R it is possible to run the same analysitesysinder several operating systems, thus
outweighing some of the inconveniences of unstable opeyatystems. Nonetheless, for larger data
sets it quickly becomes difficult or impossible to analysenthexcept on systems which are designed
for handling large amounts of data.

Data entry by hand onlanux system normally consists of first starting up a terminal windollowed
by starting a text editor and indicating which file is suppbgecontain the data.

For the “vi” editor this becomes the sequence:

vi mydata.dat| start the editor
i | gointoinsert mode
14.5| enter data, one
25| line atatime
<esc>| leave insert mode
‘wq | write the file and quit editing

The emacs editor does not have command- or insert-modesdrfits commands as control-sequences:

emacs mydata.dat start the editor
14,5 | enter data, one
25| lineatatime
C-XC-S | save the file
C-XC-C | exitthe editor

A note on file names:

File names should be “short and sweet”. There is never angl ggason to use 52 character file names
containing spaces and international characters. The fighdif a file name is usually 1-4 characters

11

and is normally used to indicate the type of file in questidmu§ one could use file names such as

mystuff.dat | a data file
plotting.r | a file with R plotting commands
hakewts.dat | the obvious thing

The use of spaces is filenames (not to mention directory naman extremely bad habit and the same
applies to international characters. Theg#t eventually cause problems when files are exchanged
between people using different types or versions of compud@erating systems or languages.

In particular, it is a really, really bad idea to use spacast@rnational characters when using a system
such as R which is designed to work on multiple platforms.

2.6 Reading datainto R

Data in afile:
abc Xyz
1 4
2 5
15 3
Read them into a data frame:mydata<-
read.table("x.dat",header=T)
Type the name to display the data
>mydataabcxyz1142253153

Assuming that data exists in a simple text file, the next step read it into the program to be used for
analysis.

The easiest way to read data into R is to use a single line abphte indicate column names.

Note: To get a good data set for the following examples, reopen taydia and add lines so it looks
like this:

RN ON R X
ORPwWwOn<

Then use the R command read.table()

Note that read.table() has many options and can handleetyafidifferent file formats.

Example: Note that the “> " is the prompt from R and is not entered by tberu

In the following R session the user tells R to read the file ngdiat into R calling the result mydata.

> mydata<-read.table("mydata.dat",header=T)

Since the first line contains the name of the columns we choeader=T

To see the data in R type the name of the object containingataeset:

12

> mydata

A Pd WN -
= N O N+~
g = W o

The resulting “mydata” which contains the data is a data &&see chapter 6.1 on data structures).

Several methods exist to enter data into R. The most commtroa&r multi-column data is the above
“read.table” command, whereas “scan” is easier to use fbvitual data columns.

The “scan”-function can also be used to read a single coldmumbers from the keyboard:

> x<-scan()
1: 123

4: 2
5: 3
6: 75 4

9:

Read 8 items
> X

[1] 12323754
>

The “read.table” command returns a “data frame” (more ogHier). Each column in the data appears
as a column in the data fram and can be referenced using tlee sigin, e.g. with “mydata$x”.

2.7 Data summariesin R

mean Means of individual columns

var Variance of individual columns

sd Standard deviation of individuallcolumns

median Median of individual columns
x<-mydat$x y<-mydat$y mean(x) var(x)
sd(x) median(x)

For computing averages of data several approaches arelaeailn R, including the following com-
mands:

mean Mean of individual column
var Variance of individual column

Example: If the data frame “mydata” contains “x” and “y” as columnseththese can first be extracted
and the mean of “x” computed with the commands

> x<-mydata$x

> X

[1] 12921

> y<-mydata$y

>y

[1] 4.5 5.0 3.0 1.0 5.5
> mean (x)

[1] 3

13

The variance of the “x"-values is obtained with

> var(x)
[1] 11.5

and the standard deviation can be obtained with the “sd"tfonc

2.8 Random numbersinR

10 000 uniforms

500

400

Random numbers are very useful for
checking out properties, sampling schemes
etc.

2 Common functions:

rnorm()

runif()

300

200
L

100

runif(10000)

Some examples:

Random normal (Gaussian), single number:

rnorm() Uniform between 0 and 1, ten numbers:

runif(10) Single observation from a binomial distributiaith 5 trials each a probability 1/2 of success:
rbinom(1,5,.5)

A typical way of looking at random numbers:
hist(runif(10000),main="10 000 uniforms",nclass=50)
Note the use of nclass.

2.9 Simple data plots in R

« 1 “ x<-1:10 z<-2+3*x y<-z+rnorm(10)
plot(x,y, xlim=c(0,10),ylim=c(0,30),
o | xlab="Cost",ylab="Profit") lines(x,z)

Figure 1: A typical scatterplot from R

The most illustrative plots of data include scatterplotd me plots.

14

Most spreadsheets do not provide proper line plots. Thednttorrect assumption is usually made that
the data which go on the x-axis are categorical variabledtsndata is centered on these as if they were
groups. One solution to this is to always ask for scattesphdien plotting data within spreadsheets.
Within scatterplots options it is subsequently possiblask that the points be joined by lines. A much
better option is to use packages designed for visualisitaida scientific manner.

Within R the simplest family of plotting functions is the ' family, which includes the “plot”, “lines”
and “points” functions. Options to these are numerous asthbewed through the associated help files.

Before any model-based analysis, naturally the data sHiosidbe plotted in the form of a scatterplot in
order to verify that a straight line makes sense, using

plot(x,y)
Note: The plot command has a long list of options and versions optbecommand exist for many

different types of objects.

Usually a simple quick-and-dirty scatterplot is simply geated with “plot(x,y)”, but usually one will
want to modify this plot in various ways.

Suppose we have the following “x”, “y” and “z"-vectors:
x<-1:10

z<-2+3%*x
y<-z+rnorm(10)

where the x-variable simply contains the numbers 1, 2,0,.tHe z-vector describes a straight line in x
andy is a simulated set of numbers with Gaussian measuramens around the line.

Some typical methods of plotting such pieces of informaiimtude:

plot(x,y) # A point plot (scatterplot)
plot(x,z,type=’1’) # Just the line

Adding a line to an existing plot is often useful

plot(x,y) # A point plot (scatterplot)
lines(x,z) # Add the line

The default limits or labels on the axes are not always sémaitd of course these can be changed:

plot(x,y,x1im=c(0,10),ylim=c(0,30) ,x1lab="Cost",ylab="Profit")
lines(x,z)

2.10 R and emacs

There is considerable support within emacs for differembjgoter languages and other programs. For
example, emacs knows how to indent R functions, check thranplzeses are closed etc.

Further, emacs can start up R so the program runs within ansbudfer. This provides an easy way for
copying and pasting R commands from one buffer into ano®erthe other hand emacs also provides
editing functions which e.g. put the current line into the ®fér etc.

