
STATS240.1 A short course in R

Gunnar Stefánsson, Ásta Jenný Sigurðardóttir and Lorna Taylor

October 17, 2012

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

ACKNOWLEDGEMENTS

This course has been developed in part as it
has been taught at the Univ. Iceland Dept.
of Biology http://www.hi.is

1

Contents

1 Introduction and installation 3

1.1 About R . 3

1.2 Introduction 4

1.3 Documentation 4

1.4 Working with R .. 4

2 Introduction to data analysis in R 6

2.1 Starting up .. . 6

2.2 Before you begin 6

2.3 Data vectors in R .. . 8

2.4 Deleting and listing objects 9

2.5 Entering data into a file 10

2.6 Reading data into R 11

2.7 Data summaries in R 12

2.8 Random numbers in R .. . 13

2.9 Simple data plots in R 13

2.10 R and emacs .. 14

3 Command files 17

3.1 Repeated commands 17

3.2 Command files .. 17

3.3 Running commands stored in a file 18

3.4 Batch runs .. 18

4 Functions in R 19

4.1 Introduction to functions in R 19

4.2 Functions in command files 19

4.3 Plotting functions 20

4.4 Run commands .21

5 Statistical models 22

5.1 Linear statistical models 22

5.2 Nonlinear statistical models 24

2

5.3 Miscellaneous statistical models 25

5.4 Further reading 26

6 Data structures in R 27

6.1 Vectors .. 27

6.2 Naming vector elements 27

6.3 Indexing vectors 28

6.4 Arrays and matrices 28

6.5 Indexing arrays and matrices 29

6.6 Names of rows and columns 30

6.7 Lists .30

6.8 Data frames .. 31

7 Advanced data manipulation in R 36

7.1 Tabular summaries in R 36

7.2 Frequency tables 36

7.3 Row and column summaries 37

7.4 Operations on data columns 38

7.5 Other tabular functions 38

8 Plotting with R 40

8.1 Some common plot commands 40

8.2 More plot commands .. . 41

9 Programming R 43

9.1 The if statement 43

9.2 Loops - for .. 43

9.3 Storing loop results 44

9.4 Loops - while .. 45

10 Further reading 47

10.1 Reading material 47

3

1 Introduction and installation

1.1 About R

A general purpose statistical package

• Data handling

• Visualization

• Linear models

• Other models

• Bioinformatics/molecular
biology
(http://www.bioconductor.org)

• Population dynamics (Epoc,
FLR, Gadget stuff)

• Financial mathematics

• Simulation, bootstrapping etc

• General programming

The R package is free software, copyrighted by the GNU General Public License.

It can be obtained from the R project web page: http://www.r-project.org/ as a binary or source code.

Installation should be a trivial exercise.

Note that R is available for most operating system. The followin notes emphasize running R under
Linux, but the differences only appear when R connects to theoperating system (e.g. through reading
data files).

R is an open source extensible general purpose statistical package. It can thus be used for simple and
elaborate data analysis, and R excels at visualization.

Several web pages are dedicated to R. These include the R project homepage, http://www.r-project.org.

Since R is extensible and has its own programming language, it can in principle be used for any arbitrary
computations.

Many scientific fields have chosen R as the primary tool. The reason for this is the combination of
extensibility with access to a large collection of tools such as statistical and plotting routines.

In fishery science, Epoc is an ecosystem simulator and FLR is ageneral stock assessment tool, both
written in R. Output from the ecosystem toolbox Gadget is traditionally analysed using R and a simulator
has been written in R to generate simple versions of Gadget populations. R has also been used to
simulate the effects of management measures such as marine protected areas etc.

Statistics in molecular biology is a field which extensivelyuses R and has a large web site dedicated to
using R for the analysis of data on gene expression as well as very many other uses. It is even possible
to find an interesting DNA-sequence and use R to find abstractsof publications which refer to this
sequence.

Statistical models in R include the usual linear models but also include nonlinear models along with
models with error structures other than Gaussian, e.g. generalized linear models (GLMs), generalized
additive models (GAMs) etc.

Naturally R has simulation routines and can generate randomnumbers from all sorts of distributions.
Combined with the programming environment this makes R wellsuited as a simulation tool. In this case
R is also easily implemented on computer clusters where simulations are commonly run in parallel on

4

dozens of computers simultaneously.

1.2 Introduction

Obtain R from http://www.r-project.org/
Read instructions and install

The R package is free software, copyrighted by the GNU General Public License.

It can be obtained from the R project web page: http://www.r-project.org/ as a binary or source code.

Installation should be a trivial exercise.

Note that R is available for most operating system. The followin notes emphasize running R under
Linux, but the differences only appear when R connects to theoperating system (e.g. through reading
data files).

1.3 Documentation

See http://cran.r-project.org/manuals.html
or various books on R.

The R project home page contains several manuals and links tofurther material (see http://cran.r-
project.org/manuals.html or various books on R).

Documentation on Splus is also applicable to R as most commands are exactly the same.

1.4 Working with R

> dat<−read.table(...
> summary(lm(...
> source("...

> postscript(...
> plot(...

> plot(...

Edit commands

Edit data

Emacs editor

Data file

Command file

(Interactive R)

R session (shell window)

R graphics window

R graphics file

R output file

LaTeX report

includegraphics...

include...

Although R can be used in many environments, by far the most productive way to use R is by running
R under Linux, using emacs for editing command files and usingLaTeX for all word processing.

The details of how analyses are undertaken and how reportingis done will vary. However, in order to
work in a structured and organized manner it is essential to keep a record of the commands used in the
analysis. Hence command files are needed to store commands tobe re-used.

5

Similarly, graphical output is best stored in files rather than only viewed on-screen. Thus, normally
plots are first generated interactively on-screen and later, as the proper plots appear, these get stored in
file. Commands to generate the plots are also stored in files and thus it is possible to revisit the entire
analysis at a later stage.

Command files are used to keep a record of work and to store frequently-used commands. For exam-
ple, when developing models, the approach is to first developmodels interactively until an appropriate
model is found. Then the corresponding commands are stored in a file so as to provide a record of pre-
cisely which model was used. Similarly, often-complex input commands are stored in files. A “source”
command is used to execute the commands in the file. There are several reasons for this:

• Avoiding repetition

• Typographical errors are minimized

• A formal record is kept of the commands used

Similarly, graphical output is best stored in graphics filesrather than only viewed on-screen. Thus,
normally plots are first generated interactively on-screenand later, as the proper plots appear, these get
stored in file. Commands to generate the plots are also storedin files and thus it is possible to revisit the
entire analysis at a later stage.

R users shouldnever use copy and paste to take a plot from a plotting window into a word processor.
There are simply much better ways to do this. R can generate plots in a wide variety of different formats
and these are best stored in files once the plot is considered complete and the word processor is then
asked to use the plot in the file.

An experienced R user will always have a complete record of how every plot was generated: A command
file will exist to show exactly how the plot was made and placedin a plot file. The word processing file
will contain a link to the plot in a plot file.

References

The R project on-line manuals http://cran.r-project.org/manuals.html

%T An Introduction to R %A W. N. Venables, D. M. Smith %D 2002 %INetwork Theory Ltd. %P
156pp ISBN: 0954161742

%T Introductory Statistics with R %A Peter Dalgaard %D 2002 %I Springer-Verlag %P 288pp ISBN:
0387954759

6

2 Introduction to data analysis in R

2.1 Starting up

Linux: Enter "R" at the shell prompt
Windows: Find R in the startup menu

Under Linux, start up a command (shell) window and then give the command "R" (note the upper case).

Under Windows, find R in the startup menu or as an icon somewhere (e.g. on the desktop).

R will then start up and wait for the user to enter commands.

2.2 Before you begin

“>” is the R prompt

Comments are marked with #

To get detailed information about a func-
tion, type:

> help("function name")

Notice that most R commands are actually
calls tofunctions which implies that they
are followed by parentheses.

The prompt from R is “>”, which means that R is ready to accept acommand from the user. If you type
in examples from the text be sure to omit the prompt character.
Comments are marked with #

To get detailed information about a function, type:

> help("function name")

R is normally command-orientated. This means that R expectsthe user to type in a command from the
keyboard, rather than clicking with the mouse at buttons in various places on the screen.

These commands are entered at the R command prompt (or storedin command files). When a command
has been given it is possible to re-run the same command by using the arrow keys to "back up" through
the command history and hit enter at the command to be re-run.It is also possible to edit the commands
in the history list and run the modified command. This is the recommended method of running R
interactively.

In particular, the user shouldnever enter a complex command twice. Rather, the previously run
version should simply be edited. This greatly reduces the probability of new errors being entered.

R in Linux

Under Linux it is customary to begin in a command (shell) window. This can normally be started up
by right-clicking on the background and selecting the appropriate item, or manually firing up gnome-
terminal (better than xterm).

This Linux command window is now ready to accept any commandsfrom the user. Usually this is
indicates by a dollar-sign. For example one can give the command “ls” to list files, “mkdir newdir” to

7

create a new directory (folder) etc. Select a directory for Rwork and go to that directory, for example:

$ d

$ mkdir test

$ d test

$ mkdir R

$ d R

The next step is to start up emacs or xemacs. For this tutorialxemacs will be used.

$ xemas test.r &

This command tells xemacs to start up a new window where the file “test.r” is to be edited. This will
be opened as a new file if it does not already exist. The apersand at the end of the line is an indication
to the Linux shell that xemacs is to run in background. If thisis not done, then the shell will wait for
xemacs to complete before we can give any new commands.

When reading in data from files (or running scripts) it is often convenient to start R in, or close to, the
directory the files are stored in.

To quit R:
q()

You will be given 3 options:y/n/

y saves the ‘objects’ you have created and exits.
n just exits.
 cancels the quit command.

For now you can just usen.

In R you can repeat, and recall and edit previous commands using the up and down arrows.

Help

When in R, for help on individual commands do e.g.:

help(mean)

? mean

within help use

<space> to page down the help
q to quit help
f to move forwards
b to move backwards

At the end of help you will find examples of how the commands areused.

R in Windows

R can also be run in Windows with the R gui opened either from anicon or a menu.

To select the directory in which R is started:

File → Change dir ...

To quit R:
q()

You will be given the option of saving the workspace.

8

Help

When in R, for help on individual commands do eg:
help(mean)

? mean

At the end of help you will find examples of how the commands areused.

2.3 Data vectors in R

A typical session
> x<-42 > x

1

42 > The object x contains the single num-
ber 42. Typing the name of an object dis-
plays the content.
Some commandsx<-c(1,5,3,6) myseq<-
1:5 longseq<-10:100 fractions<-
(1:150)/100 x<-1:4 y<- -1:4 z<-c(x,y)
w<-c(55,4,y,43,x) z<-c(z,z)

The symbol "<-" denotes assignment. Thus, "x<-1" means "assign the numerical value 1 to the object
x". In simple words this means that "x" contains the single number "1" after the operation.

The assignment operator is used to assign numerical, character or more complex values to objects. If
the object on the left hand side of the assignment exists it isoverwritten. If it does not exist it will be
overwritten.

Alternatively, one can use the equals sign for assignment inR. It is, however, better practice to use “<-”
since this should be thought of as a left-arrow symbol and clearly can only mean an assignment. Earlier
versions of S and Splus did not allow a single equals sign for this purpose but instead permitted the use
of an underscore. The only symbol which works in all cases is “<-” and it is therefore the recommended
version.

Example: To put a number into a variable enter the command

x<-1

To display the contents of such an object just type the name ofthe object. The entire session could look
like this:

> x<-42

> x

[1℄ 42

>

To enter a series of numbers:

x<-(1,5,3,6)

Shorthand for a sequence:

myseq<-1:5

longseq<-10:100

frations<-(1:150)/100

9

where the last line actually generates the numbers 0.01, 0.02, ..., 1.50.

The “c” command can be used to combine one or more series of numbers:

x<-1:4

y<- -1:4

z<-(x,y)

w<-(55,4,y,43,x)

z<-(z,z)

The user should try all of these commands until they become completely natural.

2.4 Deleting and listing objects

ls() - list objects
rm() - remove objects

To get a list of available object use the “ls()”-command. To delete files, use the “rm()”-command.

Notice that most R commands are actually calls tofunctions which implies that they are followed by
parentheses, as in “rm(x)” to delete the object “x”.

Notice also that merely typing the name of a function:

> ls

just outputs the “ls” function itself - not the list of objects.

Note: A very common source of confusion is where commands are given: R commands can only be
given to R, normally at the R prompt. Linux shell commands aregiven to a Linux shell only.

Some of these commands are similar enough that beginners give R commands to the shell and shell
commands to R. It is important to remember that R commands canonly be given while R is running and
this is always indicated by the “>” prompt.

Commands can be continued onto a second line if needed. R willdo this automatically and assume a
continuation line is intended when a command is obviously not complete. For example, the following
may describe a session:

> x<-(1,2,

+ 3,4)

> x

[1℄ 1 2 3 4

> y<-1:4

> x+

+ y

[1℄ 2 4 6 8

>

Notice, therefore that if a user incorrectly enters e.g. an arithmetic symbol at the end of a line, then R
will assume that a continuation is required and start the next line with a plus-symbol. In the case us such
an error, the user should hit control-C to cancel the command.

10

2.5 Entering data into a file

First enter data using an editor

• Windows: Notepad or emacs

• Linux: Emacs or vi

Data are normally first entered into data files and subsequently read into the program which is to be
used to analyse the data. It is almost always a poor idea to enter data directly into an analysis program
without maintaining an external data file.

Small data sets are commonly entered by hand using a text editor. Formatting programs such as Word,
WordPerfect or StarOffice should not be used for data entry. The data file should contain only data,
though a single line at the top of the file, describing what is in each column, can be useful. For the same
reason, spreadsheets should not be used to enter data.

A data file should thus never contain formatting commands or colored blocks of text etc. It should
contain only numbers or codes to be used in analysis. When this simple rule is adhered to the data can
be entered into any package whatsoever and can be validated using standard programs.

To enter data underWindows one would normally use Notepad, though a much better approach is to
obtain some version of emacs for Windows.

A still better approach is to install a more data-orientatedoperating system such as Linux (or any Unix
variant, but Linux happens to be free). The reason for this preference is that the sheer number of small
programs for simple data manipulation under Linux far outweighs the time taken to install the operating
system, if the intent is to do considerable data analysis.

With the advent of R it is possible to run the same analysis system under several operating systems, thus
outweighing some of the inconveniences of unstable operating systems. Nonetheless, for larger data
sets it quickly becomes difficult or impossible to analyse them except on systems which are designed
for handling large amounts of data.

Data entry by hand on aLinux system normally consists of first starting up a terminal window followed
by starting a text editor and indicating which file is supposed to contain the data.