15

o macs: "R’ - *
‘!-](e Edit View Cmds Tools Options Buffers Complete In/Out Jignals JESS Help
= B RSFE D i

:gn oired g % et _ unda ‘sn‘gn{%\u%l_ r}oﬁ«n@.l@

*Rk

This buffer contains the file x.r A
x<-42
y<-x*x
Yy

T - = R/S-mode for .r-files

IIS08 *Rk_TEmacs: x.b (ESS|S] Font Interactive R/S startup within emacs!
> # This buffer contains[]the R process [
>

[Iso8--**-XEmacs: *R* (1ESS Font [R]

Additional notes/practicals
R in Emacs

R is run either in the shell window or as a process within etxaosacs. The following describes the
latter. Under Linux, start up emacs/xemacs from a terminatlewv. Under Windows, make sure your
have started up xemacs with the appropriate additions andugt xemacs.

A new window should now be open, where xemacs waits for us twifynthe file test.r. At the bottom
of the window, xemacs display ESS[S] which indicates thahaes is in ESSnode where ESS is
short-hand for Emacs Speaks Statistics. This mode hasasexsaful features for editing R or Splus
code.

If you have an xemacs/emacs window open, then you can spliiparts, so you can have a record of
you commands in one part of the window and run R in the other par

The emacs and xemacs window commands are not quite the dammghtmost keyboard commands
are. To start up R within xemacs, either select from the m@ools->Statistics->R Runtime or use the
keyboard commands “M-X R". The command M-X is emacs-speadqa@unced Meta-X and is usually
implemented through <escape>-X (first hit the escape buattaorthen x).

To do this:

File — Split window

If you do that you will also see the equivalent Ctrl commandats it?
To start R you then do:

Tools — Statistics— R runtime

At the bottom of the Emacs window the directory to run R in iesied, to run R in the directory you
are in hit return.

If you open a file with a.splus or .r extension, eg plot-runl.splus, in Emacs, it will highlighe
text in different colours which may help with understandiihg syntax. It is the file extension that tells
Emacs the language you are using. Emacs also checks thehgmes(ie(,), {, }, [,]1) match
which is very useful in longer commands and when writing fiors.

Now xemacs has two main buffers, one contains the file tesd.tlge other contains the R process where
R awaits your commands. You only see the R buffer, howeveu ¢ém enter R commands manually
into this buffer.

16

Normally one wants to view both the file and the R process as#inee time. This is done by splitting
the window using either the View->Split command or C-X2 (GsXControl-X — hold down the control
key while pressing x).

Then change buffer in one of the windows, using C-XB or by &&lg the appropriate buffer in the
Buffer menu.

You now have an R window and a window containing the R commavridsh can be either stored in
the named file or executed.

Several web pages describe the ESS command set. The matroptiese is htat when you type R
commands into Emacs, they can be run in R using keyboardcstiert

The most useful are: _
Ctrl c Ctrl j runstheline

Ctrl c Ctrl r runs a highlighted region
Ctrl c Ctrl b runs the file (buffer)

Naturally, once the R commands are saved as a file, e.g. r'tesss been saved one can use the R
command

source("test.r")

to run the commands through R. This can be done anywhereRaittemacs or from R running on the
Linux shell command line.

In Emacs and Xemacs, help is opened in a buffer. If, after imges help file in Emacs you cannot see
the file you were working from you can recall it using tBeffers menu which lists all files open in the
Emacs window.

References

%T An Introduction to R %A W. N. Venables, D. M. Smith %D 2002 %é¢twork Theory Ltd. %P
156pp ISBN: 0954161742

%T Introductory Statistics with R %A Peter Dalgaard %D 2002%ringer-Verlag %P 288pp ISBN:
0387954759

R Project home page http://www.r-project.org/

R manual page http://cran.r-project.org/manuals.html

Contributed R documentation http://cran.r-project.otigér-docs.html

R FAQ http://lwww.ugcs.caltech.edu/info/R/R-FAQ_tomht

R newsletter http://cran.r-project.org/doc/Rnews/

ESS: Emacs Speack Statistics http://stat.ethz.ch/ESS/

Reference card for R within emacs (ESS) http://stat.eliiES8S/refcard.pdf
R and Emacs tutorial http://www.stat.vt.edu/ sbatesheags4004/Handouts/RESS. pdf
Emacs commands http://www.utexas.edu/cc/docs/cctti3d.h

R for Windows FAQ http://www.stats.ox.ac.uk/pub/R/rw@Atml

Xemacs for Windows http://www.xemacs.org/Download/v#h3

Xemacs for Windows Download link http://ftp.dk.xemacg/pub/emacs/xemacs/xemacs-21.4-windows/

17

3 Command files

3.1 Repeated commands

The following commands can be used to
compute the mean weight and mean length
from a given file:
data<-read.table("file.dat",header=T)
length<-data$length weight<-data$weight
meanlength<-mean(length) meanweight<-
mean(weight) print(meanlength)
print(meanweight)

These may need to be repeated for different
data files...

Few tasks are only done once. Most real-life projects inrvaeveral repetitions of the same or very
similar computations. When these computations are moredimgle lines, it is very useful to store the
commands as files which can be called upon to rerun the segusticlittle effort.

Example: Suppose there are several data files for length and weighthendhean length and mean
weight are to be computed from the data in each file. This wmditate that the following commands
need to be run for each file.

data<-read.table("file.dat" ,header=T)
length<-data$length
weight<-data$weight
meanlength<-mean(length)
meanweight<-mean(weight)

print (meanlength)

print (meanweight)

When these commands are re-run for different data setsnilgeebange is to the name of the data set,
i.e. the first line. It is obvious that there are consideraialeings if the commands do not need to be
re-entered every time.

3.2 Command files

R commands can be stored in afile for later
perusal.

Example: Use simple copy-paste from R to
an editor and save into file.

Typical name: file.r

Use emacs/notepad to edit files - text only,
no formatting - not Word etc.

Alternative: Run R within emacs and open
file - with two windows.

Storing the commands in a file can save substantial time dod.efNormally the name of such a
command file would be of the form file.r.

A command file should contain only text, no formatting suchalslface or colors etc.

Command files are normally edited using emacs or xemacs giase editors know how to display and
indent R code.

18

3.3 Running commands stored in a file

Store R commands in a file with some
name, e.g. “file.r".

Within R give the command

> source("file.r")

This makes R read and execute all com-
mands in the file.

Giving the command
source("file.r")

causes R to execute all the commands in the file.

Notice that when R is running commands automatically in théner, R does not print output from
most commands. Thus, in order to see actual output, a forpniat™ command (or equivalent) needs to
be given within the file.

Such command files frequently contain commands to prinfteptettily rather than print inexplicable
numbers alone.