For the “vi” editor this becomes the sequence:

vi mydata.dat start the editor
i go into insert mode

1 4.5 enter data, one
2 5 line at a time

<esc> leave insert mode
:wq write the file and quit editing

The emacs editor does not have command- or insert-modes but accepts commands as control-sequences:

emacs mydata.dat start the editor
1 4.5 enter data, one

2 5 line at a time
C-XC-S save the file
C-XC-C exit the editor

A note on file names:

File names should be “short and sweet”. There is never any good reason to use 52 character file names
containing spaces and international characters. The “ending” of a file name is usually 1-4 characters

11

and is normally used to indicate the type of file in question. Thus one could use file names such as

mystuff.dat | a data file

plotting.r | a file with R plotting ommands

hakewts.dat | the obvious thing

The use of spaces is filenames (not to mention directory names) is an extremely bad habit and the same
applies to international characters. Thesewill eventually cause problems when files are exchanged
between people using different types or versions of computers, operating systems or languages.

In particular, it is a really, really bad idea to use spaces orinternational characters when using a system
such as R which is designed to work on multiple platforms.

2.6 Reading data into R

Data in a file:
abc xyz

1 4
2 5

15 3
Read them into a data frame:> mydata<-
read.table("x.dat",header=T)
Type the name to display the data
> mydata abc xyz 1 1 4 2 2 5 3 15 3

Assuming that data exists in a simple text file, the next step is to read it into the program to be used for
analysis.

The easiest way to read data into R is to use a single line at thetop to indicate column names.
Note: To get a good data set for the following examples, reopen mydata.dat and add lines so it looks
like this:

x y
1 4.5
2 5
9 3
2 1
1 5.5

Then use the R command read.table()

Note that read.table() has many options and can handle a variety of different file formats.

Example: Note that the “> ” is the prompt from R and is not entered by the user.

In the following R session the user tells R to read the file mydata.dat into R calling the result mydata.

> mydata<-read.table("mydata.dat",header=T)

Since the first line contains the name of the columns we chooseheader=T

To see the data in R type the name of the object containing the data set:

12

> mydata

x y

1 1 4.5

2 2 5

3 9 3

4 2 1

5 1 5.5

The resulting “mydata” which contains the data is a data frame (see chapter 6.1 on data structures).

Several methods exist to enter data into R. The most common method for multi-column data is the above
“read.table” command, whereas “scan” is easier to use for individual data columns.

The “scan”-function can also be used to read a single column of numbers from the keyboard:

> x<-san()

1: 1 2 3

4: 2

5: 3

6: 7 5 4

9:

Read 8 items

> x

[1℄ 1 2 3 2 3 7 5 4

>

The “read.table” command returns a “data frame” (more on this later). Each column in the data appears
as a column in the data fram and can be referenced using the dollar sign, e.g. with “mydata$x”.

2.7 Data summaries in R

mean Means of individual columns
var Variance of individual columns
sd Standard deviation of individual columns
median Median of individual columns

x<-mydat$x y<-mydat$y mean(x) var(x)
sd(x) median(x)

For computing averages of data several approaches are available. in R, including the following com-
mands:

mean Mean of individual column
var Variance of individual column

Example: If the data frame “mydata” contains “x” and “y” as columns, then these can first be extracted
and the mean of “x” computed with the commands

> x<-mydata$x

> x

[1℄ 1 2 9 2 1

> y<-mydata$y

> y

[1℄ 4.5 5.0 3.0 1.0 5.5

> mean(x)

[1℄ 3

13

The variance of the “x”-values is obtained with

> var(x)

[1℄ 11.5

and the standard deviation can be obtained with the “sd” function.

2.8 Random numbers in R

10 000 uniforms

runif(10000)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Random numbers are very useful for
checking out properties, sampling schemes
etc.
Common functions:
rnorm()
runif()

Some examples:

Random normal (Gaussian), single number:
rnorm() Uniform between 0 and 1, ten numbers:
runif(10) Single observation from a binomial distributionwith 5 trials each a probability 1/2 of success:
rbinom(1,5,.5)

A typical way of looking at random numbers:
hist(runif(10000),main="10 000 uniforms",nclass=50)
Note the use of nclass.

2.9 Simple data plots in R

0 2 4 6 8 10

0
5

10
15

20
25

30

Cost

P
ro

fit

Figure 1: A typical scatterplot from R

x<-1:10 z<-2+3*x y<-z+rnorm(10)
plot(x,y, xlim=c(0,10),ylim=c(0,30),
xlab="Cost",ylab="Profit") lines(x,z)

The most illustrative plots of data include scatterplots and line plots.

14

Most spreadsheets do not provide proper line plots. Thus, the incorrect assumption is usually made that
the data which go on the x-axis are categorical variables andthe data is centered on these as if they were
groups. One solution to this is to always ask for scatterplots when plotting data within spreadsheets.
Within scatterplots options it is subsequently possible toask that the points be joined by lines. A much
better option is to use packages designed for visualising data in a scientific manner.

Within R the simplest family of plotting functions is the “plot” family, which includes the “plot”, “lines”
and “points” functions. Options to these are numerous and best viewed through the associated help files.

Before any model-based analysis, naturally the data shouldfirst be plotted in the form of a scatterplot in
order to verify that a straight line makes sense, using

plot(x,y)

Note: The plot command has a long list of options and versions of theplot command exist for many
different types of objects.

Usually a simple quick-and-dirty scatterplot is simply generated with “plot(x,y)”, but usually one will
want to modify this plot in various ways.

Suppose we have the following “x”, “y” and “z”-vectors:

x<-1:10

z<-2+3*x

y<-z+rnorm(10)

where the x-variable simply contains the numbers 1, 2, ..., 10, the z-vector describes a straight line in x
and y is a simulated set of numbers with Gaussian measurementerrors around the line.

Some typical methods of plotting such pieces of informationinclude:

plot(x,y) # A point plot (satterplot)

plot(x,z,type='l') # Just the line

Adding a line to an existing plot is often useful

plot(x,y) # A point plot (satterplot)

lines(x,z) # Add the line

The default limits or labels on the axes are not always sensible and of course these can be changed:

plot(x,y,xlim=(0,10),ylim=(0,30),xlab="Cost",ylab="Profit")

lines(x,z)

2.10 R and emacs

There is considerable support within emacs for different computer languages and other programs. For
example, emacs knows how to indent R functions, check that parentheses are closed etc.

Further, emacs can start up R so the program runs within an emacs buffer. This provides an easy way for
copying and pasting R commands from one buffer into another.On the other hand emacs also provides
editing functions which e.g. put the current line into the R buffer etc.

15

R/S-mode for .r-files
Interactive R/S startup within emacs!

Additional notes/practicals

R in Emacs

R is run either in the shell window or as a process within emacs/xemacs. The following describes the
latter. Under Linux, start up emacs/xemacs from a terminal window. Under Windows, make sure your
have started up xemacs with the appropriate additions and start up xemacs.

A new window should now be open, where xemacs waits for us to modify the file test.r. At the bottom
of the window, xemacs display ESS[S] which indicates that xemacs is in ESS-mode where ESS is
short-hand for Emacs Speaks Statistics. This mode has several useful features for editing R or Splus
code.

If you have an xemacs/emacs window open, then you can split itin 2 parts, so you can have a record of
you commands in one part of the window and run R in the other part.

The emacs and xemacs window commands are not quite the same, though most keyboard commands
are. To start up R within xemacs, either select from the menu,Tools->Statistics->R Runtime or use the
keyboard commands “M-X R”. The command M-X is emacs-speak, pronounced Meta-X and is usually
implemented through <escape>-X (first hit the escape buttonand then x).

To do this:

File → Split window

If you do that you will also see the equivalent Ctrl command. What is it?