Example: Suppose the file lw.dat contains the following data:
length weight

34 3.2
42 3.5
37 3.0

A second file, e.g. calcmean.r may contain the commands tgsanthhese data and to print some basic
results:

data<-read.table("lw.dat" ,header=T)
length<-data$length

weight<-data$weight

meanlength<-mean(length)

meanweight<-mean(weight)

cat ("The mean weight is: ",round(meanweight,2),"\n")
cat("The mean length is: ",round(meanlength,2),"\n")

The "source" command can now be given within R:

> source("calcmean.r")
The mean weight is: 3.23
The mean length is: 37.67

3.4 Batch runs

Pure batch processing
R —slave < cmdfile
or in background.

In addition to running R interactively, it can be run in noneractive mode. A particularly useful
approach under Linux is

19

R --slave < cmdfile

&

When this approach is used, care must be taken to make sticutpat is into text files and plot files
rather than onto the screen.

If output is given to the screen, a command such as “scriptbeagiven in the shell to store output.

4 Functionsin R

4.1

Introduction to functions in R

A function is a collection of commands,
e.g. testfun<-function(x) return(x*x)

This can then be called with an argument,
testfun(3) testfun(25) testfun(x)

A function is a collection of commands, e.g.

testfun<-function(x){
return(x*x)

3

This can then be called with an argument,

testfun(3)
testfun(25)
testfun(x)

Example: The following function will calculate the sum of two numbers

+ 4+ + Vv

>
>

(11 5

c<-sum(2,3)

sum<-function(x,y){ # call the function sum and the input x and y

define s as the sum
let the function return the sum

try the function

4.2 Functions in command files

Normally functions are defined in com-

Although functions can be defined directly from the keybo#hi is usually not fruitful since typically
several iterations are needed before a function has berectgrdefined. A better approach is therefore
to define the function within a command file.

Example: Suppose the file cmd.r contains the following lines:

20

f<-function(x){
y<-x+2
s<-sum(y)
return(s)

}
The following describes a typical use of this function

> source("cmd.r")
> £(2)

4.3 Plotting functions

Functions are commonly used for plotting

Example: Suppose we define a logistic function in the file “functionis. the file contains the follow-
ing lines:

f<-function(x,a,b){
y<-1/(1+exp(-b*(x-a)))
}

This function can now be read into R using the command sotiteegtion.r"). This onlydefinesthe
function, however. Note that thrergumentsto the function are th&-values in the vector “x” and the
two parameters to the logistic.

In order to call the function we subsequently need a few ninasland a typical R session might be

source("function.r")

x<-0:100

y1<-f(x,35,.1)

y2<-£f(x,35,.2)

y3<-f(x,25,.2)
plot(x,yl,type=’1’,col="blue",xlab="Length",ylab="logit response")
lines(x,y2,col="red",lwd=2)

lines(x,y3,col="red",lwd=1)

The above commands will typically be stored in another filg, &un.r”.

Giving the command source("run.r") from the command linR inill then first read the file “function.r”,
which defines the function, then call the function three srirea row, with different arguments and
finally plot the function.

21

An expanded version of the logistic function could be

f<-function(x,a=0,b=1){
y<-1/(1+exp(-b*(x-a)))
return(y)

3

Suppose this code is stored in the file “functions.r” in a Véwd directory.

A typical file containing the commands to implement the ptmtsld be the following “run.r” file:

source("c:/temp/functions.r")

x<-0:100

y1<-£(x,35,.1)

y2<-£f(x,35,.2)

y3<-f(x,25,.2)

pdf ("c:/temp/graph.pdf")
plot(x,yl,type=’1’,col="blue",xlab="Length",ylab="logit response")
lines(x,y2,col="red",lwd=2)

lines(x,y3,col="red",lwd=1)

dev.off ()

The interactive session
> source("run.r")

will then produce the plots into the file “graph.pdf”.

Alternative graphics formats abound. For example, the "prammand is used to generate PNG
(portable network graphics) files, known to word processeeb browsers etc, “postscript” is used
to generate postscript files and so forth.

4.4 Run commands

e Commonly define functions in
one file

e Often have one file for initial-
ization

e Usually have a another file
which containsall other com-
mands

Most R jobs end up being split into three parts, function didin, setting or reading initial values and
doing actual computation or plots.

Therefore there is usually a structure of files of the form:

e All functions in one file (e.g. functions.r)
e One file for initializing variables and reading data (e.dt.ih

¢ Another file containgll other commands (e.g. run.r)

22

5 Statistical models

5.1 Linear statistical models

X 1L 2 3 4 5 6
y-7-600-26

> summary(Im(y~x))

Call
Im(formula = y ~)

Residuals:
3 4 5 6
-1.450e-15 -1.200e+00 2.600e+00 4.000e-01 -3.800e+00 2.000e+00

Mathematical model:
Coefficients:

Estimate Std. Erro} ue Pr(>[t))
(Intercept) -9.2000 2.4(1)-3818 0,0188*
X 22000 0.618! 56 0.02, @ y=0a+px+e
Signif. codes: 0 ****' 0.001™ 0.01 "' 0.05 ' 0.1"" 1
Residual standard error: 2.588 on 4 f freedom R definition:

Multiple R-Squared: 0.7596, Adj(g) R-squared: 0.6996 yrx
F-statistic: 12.64 on 1 and 4 DF, p>veie: 0.02368

1m(y x)
Storing the outputm<-Im(y x).

Figure 2: Example output from a simple linear model fit of thenf y=a+bx. Items (1)-(2) are the estimates of a and b respéct The estimate of the
standard error of b is given by (3). The P-value for testingthier the true (underlying) value of b is zero is in (4). Ite@)s(7) give the MSE, R-squared
and P-value for the entire model, respectively.

Suppose that within R a user has two columns of data, “x” arigWhich come in pairs and there is a
need to fit a straight line through the data points.

Having plotted the data, this is followed by specifying thedel, which should be of the form=
o + Bx. The model notation in R for this simple linear model is

Y~ X

The tilde character~) indicates that the left-hand side is a dependent variaiiddlae model is on the
right-hand side. On the right hand side it is implicitly as®d that there will be an intercept (n the
mathematical model) and therefore there is only a needttthks“dependent” variable(s), in this case
only x.

To fit the actual model the “Im” function is used (Im being stfor “linear model”):

Im(y~x)

In order to process the model results, the fitted model i€dtander some name, e.g. “fm”:
fm<-1m(y~x) .

Example: Suppose the data are given by

A simple linear model can be fitted to the data and the resut{sub using:
> summary (1m(y~x))

The results are shown in the figure.

Note: The output from the various Im-related programs is quitaitkd and although a statistics course
can be designed around the interpretation of the resulise $@msic knowledge is essential.

Consider the output given in the figure.

Example: Consider a data set with a dependent varightn independent variableand a factorf:

23

y
6.367151

10.783743
11.528125
15.564471
18.509431

4.608247

6.849981
12.301949
14.251640
16.483796

6.293174

7.905664
10.640212
15.881404
16.679703

© 00N U WN -~

o
= O

=
w N

s
IS
QOO QW omwWwwwWeErEPE =P

O WO, O WONEFE O WN - X

-
o

If this data set is read in using read.table, the f-columh avitomatically become a factor and can be
used directly in a model such as

Im(y~f+x)

> summary (1m(y~x))

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-1.8277 -0.9488 -0.1151 0.7969 2.1061

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 2.7466 0.6992 3.928 0.00173 *x
X 2.9656 0.2108 14.066 3.04e-09 **x
Signif. codes: 0 ‘%%’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ 7 1

Residual standard error: 1.155 on 13 degrees of freedom
Multiple R-Squared: 0.9383, Adjusted R-squared: 0.9336
F-statistic: 197.9 on 1 and 13 DF, p-value: 3.043e-09

> fm<-1m(y~f+x)
> dropl(fm,test="F")
Single term deletions

Model:
y 7 ff + x
Df Sum of Sq RSS AIC F value Pr(F)
<none> 10.317 2.386
£ 2 7.018 17.335 6.170 3.7414 0.0576 .
X 1 263.837 274.153 49.585 281.3080 3.499e-09 **x*
Signif. codes: 0 ‘%%’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

24

Use the resid function to extract residuals, then plot tlaesbstandardize to test for normality etc.
Use anova(fm1,fm2) to compare two models.

Having obtained the model, the coefficients can now be obthisummary statistics of the model can
be listed and the analysis of variance corresponding to tiaeivs obtained:

fm<-1m(y~x) .

summary (fm) # General summary of model fit

anova(fm) # Additional variation explained by each effect
dropl(fm) # Marginal test of each effect in a model

coef (fm) # Extract coefficients of fitted model
resid(fm) # Extract residual

fitted(fm) # Extract fitted values

5.2 Nonlinear statistical models

Figure 3: Example of a potential nonlinear relationshipgiéh and age).

Nonlinear statistical models involve some nonlinear carabons of the parameters themselves (i.e. not
the independent variables, so eyg= a + pBx? is in fact a linear model). Nonlinear estimation methods
are therefore needed.

Example: Suppose the data are

y
.25

.86
.48
.22
.02
.83
.71
.68
.45
.41

© 00 NO O WN - M
R R R RPRPDNDNDDNDDND®

-
(@]

and it is known that the process generating the data is obttmeyf = o + el */K 4 ¢ wheree can be as-
sumed to come from a normal distribution. (These data wefi@ctrgenerated using y<-round(1+exp(1-
x/5)+rnorm(10)*0.05,2).)

25

In this case it is natural to consider the sum of squared tews

n 2
S= Vi— o+ gl %/K
3 (= (are))
and estimate the parameters by minimizég

Suppose the function S defines the sum of squares as a funftibae two parameters. Normally, this
function would be stored in afile, e.g. s.r and the file woulddsa in using “source("s.r")”

Next estimate the parameters using nlm:

nlm(S,c(0,1))
$minimum
[1] 0.01447913

$estimate
[1] 1.051933 4.867273

$gradient
[1] -1.116759e-09 2.067758e-10

$code
[1] 1

In order to define a sum of squares as a function of two paramée following form can be used.

S<-function(beta)
{
alpha<-betal[1]
K<-beta[2]
yhat<-alphat+exp(1-x/K)
S<-sum((y-yhat)~2)
return(S)

Notice the “trick” of using a vector to store the two paramgteThis is needed when using a generic
routine such as nlm since nlm will assume that the paramaterall stored in a single vector.

5.3 Miscellaneous statistical models

Usual assumptions: Linear, Gaussian er-
rors, constant variance, independence.
Alternatively: Nonlinear, non-Gaussian,
heterogeneity, non-independence.
Examples: Length-weight relationships,
spatial correlations etc

Many issues arise with common fisheries data, indicatingatiems from the usual assumptions of
linearity and Gaussian distributions.

Thus various nonlinear models have been used for lengtghwetlationships in fishery science and a
large number of other biological relationship.

To fit a generalized linear model, use a function called gim.

26

5.4 Further reading

Extensive references exist for statistical models in R (@u$§.

For simple statistical analyses the statistical basis eaplbained from any introductory book (such as
Moore and McCabe’s).

For linear models in R, consult any corresponding textbéslch as Fox et al).

For more detailed regression analysis a comprehensivediobtitear models (such as John Neter et al)
is needed.

References

%T An Introduction to R %A W. N. Venables, D. M. Smith %D 2002 #étwork Theory Ltd. %P
156pp ISBN: 0954161742

%T Introductory Statistics with R %A Peter Dalgaard %D 20029pringer-Verlag %P 288pp ISBN:
0387954759

%T An R and S Plus Companion to Applied Regression %A John Gerrges Monette %D 2002 %l
SAGE Publications %P 312pp ISBN: 0761922806

%T The analysis of variance. %A Scheffe, H. %D 1959 %Il JohreWwédnd Sons, Inc, New York. %P
477pp. ISBN: 0471758345

%T Introduction to the practice of statistics. %A Moore Da8d McCabe, G. P. %D 1999 %I Freeman
and Company %P 825pp ISBN: 0716796570

%T Applied linear statistical models. %A Neter, J., A Kutrdr H., Nachtsheim, C. J. and Wasserman,
W. %D 1996 %Il McGraw-Hill %P 1408pp. ISBN: 0256117365

27

6 Data structures in R

6.1 Vectors

The simplest data structure is the numeric
vector

The simplest data structure is the numeric vector.
Vectors can be used in arithmetic expressions (operatienseaformed element by element).

If the vectors do not have the same length then the shortéwngsgre reused until they match the length
of the longest vector.

Examples of available arithmetic functions and operaters:, x, ,", l0og(), exp(), sin(), cog), tan(),
sqrt()

Useful vector operations: max(), min(), length(), sum¢dy), mean(), var(), sort()

Example:
>x<-c(1,2,4,6) # define the vector x
> x*3 # multiply each numberin x by 3
> X[2] # the 2nd component of x
> length(x) # shows the length of x

6.2 Naming vector elements

Elements of a vector can have names

> x<-1:4 > names(x)<-
c("one","two","three","four") > x one
two three four1234>

Naming the elements of a vector can be useful in severaldegéirtly, the elements may correspond
to locations or treatments and thus naming them providdslidentification.