To start R you then do:

Tools→ Statistics→ R runtime

At the bottom of the Emacs window the directory to run R in is selected, to run R in the directory you
are in hit return.

If you open a file with a.splus or .r extension, eg plot-run1.splus, in Emacs, it will highlightthe
text in different colours which may help with understandingthe syntax. It is the file extension that tells
Emacs the language you are using. Emacs also checks the parentheses (ie(,), {, }, [,℄) match
which is very useful in longer commands and when writing functions.

Now xemacs has two main buffers, one contains the file test.r and the other contains the R process where
R awaits your commands. You only see the R buffer, however. You can enter R commands manually
into this buffer.

16

Normally one wants to view both the file and the R process at thesame time. This is done by splitting
the window using either the View->Split command or C-X2 (C-Xis Control-X – hold down the control
key while pressing x).

Then change buffer in one of the windows, using C-XB or by selecting the appropriate buffer in the
Buffer menu.

You now have an R window and a window containing the R commandswhich can be either stored in
the named file or executed.

Several web pages describe the ESS command set. The main point of these is htat when you type R
commands into Emacs, they can be run in R using keyboard shortcuts.

The most useful are:
Ctrl Ctrl j runs the line
Ctrl Ctrl r runs a highlighted region
Ctrl Ctrl b runs the file (buffer)

Naturally, once the R commands are saved as a file, e.g. “test.r” has been saved one can use the R
command

soure("test.r")

to run the commands through R. This can be done anywhere, withR in emacs or from R running on the
Linux shell command line.

In Emacs and Xemacs, help is opened in a buffer. If, after opening a help file in Emacs you cannot see
the file you were working from you can recall it using theBuffers menu which lists all files open in the
Emacs window.

References

%T An Introduction to R %A W. N. Venables, D. M. Smith %D 2002 %INetwork Theory Ltd. %P
156pp ISBN: 0954161742

%T Introductory Statistics with R %A Peter Dalgaard %D 2002 %I Springer-Verlag %P 288pp ISBN:
0387954759

R Project home page http://www.r-project.org/

R manual page http://cran.r-project.org/manuals.html

Contributed R documentation http://cran.r-project.org/other-docs.html

R FAQ http://www.ugcs.caltech.edu/info/R/R-FAQ_toc.html

R newsletter http://cran.r-project.org/doc/Rnews/

ESS: Emacs Speack Statistics http://stat.ethz.ch/ESS/

Reference card for R within emacs (ESS) http://stat.ethz.ch/ESS/refcard.pdf

R and Emacs tutorial http://www.stat.vt.edu/ sbates/teaching/s4004/Handouts/RESS.pdf

Emacs commands http://www.utexas.edu/cc/docs/ccrl34.html

R for Windows FAQ http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html

Xemacs for Windows http://www.xemacs.org/Download/win32/

Xemacs for Windows Download link http://ftp.dk.xemacs.org/pub/emacs/xemacs/xemacs-21.4-windows/

17

3 Command files

3.1 Repeated commands

The following commands can be used to
compute the mean weight and mean length
from a given file:
data<-read.table("file.dat",header=T)
length<-data$length weight<-data$weight
meanlength<-mean(length) meanweight<-
mean(weight) print(meanlength)
print(meanweight)
These may need to be repeated for different
data files...

Few tasks are only done once. Most real-life projects involve several repetitions of the same or very
similar computations. When these computations are more than single lines, it is very useful to store the
commands as files which can be called upon to rerun the sequence with little effort.

Example: Suppose there are several data files for length and weight andthe mean length and mean
weight are to be computed from the data in each file. This wouldindicate that the following commands
need to be run for each file.

data<-read.table("file.dat",header=T)

length<-data$length

weight<-data$weight

meanlength<-mean(length)

meanweight<-mean(weight)

print(meanlength)

print(meanweight)

When these commands are re-run for different data sets, the only change is to the name of the data set,
i.e. the first line. It is obvious that there are considerablesavings if the commands do not need to be
re-entered every time.

3.2 Command files

R commands can be stored in a file for later
perusal.
Example: Use simple copy-paste from R to
an editor and save into file.
Typical name: file.r
Use emacs/notepad to edit files - text only,
no formatting - not Word etc.
Alternative: Run R within emacs and open
file - with two windows.

Storing the commands in a file can save substantial time and effort. Normally the name of such a
command file would be of the form file.r.

A command file should contain only text, no formatting such asboldface or colors etc.

Command files are normally edited using emacs or xemacs sincethese editors know how to display and
indent R code.

18

3.3 Running commands stored in a file

Store R commands in a file with some
name, e.g. “file.r”.
Within R give the command
> source("file.r")
This makes R read and execute all com-
mands in the file.

Giving the command

soure("file.r")

causes R to execute all the commands in the file.

Notice that when R is running commands automatically in thismanner, R does not print output from
most commands. Thus, in order to see actual output, a formal "print" command (or equivalent) needs to
be given within the file.

Such command files frequently contain commands to print results prettily rather than print inexplicable
numbers alone.

Example: Suppose the file lw.dat contains the following data:
length weight

34 3.2
42 3.5
37 3.0

A second file, e.g. calcmean.r may contain the commands to analyse these data and to print some basic
results:

data<-read.table("lw.dat",header=T)

length<-data$length

weight<-data$weight

meanlength<-mean(length)

meanweight<-mean(weight)

at("The mean weight is: ",round(meanweight,2),"\n")

at("The mean length is: ",round(meanlength,2),"\n")

The "source" command can now be given within R:

> soure("almean.r")

The mean weight is: 3.23

The mean length is: 37.67

3.4 Batch runs

Pure batch processing
R –slave < cmdfile
or in background.

In addition to running R interactively, it can be run in non-interactive mode. A particularly useful
approach under Linux is

19

R --slave < mdfile &

When this approach is used, care must be taken to make sure that output is into text files and plot files
rather than onto the screen.

If output is given to the screen, a command such as “script” can be given in the shell to store output.

4 Functions in R

4.1 Introduction to functions in R

A function is a collection of commands,
e.g.testfun<-function(x) return(x*x)
This can then be called with an argument,
testfun(3) testfun(25) testfun(x)

A function is a collection of commands, e.g.

testfun<-funtion(x){

return(x*x)

}

This can then be called with an argument,

testfun(3)

testfun(25)

testfun(x)

Example: The following function will calculate the sum of two numbers

> sum<-funtion(x,y){ # all the funtion sum and the input x and y

+ s<-x+y # define s as the sum

+ return(s) # let the funtion return the sum

+ }

> <-sum(2,3) # try the funtion

>

[1℄ 5

4.2 Functions in command files

Normally functions are defined in com-
mand files.

Although functions can be defined directly from the keyboard, this is usually not fruitful since typically
several iterations are needed before a function has been correctly defined. A better approach is therefore
to define the function within a command file.

Example: Suppose the file cmd.r contains the following lines:

20

f<-funtion(x){

y<-x+2

s<-sum(y)

return(s)

}

The following describes a typical use of this function

> soure("md.r")

> f(2)

4.3 Plotting functions

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length

lo
gi

t r
es

po
ns

e

Functions are commonly used for plotting

Example: Suppose we define a logistic function in the file “function.r”, i.e. the file contains the follow-
ing lines:

f<-funtion(x,a,b){

y<-1/(1+exp(-b*(x-a)))

}

This function can now be read into R using the command source("function.r"). This onlydefinesthe
function, however. Note that thearguments to the function are thex-values in the vector “x” and the
two parameters to the logistic.