Secondly, as will be seen below, naming can be useful foaetitrg the appropriate element.
Suppose we give names to the elements of a vector:

> x<-1:4

> names (x)<-c("one","two","three","four")

> x

one two three four
1 2 3 4

28

6.3 Indexing vectors

>x<-¢(1,2,4,6) > x

2

>X

>X

>X

x==3

c("one","two","three","four") > x
two three four 1234 > x

"three'

three 3

> x<-1:4 > names(x)<-

one

Square brackets are used to denotendex to an element of a vector.

e The usual meth

od to extract one or more elements is to singilthe locations of the items of

interest, with vec[12], vec|[c(3,5)], vec[2:6] etc.

e Itis also possib

le to use a logical expression to obtain #ovexf true/false values of the same

length and use the logical vector as an index.

e If a numerical in

dex vector contains negative values thew thill be omitted from the result.

¢ Finally, if the elements have names, then the vector candexed with a sequence of (character)
names to be extracted.

Example:

x<-c(1,2,4,6) #
x[2] #
x[c(1,4)] #
x[-2] #
x<3 #
x [x<3] #
x [x==3] #
x["three"] #

V V V V V V V V

define the vector x

the 2nd component of x

gives elements 1 and 4

gives all elements in x except no 2
returns a logical vector

all elements of x which are less than 3
all elements of x which equal 3

the element named "three"

6.4 Arrays and matrices

A<-array(c(1:15),c(3,5))
M<-matrix(c(1:10),nrow=2,ncol=5)

An array is a data construct that can be though of as a mattixmiltiple dimensions.

A matrix in R is an array with 2 subscripts. R contains a vgradtoperators and functions which work

with matrices.

29

Matrices can be added and subtracted from each other usind +as expected, if the matrices are of

the appropriate dimensions.

Care must be taken with the * operator. If A and B are matribes tA*B is a matrix of element by
element products but A%*%B is a matrix multiplication.

In addition to simple operators several functions are alséél for matrix manipulation. Useful matrix

functions include: t, nrow, ncol, diag.

Example:

> A<-array(c(1:20),c(5,2,2))
> A[5,1,1] #As11
[1] 5

> Al1,2,1]

[1] 6

>M<-matrix(c(1:6) ,nrow=2,ncol=3)

(.11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
>t (M) # transpose M
(.11 [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

> diag(3,2)

[,1]1 [,2]
[1,] 3 0
[2,] 0 3

6.5 Indexing arrays and matrices

Requires index to row and column.
Can use logical operators.

make the 3-dimensional array A@,j,k

make the % 3 matrix M

make a % 2 matrix with 3 on the diagonal

Example:
>A[2,3] #returns the elementin row 2, column 3
> A[2)] # returns all elements in row 2
> A[A<2] #returns all elements that are less than 2

30

6.6 Names of rows and columns

Use the dimnames command to name ele-
ments of a vector

Example: Paired data can be read in using read.table and then the amnma
dimnames (x)<-list(sex=c("male","female"),length=as.character(1:25))

can be given.

6.7 Lists

A list can contain objects of different
types.
> places<-
c("Washington","Reykjavik","Oslo")
> genders<-c("male","female") >
x<-list(places,genders) > names(x)<-
c("Capitals","Sex")
The list can be viewed like other objects:
> x $Capitals

1

"Washington" "Reykjavik" "Oslo"
$Sex
1

"male” "female”

Objects of different types can be aggregated together inewaobject called &st.

Example: A somewhat abstract list might contain information abowg,agender and height.
> a<-list(age=10,gender="female" ,height=c(150,135,143,127,149))

This list consists of three components. As with any R objggting the name of the list reveals all of
its contents.

> a
$age
[1] 10

$gender
[1] "female"

$length
[1] 150 135 143 127 149

The components of the list can be referred to in severalréiffievays, notably by index or by component
name:

> a[[1]] #use the index to get the age

[1] 10

> a$age #use the components name to get the age
[1] 10

31

In some cases it is useful to loop over the names and use theewdwat like a vector reference, in
which case the reference is of the form listname[[itemndme]

al["height"]]

6.8 Data frames

A data fram is a matrix-like structure
whose columns may be of differing types
(it shares many of the properties of matri-
ces and of lists).

There are number of ways to make a data
frame:
data.frame(tag.1=value.1,...tag.n=value.n)
as.data.frame()

read.table()

A dataframe is a special type of list which is organized as &iribke structure whose columns may be
of differing types. It is thus a list that satisfies certaimditions and can e.g. be displayed in a matrix
form.

R includes several commands which return dataframes.

data.frame(tag.1=value.l,...tag.n=valug.mhakes a data fram
from values no 1 to n

D

as.data.frame() coerces its arguments
to a data frame
read.table() read an entire data set

from an external file

Additional notes and practicals: R commands
Vectors

The simplest data structure in R is a vector.
To create a vector of 2.3, 4.2,5.7,9.2,4.7.

x <- c(2.3, 4.2, 5.7, 9.2, 4.7)

<- means assigned the value, do notdse

To see x.
X

You can then use Xx.
1/x

y <- c(x, %)

y

In R, x is known as an object.

To list all the objects

1sQ)

and to remove individual objects
rm(x)

rm(y)

or

rm(x,y)

32

These are similar to the shell commands you learned earlier.
Vector arithmetic

Sequences of numbers can be generated as follows:
x <- 1:10

y <- 5:1

z <- seq(2,10,2)

w <- seq(10,5,-0.5)

Q. Which command returns a sequence of numbers from 0 to 5 witlintervals of 0.5?

In operations the colon has the highest priority e.g.
2%1:10

compare
n <- 5
1:(n-1)
1:n-1

To repeat blocks of numbers.
rep(2, times=b)

rep(2,5)

rep(1:2,5)
rep(1:2,c(5,5))
c(rep(1,2), rep(3,3))
rep(c(1,3),c(2,3))

Q. Which commands return the following sequences of numbefs
242424
111155555

Elementary arithmetic operators are the usual
+’ _>*> /’ -
Other functions include: log, exp, sin, cos, tan, sqrt e.g.

x~2
x~(0.5)

square root
sqrt (x)

Natural logarithm (In) and exponential function
log(5)
log(x)
exp(3)

Log base 10
log(5,10)
log(x,10)

33

Minimum, maximum and range of a vector.
min()

max ()

range ()

Number of elements in a vector.
length(x)

Sum
sum(x)

Mean, variance and standard deviation
mean (x)

var (x)

sd(x)

Quantiles
median(x)
quantile(x)

Absolute value
abs(-5)

Indexing vectorsR is a very useful language for manipulating data, which isry important tool for
exploratory statistical analyses and plotting data. Tathisdfeature of R you need to learn how the data
are indexed. These are very important commands for you terstahd.

In the simple case of a vector:
x <- 1:20

b4

x[1:5]

x[10:12]

x[-1:-5]

x[-c(1:5)]

x[length(x)]
x[length(x)-1]

Q. Which command returns the 15th number in x?
Q. Which command returns the second last number in x?

Matrices

Other data objects include matrices.
x <- 1:10

y <- X*x

z <- cbind(x,y)

creates a matrix called z with 2 columns.

Q. What does z look like?

Elements of z can be extracted in a similar way as for a ve€tar.row and column need to be identified.

34

z[1,] # is the first row of z
z[,1] # is the first column of z
z[1,2] # what does this do?

For the dimensions of a matrix or array, the number of rowsrandber of columns.
dim(z) # row and column dimensions
dim(z) [[11] # the first element of dim ie the number of rows
dim(z) [[2]] # the second element of dim ie the number of columns
nrow(z)
ncol(z)

Q. How many rows and columns are there in z?
Q. What is the command to return the number in the 2nd column ard second row of z?

Operations can be carried out on matrices as they are foongect
zZ*2
z[,1] - sqrt(z[,2])

2 (or more) matrices with appropriate dimensions can beepbirsingrbind andcbind.
rbind(z,z)
cbind(z,z)

Or with another matrix possibly like:
rbind(z,w)
cbind(z,w)

Q. Create a matrix w and try these. If it doesn’t work, what was wrong with w?

Matrices can also be created using using the commangix.
z1l <- matrix(1:10, ncol=2)

z2 <- matrix(1:10, byrow=T, ncol=2)

z3 <- matrix(1:10, byrow=T, ncol=5)

Q. What do byrow and ncol do?
Text manipulation

paste() is used to create a string either converting numbers intoaciers or by joining text and/or
numbers. When joining, the separator can be selected eg:

years <- 1990:1994

paste(years)

paste("year",years)

x <- paste("year",years, sep="")
paste("len", seq(4,30,2), sep="")
paste("len", seq(4,30,2), sep=".")

Q. What is the difference betweent990:1994 and paste(1990:1994)7?

substring() extracts part of a string eg withfrom the previous example:
substring(x,1,4)
as.numeric(substring(x,5,8))

Vector and matrix dimension names
The dimensions (rows and columns) of a matrix can be named.

Vectors For a vector.

35

age.vec <- ¢(10,42,65,46,30)

To return the names:
names (age.vec)

To create the names
names (age.vec) <- paste(2:6)

The names can be used to select an element of the vector.
age.vec[names (age.vec)=="5"]
age.vec["5"]

The names can be changed:
names (age.vec) <- paste("age",2:6, sep="")

Then

age.vec[names (age.vec)=="age5"]
Matrices
Matrices have 2 dimensions and the commaiwhames is used.

For a matrix.
age.mat <- matrix(c(10,42,65,46,30,12,40,64,48,34), ncol=2)

To return the dimension names:
dimnames (age.mat)

To create the column names — columns are the second dimension
dimnames (age.mat) [[2]] <- paste(2000:2001)

To create the row names — rows are the first dimension
dimnames (age.mat) [[1]] <- paste(2:6)

It's better to name both at once:
dimnames (age.mat) <- list(paste("age",2:6, sep=""), 2000:2001)

The names can be used to select an element (or elements)roathg.
age.mat [,dimnames (age.mat) [[2]]==2001] # for a column
age.mat [dimnames (age.mat) [[1]]=="age3",] # for a row

The double square parentheg¢3] are used for matrix dimnames as they are a type of objecikalle
list. Each element of a list can be a different length and the déineas of a matrix are normally not
equal.

Data frames

A data frames is, in some aspects, a more useful data formatahmatrix. Data frames can contain
columns of different types eg character and numeric. NBnHElieugh a data.frame has 2 dimensions
names refers to the column names.

Data frames can also be created within R.
x <- seq(5,25,5)
y <- c(2,4,6,7,4)
ldat <- data.frame(len = x,num = y)

creates a data frame with two columns names len and num.

Columns of a data frame can be referred to by name eg:
ldat$num

As with matrices, operations can be carried out on the coturtiis very easy to add new columnsto a

36

data frame. eg
ldat$num2 <- ldat$num*2

Q. What doesldat look like now?
Q. Which command adds a column of zeros tadat?

7 Advanced data manipulation in R

7.1 Tabular summaries in R

table Simple frequencies
apply Simple operations on a table
tapply Arbitrarily complex operations or} data in columns

The most commonly requested data summaries include fregtables, means and variances (or stan-
dard deviations). All of these are available in R.

mean, var Means and variances of individual columns

table Simple frequencies
apply Simple operations on a table
tapply Arbitrarily complex operations on data in columns

For example, if “mydata” contains “x” and “y” as columns k@iin the earlier examples) then we can
e.g. do

x<-mydat$x

y<-mydat$y

mean (x) # calculates the mean of x

tapply(y,x,mean) # calculates the mean of the y-values
related to each number in x

apply(mydata,2,mean) # calculates the mean of each column in mydata
i.e. the mean of x and the mean of y

7.2 Frequency tables

1 5 7

5 5 1
then> table(M) M 157 23 1 returns a
table showing the frequencies of each ele-
ment in M.

Example: If M=

The “table” command is used to count how often values appear.

Thus, table(X,...) makes a frequency table for the object X

) _ (15 7
Example: If M= (5 s 1)then

> table (M)
M

157
231

37

returns a table showing the frequencies of each element in M.

Example: If the vector R contains recruitment information and S corstdevels of spawning stock in
the year that the recruitment was generated, then the fol(paommand will give a tabular account
of how often the recruitment was above or below the mediaoraatg to the level of the spawning
biomass

table(Rec=R<median(R) ,SSB=S<median(S))

Note the use of named argument to label the output table.

This can be expanded:
table(Rec=ifelse(R<median(R),"low","hi"),SSB=ifelse(S<median(S),"low","hi"))
which will give output of the form:

SSB
Rec hi low
hi 3 5
low 5 2

Naturally, only slight modifications to this will give outpwhich can be automatically included in
LaTeX documents, without any copying or pasting.

7.3 Row and column summaries

. _ 1 5 7
Example: If M—(5 5 1)

then> apply(M,2,mean)
1

354 calculates the mean of each column
inM

apply(X, MARGIN, FUN, ...) returns an object obtained by bipg a function(FUN) to margins of an
array(X).

. _ (157
Example: If M= < 5 5 1>then

> apply (M,2,mean)
[1] 35 4

calculates the mean of each columnin M
> apply (M, 1,mean)
[1] 4.333333 3.666667

calculates the mean of each row in M

38

7.4 Operations on data columns

If age = (1,2,3,4,523456)
and length =
(33,43,52,37,28,39,41,32,54,25)

then> tapply(length,age,mean) 12345 6
33.0 41.0 46.5 34.5 41.0 25.0 returns an
array containing the mean length in each
age group.

Thetapply command is used in cases when one wants to compute stagistic®s averages or sums of
one variable using another variable to describe groupings.

Typical usage would be of the form
tapply(x,i,sum)
which computes the sum of the x-values within each level efitidex vector i. Notably, x and i have to

be of the same length.