In order to call the function we subsequently need a few more lines and a typical R session might be

soure("funtion.r")

x<-0:100

y1<-f(x,35,.1)

y2<-f(x,35,.2)

y3<-f(x,25,.2)

plot(x,y1,type='l',ol="blue",xlab="Length",ylab="logit response")

lines(x,y2,ol="red",lwd=2)

lines(x,y3,ol="red",lwd=1)

The above commands will typically be stored in another file, e.g. “run.r”.

Giving the command source("run.r") from the command line inR will then first read the file “function.r”,
which defines the function, then call the function three times in a row, with different arguments and
finally plot the function.

21

An expanded version of the logistic function could be

f<-funtion(x,a=0,b=1){

y<-1/(1+exp(-b*(x-a)))

return(y)

}

Suppose this code is stored in the file “functions.r” in a Windows directory.

A typical file containing the commands to implement the plotscould be the following “run.r” file:

soure(":/temp/funtions.r")

x<-0:100

y1<-f(x,35,.1)

y2<-f(x,35,.2)

y3<-f(x,25,.2)

pdf(":/temp/graph.pdf")

plot(x,y1,type='l',ol="blue",xlab="Length",ylab="logit response")

lines(x,y2,ol="red",lwd=2)

lines(x,y3,ol="red",lwd=1)

dev.off()

The interactive session

> soure("run.r")

will then produce the plots into the file “graph.pdf”.

Alternative graphics formats abound. For example, the “png” command is used to generate PNG
(portable network graphics) files, known to word processors, web browsers etc, “postscript” is used
to generate postscript files and so forth.

4.4 Run commands

• Commonly define functions in
one file

• Often have one file for initial-
ization

• Usually have a another file
which containsall other com-
mands

Most R jobs end up being split into three parts, function definition, setting or reading initial values and
doing actual computation or plots.

Therefore there is usually a structure of files of the form:

• All functions in one file (e.g. functions.r)

• One file for initializing variables and reading data (e.g. init.r)

• Another file containsall other commands (e.g. run.r)

22

5 Statistical models

5.1 Linear statistical models

x 1 2 3 4 5 6
y −7 −6 0 0 −2 6

> summary(lm(y~x))

Call:
lm(formula = y ~ x)

Residuals:
 1 2 3 4 5 6
−1.450e−15 −1.200e+00 2.600e+00 4.000e−01 −3.800e+00 2.000e+00

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) −9.2000 2.4097 −3.818 0.0188 *
x 2.2000 0.6188 3.556 0.0237 *
−−−
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.588 on 4 degrees of freedom
Multiple R−Squared: 0.7596, Adjusted R−squared: 0.6996
F−statistic: 12.64 on 1 and 4 DF, p−value: 0.02368

1

2 3 4

5

6

7

Figure 2: Example output from a simple linear model fit of the form y=a+bx. Items (1)-(2) are the estimates of a and b respectively. The estimate of the
standard error of b is given by (3). The P-value for testing whether the true (underlying) value of b is zero is in (4). Items(5)-(7) give the MSE, R-squared
and P-value for the entire model, respectively.

Mathematical model:

y= α+βx+ ε

R definition:
y∼ x

lm(y x)
Storing the outputfm<-lm(y x).

Suppose that within R a user has two columns of data, “x” and “y”, which come in pairs and there is a
need to fit a straight line through the data points.

Having plotted the data, this is followed by specifying the model, which should be of the formy =
α+βx. The model notation in R for this simple linear model is

y∼ x.

The tilde character (∼) indicates that the left-hand side is a dependent variable and the model is on the
right-hand side. On the right hand side it is implicitly assumed that there will be an intercept (α in the
mathematical model) and therefore there is only a need to list the “dependent” variable(s), in this case
only x.

To fit the actual model the “lm” function is used (lm being short for “linear model”):

lm(y~x)

In order to process the model results, the fitted model is stored under some name, e.g. “fm”:

fm<-lm(y~x).

Example: Suppose the data are given by

x 1 2 3 4 5 6

y -7 -6 0 0 -2 6

A simple linear model can be fitted to the data and the results output using:

> summary(lm(y~x))

The results are shown in the figure.

Note: The output from the various lm-related programs is quite detailed and although a statistics course
can be designed around the interpretation of the results, some basic knowledge is essential.

Consider the output given in the figure.

Example: Consider a data set with a dependent variabley, an independent variablex and a factor,f :

23

x f y

1 1 A 6.367151

2 2 A 10.783743

3 3 A 11.528125

4 4 A 15.564471

5 5 A 18.509431

6 1 B 4.608247

7 2 B 6.849981

8 3 B 12.301949

9 4 B 14.251640

10 5 B 16.483796

11 1 C 6.293174

12 2 C 7.905664

13 3 C 10.640212

14 4 C 15.881404

15 5 C 16.679703

If this data set is read in using read.table, the f-column will automatically become a factor and can be
used directly in a model such as

lm(y~f+x)

> summary(lm(y~x))

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.8277 -0.9488 -0.1151 0.7969 2.1061

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) 2.7466 0.6992 3.928 0.00173 **

x 2.9656 0.2108 14.066 3.04e-09 ***

Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.155 on 13 degrees of freedom

Multiple R-Squared: 0.9383, Adjusted R-squared: 0.9336

F-statisti: 197.9 on 1 and 13 DF, p-value: 3.043e-09

> fm<-lm(y~f+x)

> drop1(fm,test="F")

Single term deletions

Model:

y ~ ff + x

Df Sum of Sq RSS AIC F value Pr(F)

<none> 10.317 2.386

f 2 7.018 17.335 6.170 3.7414 0.0576 .

x 1 263.837 274.153 49.585 281.3080 3.499e-09 ***

Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

24

Use the resid function to extract residuals, then plot theseand standardize to test for normality etc.

Use anova(fm1,fm2) to compare two models.

Having obtained the model, the coefficients can now be obtained, summary statistics of the model can
be listed and the analysis of variance corresponding to the model is obtained:

fm<-lm(y~x).

summary(fm) # General summary of model fit

anova(fm) # Additional variation explained by eah effet

drop1(fm) # Marginal test of eah effet in a model

oef(fm) # Extrat oeffiients of fitted model

resid(fm) # Extrat residual

fitted(fm) # Extrat fitted values

5.2 Nonlinear statistical models

2 3 4 5 6 7 8 9

30
40

50
60

70
80

a

l

Figure 3: Example of a potential nonlinear relationship (length and age).

Nonlinear statistical models involve some nonlinear combinations of the parameters themselves (i.e. not
the independent variables, so e.g.y= α+βx2 is in fact a linear model). Nonlinear estimation methods
are therefore needed.

Example: Suppose the data are

x y

1 3.25

2 2.86

3 2.48

4 2.22

5 2.02

6 1.83

7 1.71

8 1.68

9 1.45

10 1.41

and it is known that the process generating the data is of the formy= α+e1−x/K + ε whereε can be as-
sumed to come from a normal distribution. (These data were infact generated using y<-round(1+exp(1-
x/5)+rnorm(10)*0.05,2).)

25

In this case it is natural to consider the sum of squared deviations:

S=
n

∑
i=1

(

yi −

(

α+e1−xi/K
))2

and estimate the parameters by minimizingS.

Suppose the function S defines the sum of squares as a functionof the two parameters. Normally, this
function would be stored in a file, e.g. s.r and the file would beread in using “source("s.r")”.

Next estimate the parameters using nlm:

nlm(S,(0,1))

$minimum

[1℄ 0.01447913

$estimate

[1℄ 1.051933 4.867273

$gradient

[1℄ -1.116759e-09 2.067758e-10

$ode

[1℄ 1

In order to define a sum of squares as a function of two parameters, the following form can be used.