The tapply command is not restricted to means or sums sincuantion can be used as long as it can
be applied to such subsets of the x-vector. Some commonhildss include

Example: Suppose some ages and lengths of fish are given by

age<-c(1,2,3,4,5,2,3,4,5,6)
le<-c(33,43,52,37,28,39,41,32,54,25)

then

> tapply(le,age,mean)
1 2 3 4 5 6
33.0 41.0 46.5 34.5 41.0 25.0

returns an array containing the mean length in each age group

Basically, tapply groups the values in le svo that each gis@gssociated with the corresponding age
and then applies the mean function to each group.

age 1 2 3 4 5 6
le 33 | 43 39| 52 41| 37 32| 28 54| 25
mean length| 33.0 | 41.0 46.5 34.5 41.0 25.0

Note that this can also be done age-by-age through a comregnérsce of the form

mean (le[age==1])
mean (le[age==2])
mean (le[age==3])

7.5 Other tabular functions

lapply(X,FUN, ...)

sapply(X,FUN, ...)

Applies function fun to each element of X.

39

The sapply andlapply commands are used in somewhat more complex situations \@heaebitrary
function is to be used for each element of a vector (or stregtu

Example: In fishery science it is common to write small functions toleste e.g. yield per recruit for a
given level of fishing mortality. When plotting a yield-pegeruit curve one typically wants to evaluate
this function for a range of fishing mortalities and this isto#gone using sapply, e.g.

yr<-sapply(Fvec,yrfun)

Aggregating data

table, apply, tapply andaggregate are commands which can be used to summarise and aggregate
data. The examples below will explain much more than thergegms.

table creates a table of the counts of each factor level

tapply applies a function to a ragged array and creates an array

aggregate is the same as tapply but writes the output to a data framen#itan an array

apply applies a function to an array, the seconds term defines therdiion on which the function
operates (eg 1 = row, 2 = column).

Create some objects these functions can be applied to.
x <- c(45,55,45,35,45,35,50,50)

y <- rep(1:2,4)

z <- rep(c(10,20),rep(4,2))

dat <- matrix(c(1:12),ncol=3,byrow=T)

To count the number at each level:
table(x)
table(y)

Q. How many times does 50 occur in x?

The output of any command can be saved as an object.
tmp <- table(x)

Q. What are the names of tmp?

The number of times 50 occurs in x can be extracted autontigtica
tmp [names (tmp)==50]

To apply a function:
To see how X, y and z relate to each otherind (x,y,z)

tapply(x,x,length) # the number of each element of x by x
tapply(x,y,length) # the number of each element of x by y
tapply(x,y,sum) # sum the values of x in groups of y
tapply(x,y,mean) # sum the values of x in groups of y

tapply(x,list(y,z),sum) # sum the values of x in groups of y and z

Q. How many values of x correspondtoy = 17?
Q. What is the mean value of x if y=1?
Q. What is the mean value of x if y=1 and z = 20?

To return the same information aspply but in colums useggregate.
aggregate(x,list(y),sum)
aggregate(x,list(y,z),sum)

To apply a function to the rows or columns of a matrix:

40

apply(dat, 1, sum) # the sum of the rows of dat
apply(dat, 2, mean) # the mean of the columns of dat

These functions can also be applied to data frames.

Create a small data frame of age and length data — the numlyedbyage and length:
y <- rep(2000:2001, rep(6,2))

a <- rep(rep(1:3,rep(2,3)),2)

1 <- rep(c(4,5,5,6,6,7),2)

n <- sample(1:10, 12, replace=T)

ldat <- data.frame(year = y, age = a, len = 1, num=n)

The number of fish by year:
tapply(ldat$num, ldat$year,sum)

The number of fish by age and year:
tapply(ldat$num, list(ldat$age,ldatPyear),sum)

The dimension names of these objects can be used, eg ekeatdta for 2001 from the returned table:
tmp <- tapply(ldat$num, list(ldat$age,ldat$year) ,sum)
tmp [,dimnames (tmp) [[2]1]1==2001]

And to extract only data for age 3:
tmp [dimnames (tmp) [[1]]1==3,]

For mean length at age by year:
total length (by year and age) / number of fish (by year and age)

Total length by age and year:

tlen <- tapply(ldat$num*ldat$len, list(ldat$age, ldat$year), sum)
Number of fish:

fnum <- tapply(ldat$num, list(ldat$age, ldat$year), sum)

Mean length at age:

tlen/fnum

8 Plotting with R

8.1 Some common plot commands

Plotting
Scatter and line plots

Using the data:
x <- 1:10
y <- X*x

The simplest plot is
plot(x,y)

with lines
plot(x,y, type="1")

with lines and points
plot(x,y, type="b")

To relabel the axes:
plot(x,y, type="1", xlab = "x axis", ylab ="y axis")

41

title("simple plot")

Another way to add a title is:
plot(x,y, type="1", xlab = "x axis", ylab ="y axis", main="simple plot")

To control the bounds of the x and y axes:
plot(x,y, type="1", xlim = c(0,15), ylim = c(0,120))

To overlay another plot:
plot(x,y, type="1")
points(x, y+50)

To add a dashed horizontal line:
plot(x,y, type="1")
abline(h=2, 1ty=2)

To add a dashed vertical line (with a different line type):
abline(v=2, 1ty=5)

Adding points with a different colour and shape:
points(x, y-10, pch=3, col=2)

To plot more than one plot on the device:
For 2 rows and 3 columns of plots:

par (mfrow=c(2,3))

plot(x,y)

plot(x,y,type="1")

With more than one plot on a page it can be useful to have dditllne whole page. To do this a wider
border is required.

par (mfrow=c(2,2), oma=c(2,1.5,2.5,1.5))

plot(x,y)

plot(x,y,type="1")

mtext ("My plots", outer=T)

To save a plot to a file:
dev.print(file="<filename.ps")
where you definecfilename>-.

8.2 More plot commands

More plots

Itis importantto look at data before using it — for some ustierding and to identify possible problems.
Histograms

Histograms plot the frequency of data.

A data frame with only year and number:

y <- rep(2000:2001, rep(20,2))

n <- round(abs(rnorm(40, 20,20)))
ndat <- data.frame(year = y, num = n)

Histogram of the number:
hist(ndat$n)

By year
hist(ndat$n[ndat$year==2000])

42

hist(ndat$n[ndat$year==2001])
Barplots
Barplots plot the number by category.