S<-funtion(beta)

{

alpha<-beta[1℄

K<-beta[2℄

yhat<-alpha+exp(1-x/K)

S<-sum((y-yhat)^2)

return(S)

}

Notice the “trick” of using a vector to store the two parameters. This is needed when using a generic
routine such as nlm since nlm will assume that the parametersare all stored in a single vector.

5.3 Miscellaneous statistical models

Usual assumptions: Linear, Gaussian er-
rors, constant variance, independence.
Alternatively: Nonlinear, non-Gaussian,
heterogeneity, non-independence.
Examples: Length-weight relationships,
spatial correlations etc

Many issues arise with common fisheries data, indicating deviations from the usual assumptions of
linearity and Gaussian distributions.

Thus various nonlinear models have been used for length-weight relationships in fishery science and a
large number of other biological relationship.

To fit a generalized linear model, use a function called glm.

26

5.4 Further reading

Extensive references exist for statistical models in R (or Splus).

For simple statistical analyses the statistical basis can be obtained from any introductory book (such as
Moore and McCabe’s).

For linear models in R, consult any corresponding textbook,(such as Fox et al).

For more detailed regression analysis a comprehensive bookon linear models (such as John Neter et al)
is needed.

References

%T An Introduction to R %A W. N. Venables, D. M. Smith %D 2002 %INetwork Theory Ltd. %P
156pp ISBN: 0954161742

%T Introductory Statistics with R %A Peter Dalgaard %D 2002 %I Springer-Verlag %P 288pp ISBN:
0387954759

%T An R and S Plus Companion to Applied Regression %A John Fox,Georges Monette %D 2002 %I
SAGE Publications %P 312pp ISBN: 0761922806

%T The analysis of variance. %A Scheffe, H. %D 1959 %I John Wiley and Sons, Inc, New York. %P
477pp. ISBN: 0471758345

%T Introduction to the practice of statistics. %A Moore D. S.and McCabe, G. P. %D 1999 %I Freeman
and Company %P 825pp ISBN: 0716796570

%T Applied linear statistical models. %A Neter, J., A Kutner, M. H., Nachtsheim, C. J. and Wasserman,
W. %D 1996 %I McGraw-Hill %P 1408pp. ISBN: 0256117365

27

6 Data structures in R

6.1 Vectors

The simplest data structure is the numeric
vector

The simplest data structure is the numeric vector.
Vectors can be used in arithmetic expressions (operations are performed element by element).

If the vectors do not have the same length then the shorter vectors are reused until they match the length
of the longest vector.

Examples of available arithmetic functions and operators:+,−, ∗, , ,̂ log(), exp(), sin(), cos(), tan(),
sqrt()

Useful vector operations: max(), min(), length(), sum(), prod(), mean(), var(), sort()

Example:
> x<-c(1,2,4,6) # define the vector x
> x*3 # multiply each number in x by 3
> x[2] # the 2nd component of x
> length(x) # shows the length of x

6.2 Naming vector elements

Elements of a vector can have names
> x<-1:4 > names(x)<-
c("one","two","three","four") > x one
two three four 1 2 3 4 >

Naming the elements of a vector can be useful in several regards. Firtly, the elements may correspond
to locations or treatments and thus naming them provides useful identification.

Secondly, as will be seen below, naming can be useful for extracting the appropriate element.

Suppose we give names to the elements of a vector:

> x<-1:4

> names(x)<-("one","two","three","four")

> x

one two three four

1 2 3 4

28

6.3 Indexing vectors

> x<-c(1,2,4,6) > x

2

> x
c(1,4)

> x
−2

> x
x< 3

> x
x== 3

> x<-1:4 > names(x)<-
c("one","two","three","four") > x one
two three four 1 2 3 4 > x

”three”

three 3

Square brackets are used to denote anindex to an element of a vector.

• The usual method to extract one or more elements is to simply list the locations of the items of
interest, with vec[12], vec[c(3,5)], vec[2:6] etc.

• It is also possible to use a logical expression to obtain a vector of true/false values of the same
length and use the logical vector as an index.

• If a numerical index vector contains negative values then they will beomitted from the result.

• Finally, if the elements have names, then the vector can be indexed with a sequence of (character)
names to be extracted.

Example:

> x<-(1,2,4,6) # define the vetor x

> x[2℄ # the 2nd omponent of x

> x[(1,4)℄ # gives elements 1 and 4

> x[-2℄ # gives all elements in x exept no 2

> x<3 # returns a logial vetor

> x[x<3℄ # all elements of x whih are less than 3

> x[x==3℄ # all elements of x whih equal 3

> x["three"℄ # the element named "three"

6.4 Arrays and matrices

A<-array(c(1:15),c(3,5))
M<-matrix(c(1:10),nrow=2,ncol=5)

An array is a data construct that can be though of as a matrix with multiple dimensions.

A matrix in R is an array with 2 subscripts. R contains a variety of operators and functions which work
with matrices.

29

Matrices can be added and subtracted from each other using + and - as expected, if the matrices are of
the appropriate dimensions.

Care must be taken with the * operator. If A and B are matrices then A*B is a matrix of element by
element products but A%*%B is a matrix multiplication.

In addition to simple operators several functions are available for matrix manipulation. Useful matrix
functions include: t, nrow, ncol, diag.

Example:

> A<-array((1:20),(5,2,2)) # make the 3-dimensional array Ai, j ,k

> A[5,1,1℄ # A5,1,1

[1℄ 5

> A[1,2,1℄

[1℄ 6

>M<-matrix((1:6),nrow=2,nol=3) # make the 2×3 matrix M

> M

[,1℄ [,2℄ [,3℄

[1,℄ 1 3 5

[2,℄ 2 4 6

> t(M) # transpose M

[,1℄ [,2℄

[1,℄ 1 2

[2,℄ 3 4

[3,℄ 5 6

> diag(3,2) # make a 2×2 matrix with 3 on the diagonal

[,1℄ [,2℄

[1,℄ 3 0

[2,℄ 0 3

6.5 Indexing arrays and matrices

Requires index to row and column.
Can use logical operators.

Example:

> A[2,3] # returns the element in row 2, column 3
> A[2,] # returns all elements in row 2
> A[A<2] # returns all elements that are less than 2

30

6.6 Names of rows and columns

Use the dimnames command to name ele-
ments of a vector

Example: Paired data can be read in using read.table and then the command

dimnames(x)<-list(sex=("male","female"),length=as.harater(1:25))

can be given.

6.7 Lists

A list can contain objects of different
types.
> places<-
c("Washington","Reykjavik","Oslo")
> genders<-c("male","female") >
x<-list(places,genders) > names(x)<-
c("Capitals","Sex")
The list can be viewed like other objects:
> x $Capitals

1

"Washington" "Reykjavik" "Oslo"
$Sex

1

"male" "female"

Objects of different types can be aggregated together into anew object called alist.

Example: A somewhat abstract list might contain information about age, gender and height.

> a<-list(age=10,gender="female",height=(150,135,143,127,149))

This list consists of three components. As with any R object,typing the name of the list reveals all of
its contents.

> a

$age

[1℄ 10

$gender

[1℄ "female"

$length

[1℄ 150 135 143 127 149

The components of the list can be referred to in several different ways, notably by index or by component
name:

> a[[1℄℄ #use the index to get the age

[1℄ 10

> a$age #use the omponents name to get the age

[1℄ 10

31

In some cases it is useful to loop over the names and use them somewhat like a vector reference, in
which case the reference is of the form listname[[itemname]]:

a[["height"℄℄

6.8 Data frames

A data fram is a matrix-like structure
whose columns may be of differing types
(it shares many of the properties of matri-
ces and of lists).