A data frame with only year and length:

y <- rep(2000:2001, rep(10,2))

1 <- sample(4:8, 20, replace=T)

ldat2 <- data.frame(year = y, len = 1)

Plot the number in each length group:
tmp <- table(ldat2$len)

barplot (tmp)

Or simply

barplot(table(ldat2$len))

By year

tmp <- table(ldat2$year, ldat2$len)
barplot(tmp[1,], main="2000")
barplot(tmp[1,], main="2001")

Alternatively:

Using:

x <- seq(5,25,5)

y <- c(2,4,6,7,4)

z <- ¢(3,4,7,6,3)

ldat3 <- data.frame(len = x,num = y, num2 = z)

Lines can be overlaid on the barplot by storing the positioth@ x axis of the bars.
x <- barplot(ldat3$num, names=ldat3$len)
lines(x, ldat3$num2)

Boxplots

Box (and whisker) plots summarise data — graphically primgidnformation on the distribution of the
data by category.

To plot summary statistics on the length distribution bynfeam Idat2:
boxplot(split(ldat2$len,ldat2$year), xlab="year")

To plot summary statistics on the number of fish by year, agdergth in Idat:
par (mfrow=c(2,3))

boxplot(split(ldat$num,ldat$year), xlab="year")

boxplot (split(ldat$num,ldat$age), xlab="age")

boxplot (split(ldat$num,ldat$len), xlab="length")

Or

boxplot(num ~ year, data=ldat, xlab="year")

boxplot (num ~ age, data=ldat, xlab="age")

boxplot(num ~ len, data=ldat, xlab="length")

Linear regression

Create a dataset and plot it:
x <- 1:20

w <- 1 + sqrt(x)/2

y <- (2*x + rnorm(x)*w)
plot(x,y)

43

Fit a linear regression line through the data:
rf <- 1lm(y ~ x)

Plot the data and the fitted line:
plot(x,y)
abline(rf, col=2)

To see the details of the regression:
summary (rf)

From the linear regression we can look at the residuals -ifferehce between the line and the actual
values.

plot(fitted(rf), resid(rf), xlab="fitted values", ylab="residuals")
abline(h=2, 1ty=2)
abline(h=-2, lty=2)

9 Programming R

9.1 The if statement

if(length(x)>5) m<-mean(x) else print(“x
isn't long enough”)

The "if" statement can be used to perform a computaton onrwvehcertain condition is satisfied.

If the average of the elements of x is to be computed only wherength of x is larger then 5 then the
following sequence can be used:

if (length(x)>5){
m<-mean (x)

}

Another statement that can be used with the if statemeneiglde-statement. To continue the above
example, and in addition print error messages if x isn’t lengugh then an else-part can be added:

if (length(x)>5){
m<-mean (x)
} elseq{
print(f‘x isn’t long enough’’)

}

9.2 Loops - for

sum<-0 for(i in 1:100) sum<-sum-+i*i

Loops are used when similar operations need to be perforfmdexample, when adding the squared
integers 1*1, 2*2, 3*3, ... up to 100*100, this can either load by

44

sum<-0
sum<-sum+1x*1
sum<-sum+2*2

sum<-sum+100%*100
or through a for-loop:

sum<-0
for(i in 1:100){
sum<-sum+i*i

It should be noted that when a loop is used to add numbersattieole containing the sum should be
set to zero before starting the loop.

In the loop itself, 1:100 simply denotes the sequence of rarmb, 2, 3, ... 100 and the notation

for(i in 1:100){

indicates that the commands within the brackets should bd.@0 times, while the variable "i" is set
firstto 1, then 2 and so on.

9.3 Storing loop results

x<-NULL x<-c(x,iteml) x<-c(x,item2)
X<-c(x,item3) ... ox<-NULL for(iin 1:5)
x<-c(x,i) or (much betterk<-rep(NA,5)
for(iin 1:5) x

i

<-i Itis better to define a full-length vec-
tor and install elements than to keep mod-
ifying its length. Even better: Just do vec-
tor/matrix manipulation.

It is often useful to first initialise an object and then us®itollect results repeatedly.
Without a loop this kind of collection might proceed as falk

x<-NULL

x<-c(x,iteml)

x<-c(x,item2)
x<-c(x,item3)

It is much more useful to use a loop for this purpose.

Example:

>row<-NULL # can also use row<-c()
>for(i in 1:5){
row<-c(row,1:i) # append the numbers 1,..,i to the row

45

3

>row
[11 11 2123123412345 # the result

9.4 Loops - while

sum<-0 i<-0 while(sum<100) i<-i+1
sum<-sum-+i

A while loop can be used to perform operations until a cetamdition is satisfied. For example to add
the numbers 1,2,3,... until the sum reaches 100:

sum<-0
i<-0
while(sum<100){
i<-i+1
sum<-sum+i
}
(This while-loop would stop when sum=105 and i=14)

When given a while command, R will run the sequence of commamthe brackets repeatedly until
sum is greater than or equal to 100.

Practicals
Sourcing a file

It is not necessary to type R commands directly into R. Fileslze written and ‘sourced’. If all your
commands are in a file (myfile.r) and R is open in the same dirgeis the file, the command:
source("myfile.r")

reads in the commands and runs them in R.

Create a file in Emacs called myfile.r containing:
x <- 1:10

y <- x*b

plot(x,y)

print(x)

print(x) returnsx in the same way does when typed directly into R.

Then, in R type:

source("myfile.r")

In Linux, files can be also run from the terminal.
R -slave < myfile.r

R — loops and functions
Loops —for

It is often useful to be able to repeat the same operation aadvay to do this is using a for-loop.

e |n a text file save this code:

for(i in 1:5){

46

print (i*i)

3

e Run the scriptin R.

e A loop can be used to compare samples from a Normal distobutin the example below
varies.

x <- seq(0.5,2.5, 0.5)
t <- 0
plot(density(rnorm(100, 0, 1)), ylim=c(0, 0.1), type="n")
for(i in x) {
t <- t+1
lines(density(rnorm(100, 0, i)), col=t)
}

e What doexype="n" do?

e Compare samples from Normal distributions where you replgatsame sampling procedure.
What happens as you decrease/incre@se

e Try the examples in your lecture notes.

Loops —while

It is also possible to write loops with thénile command.

e Try this:

sumi <- O

i<-0

while(sumi < 10){
i<- i+l
sumi <- sumi+i
print(c(sumi, i))

}

e awhile loop repeats the commands between the {}'s until the whidéeshent is met.

47

Theif statement

eg
e €0

x <- 1:10
if (length(x) > 5){
print (mean(x))

}
e can also taif condelse eg

x <- 1:3

if (length(x) >= B){
print (mean(x))

} else {
print ("Error: x < 5")

3

Writing a function in R

e Create the following function:
mymean <- function(data){
m <- sum(data)/length(data)
return(m)

3

e Create a small dataset

e Comparenymean (x) with mean (x)

10 Further reading

10.1 Reading material

Reading material for R is available on the
Internet

Dozens of books are available

Within R use

help(topic) or ?topic, e.g.

>2lm

Search the Internet on any topic, e.g. using Google to lopkglicases such as
“linear models with R”

and this will typically return several useful links.

48