There are number of ways to make a data
frame:
data.frame(tag.1=value.1,...tag.n=value.n)
as.data.frame()
read.table()

A dataframe is a special type of list which is organized as a matrix-like structure whose columns may be
of differing types. It is thus a list that satisfies certain conditions and can e.g. be displayed in a matrix
form.

R includes several commands which return dataframes.

data.frame(tag.1=value.1,...tag.n=value.n)makes a data frame
from values no 1 to n

as.data.frame() coerces its arguments
to a data frame

read.table() read an entire data set
from an external file

Additional notes and practicals: R commands

Vectors

The simplest data structure in R is a vector.

To create a vector of 2.3, 4.2, 5.7, 9.2, 4.7.

x <- (2.3, 4.2, 5.7, 9.2, 4.7)

<- means assigned the value, do not use= .

To see x.
x

You can then use x.
1/x

y <- (x, x)

y

In R, x is known as an object.

To list all the objects
ls()

and to remove individual objects
rm(x)

rm(y)

or
rm(x,y)

32

These are similar to the shell commands you learned earlier.

Vector arithmetic

Sequences of numbers can be generated as follows:
x <- 1:10

y <- 5:1

z <- seq(2,10,2)

w <- seq(10,5,-0.5)

Q. Which command returns a sequence of numbers from 0 to 5 withintervals of 0.5?

In operations the colon has the highest priority e.g.
2*1:10

compare
n <- 5

1:(n-1)

1:n-1

To repeat blocks of numbers.
rep(2, times=5)

rep(2,5)

rep(1:2,5)

rep(1:2,(5,5))

(rep(1,2), rep(3,3))

rep((1,3),(2,3))

Q. Which commands return the following sequences of numbers?
2 4 2 4 2 4
1 1 1 1 5 5 5 5 5

Elementary arithmetic operators are the usual

+, -,*, /, ^

Other functions include: log, exp, sin, os, tan, sqrt e.g.

x^2

x^(0.5)

square root
sqrt(x)

Natural logarithm (ln) and exponential function
log(5)

log(x)

exp(3)

Log base 10
log(5,10)

log(x,10)

33

Minimum, maximum and range of a vector.
min()

max()

range()

Number of elements in a vector.
length(x)

Sum
sum(x)

Mean, variance and standard deviation
mean(x)

var(x)

sd(x)

Quantiles
median(x)

quantile(x)

Absolute value
abs(-5)

Indexing vectorsR is a very useful language for manipulating data, which is a very important tool for
exploratory statistical analyses and plotting data. To usethis feature of R you need to learn how the data
are indexed. These are very important commands for you to understand.

In the simple case of a vector:
x <- 1:20

x

x[1:5℄

x[10:12℄

x[-1:-5℄

x[-(1:5)℄

x[length(x)℄

x[length(x)-1℄

Q. Which command returns the 15th number in x?
Q. Which command returns the second last number in x?

Matrices

Other data objects include matrices.
x <- 1:10

y <- x*x

z <- bind(x,y)

creates a matrix called z with 2 columns.

Q. What does z look like?

Elements of z can be extracted in a similar way as for a vector.The row and column need to be identified.

34

z[1,℄ # is the first row of z
z[,1℄ # is the first column of z
z[1,2℄ # what does this do?

For the dimensions of a matrix or array, the number of rows andnumber of columns.
dim(z) # row and column dimensions
dim(z)[[1℄℄ # the first element of dim ie the number of rows
dim(z)[[2℄℄ # the second element of dim ie the number of columns
nrow(z)

nol(z)

Q. How many rows and columns are there in z?
Q. What is the command to return the number in the 2nd column and second row of z?

Operations can be carried out on matrices as they are for vectors.
z*2

z[,1℄ - sqrt(z[,2℄)

2 (or more) matrices with appropriate dimensions can be joined usingrbind andbind.
rbind(z,z)

bind(z,z)

Or with another matrixw possibly like:
rbind(z,w)

bind(z,w)

Q. Create a matrix w and try these. If it doesn’t work, what was wrong with w?

Matrices can also be created using using the commandmatrix.
z1 <- matrix(1:10, nol=2)

z2 <- matrix(1:10, byrow=T, nol=2)

z3 <- matrix(1:10, byrow=T, nol=5)

Q. What do byrow and ncol do?

Text manipulation

paste() is used to create a string either converting numbers into characters or by joining text and/or
numbers. When joining, the separator can be selected eg:

years <- 1990:1994

paste(years)

paste("year",years)

x <- paste("year",years, sep="")

paste("len", seq(4,30,2), sep="")

paste("len", seq(4,30,2), sep=".")

Q. What is the difference between1990:1994 and paste(1990:1994)?

substring() extracts part of a string eg withx from the previous example:
substring(x,1,4)

as.numeri(substring(x,5,8))

Vector and matrix dimension names

The dimensions (rows and columns) of a matrix can be named.

Vectors For a vector.

35

age.ve <- (10,42,65,46,30)

To return the names:
names(age.ve)

To create the names
names(age.ve) <- paste(2:6)

The names can be used to select an element of the vector.
age.ve[names(age.ve)=="5"℄

age.ve["5"℄

The names can be changed:
names(age.ve) <- paste("age",2:6, sep="")

Then
age.ve[names(age.ve)=="age5"℄

Matrices

Matrices have 2 dimensions and the commanddimnames is used.

For a matrix.
age.mat <- matrix((10,42,65,46,30,12,40,64,48,34), nol=2)

To return the dimension names:
dimnames(age.mat)

To create the column names – columns are the second dimension
dimnames(age.mat)[[2℄℄ <- paste(2000:2001)

To create the row names – rows are the first dimension
dimnames(age.mat)[[1℄℄ <- paste(2:6)

It’s better to name both at once:
dimnames(age.mat) <- list(paste("age",2:6, sep=""), 2000:2001)

The names can be used to select an element (or elements) of thematrix.
age.mat[,dimnames(age.mat)[[2℄℄==2001℄ # for a column
age.mat[dimnames(age.mat)[[1℄℄=="age3",℄ # for a row

The double square parentheses[[℄℄ are used for matrix dimnames as they are a type of object called a
list. Each element of a list can be a different length and the dimensions of a matrix are normally not
equal.

Data frames

A data frames is, in some aspects, a more useful data format than a matrix. Data frames can contain
columns of different types eg character and numeric. NB: Even though a data.frame has 2 dimensions
names refers to the column names.

Data frames can also be created within R.
x <- seq(5,25,5)

y <- (2,4,6,7,4)

ldat <- data.frame(len = x,num = y)

creates a data frame with two columns names len and num.

Columns of a data frame can be referred to by name eg:
ldat$num

As with matrices, operations can be carried out on the columns. It is very easy to add new columns to a

36

data frame. eg
ldat$num2 <- ldat$num*2

Q. What doesldat look like now?
Q. Which command adds a column of zeros toldat?

7 Advanced data manipulation in R

7.1 Tabular summaries in R

table Simple frequencies
apply Simple operations on a table
tapply Arbitrarily complex operations on data in columns

The most commonly requested data summaries include frequency tables, means and variances (or stan-
dard deviations). All of these are available in R.

mean, var Means and variances of individual columns
table Simple frequencies
apply Simple operations on a table
tapply Arbitrarily complex operations on data in columns

For example, if “mydata” contains “x” and “y” as columns, (like in the earlier examples) then we can
e.g. do

x<-mydat$x

y<-mydat$y

mean(x) # alulates the mean of x

tapply(y,x,mean) # alulates the mean of the y-values

related to eah number in x

apply(mydata,2,mean) # alulates the mean of eah olumn in mydata

i.e. the mean of x and the mean of y

7.2 Frequency tables

Example: If M=

(

1 5 7
5 5 1

)

then> table(M) M 1 5 7 2 3 1 returns a
table showing the frequencies of each ele-
ment in M.

The “table” command is used to count how often values appear.

Thus, table(X,...) makes a frequency table for the object X

Example: If M=

(

1 5 7
5 5 1

)

then

> table(M)

M

1 5 7

2 3 1

37

returns a table showing the frequencies of each element in M.

Example: If the vector R contains recruitment information and S contains levels of spawning stock in
the year that the recruitment was generated, then the following command will give a tabular account
of how often the recruitment was above or below the median according to the level of the spawning
biomass

table(Re=R<median(R),SSB=S<median(S))

Note the use of named argument to label the output table.

This can be expanded:

table(Re=ifelse(R<median(R),"low","hi"),SSB=ifelse(S<median(S),"low","hi"))

which will give output of the form:

SSB

Re hi low

hi 3 5

low 5 2

Naturally, only slight modifications to this will give output which can be automatically included in
LaTeX documents, without any copying or pasting.

7.3 Row and column summaries

Example: If M=

(

1 5 7
5 5 1

)

then> apply(M,2,mean)

1

3 5 4 calculates the mean of each column
in M

apply(X, MARGIN, FUN, ...) returns an object obtained by applying a function(FUN) to margins of an
array(X).

Example: If M=

(

1 5 7
5 5 1

)

then

> apply(M,2,mean)

[1℄ 3 5 4

calculates the mean of each column in M

> apply(M,1,mean)

[1℄ 4.333333 3.666667

calculates the mean of each row in M

38

7.4 Operations on data columns

If age = (1,2,3,4,5,2,3,4,5,6)
and length =
(33,43,52,37,28,39,41,32,54,25)

then> tapply(length,age,mean) 1 2 3 4 5 6
33.0 41.0 46.5 34.5 41.0 25.0 returns an
array containing the mean length in each
age group.

Thetapply command is used in cases when one wants to compute statisticssuch as averages or sums of
one variable using another variable to describe groupings.

Typical usage would be of the form

tapply(x,i,sum)

which computes the sum of the x-values within each level of the index vector i. Notably, x and i have to
be of the same length.

The tapply command is not restricted to means or sums since any function can be used as long as it can
be applied to such subsets of the x-vector. Some common possibilities include

Example: Suppose some ages and lengths of fish are given by

age<-(1,2,3,4,5,2,3,4,5,6)

le<-(33,43,52,37,28,39,41,32,54,25)

then

> tapply(le,age,mean)

1 2 3 4 5 6

33.0 41.0 46.5 34.5 41.0 25.0

returns an array containing the mean length in each age group.

Basically, tapply groups the values in le svo that each groupis associated with the corresponding age
and then applies the mean function to each group.

age 1 2 3 4 5 6
le 33 43 39 52 41 37 32 28 54 25

mean length 33.0 41.0 46.5 34.5 41.0 25.0

Note that this can also be done age-by-age through a command sequence of the form

mean(le[age==1℄)

mean(le[age==2℄)

mean(le[age==3℄)

7.5 Other tabular functions

sapply(X,FUN, ...)
lapply(X,FUN, ...)
Applies function fun to each element of X.

39

The sapply and lapply commands are used in somewhat more complex situations wherean arbitrary
function is to be used for each element of a vector (or structure).

Example: In fishery science it is common to write small functions to evaluate e.g. yield per recruit for a
given level of fishing mortality. When plotting a yield-per-recruit curve one typically wants to evaluate
this function for a range of fishing mortalities and this is best done using sapply, e.g.

yr<-sapply(Fve,yrfun)

Aggregating data

table, apply, tapply andaggregate are commands which can be used to summarise and aggregate
data. The examples below will explain much more than the descriptions.

table creates a table of the counts of each factor level
tapply applies a function to a ragged array and creates an array
aggregate is the same as tapply but writes the output to a data frame rather than an array
apply applies a function to an array, the seconds term defines the dimension on which the function
operates (eg 1 = row, 2 = column).

Create some objects these functions can be applied to.
x <- (45,55,45,35,45,35,50,50)

y <- rep(1:2,4)

z <- rep((10,20),rep(4,2))

dat <- matrix((1:12),nol=3,byrow=T)

To count the number at each level:
table(x)

table(y)

Q. How many times does 50 occur in x?

The output of any command can be saved as an object.
tmp <- table(x)

Q. What are the names of tmp?

The number of times 50 occurs in x can be extracted automatically.
tmp[names(tmp)==50℄

To apply a function:
To see how x, y and z relate to each other.bind(x,y,z)

tapply(x,x,length) # the number of each element of x by x
tapply(x,y,length) # the number of each element of x by y
tapply(x,y,sum) # sum the values of x in groups of y
tapply(x,y,mean) # sum the values of x in groups of y
tapply(x,list(y,z),sum) # sum the values of x in groups of y and z

Q. How many values of x correspond to y = 1?
Q. What is the mean value of x if y=1?
Q. What is the mean value of x if y=1 and z = 20?

To return the same information astapply but in colums useaggregate.
aggregate(x,list(y),sum)

aggregate(x,list(y,z),sum)

To apply a function to the rows or columns of a matrix:

40

apply(dat, 1, sum) # the sum of the rows of dat
apply(dat, 2, mean) # the mean of the columns of dat

These functions can also be applied to data frames.

Create a small data frame of age and length data – the number byyear, age and length:
y <- rep(2000:2001, rep(6,2))

a <- rep(rep(1:3,rep(2,3)),2)

l <- rep((4,5,5,6,6,7),2)

n <- sample(1:10, 12, replae=T)

ldat <- data.frame(year = y, age = a, len = l, num=n)

The number of fish by year:
tapply(ldat$num, ldat$year,sum)

The number of fish by age and year:
tapply(ldat$num, list(ldat$age,ldat$year),sum)

The dimension names of these objects can be used, eg extract the data for 2001 from the returned table:
tmp <- tapply(ldat$num, list(ldat$age,ldat$year),sum)

tmp[,dimnames(tmp)[[2℄℄==2001℄

And to extract only data for age 3:
tmp[dimnames(tmp)[[1℄℄==3,℄

For mean length at age by year:
total length (by year and age) / number of fish (by year and age)

Total length by age and year:
tlen <- tapply(ldat$num*ldat$len, list(ldat$age, ldat$year), sum)

Number of fish:
fnum <- tapply(ldat$num, list(ldat$age, ldat$year), sum)

Mean length at age:
tlen/fnum

8 Plotting with R

8.1 Some common plot commands

Plotting

Scatter and line plots

Using the data:
x <- 1:10

y <- x*x

The simplest plot is
plot(x,y)

with lines
plot(x,y, type="l")

with lines and points
plot(x,y, type="b")

To relabel the axes:
plot(x,y, type="l", xlab = "x axis", ylab ="y axis")

41

title("simple plot")

Another way to add a title is:
plot(x,y, type="l", xlab = "x axis", ylab ="y axis", main="simple plot")

To control the bounds of the x and y axes:
plot(x,y, type="l", xlim = (0,15), ylim = (0,120))

To overlay another plot:
plot(x,y, type="l")

points(x, y+50)

To add a dashed horizontal line:
plot(x,y, type="l")

abline(h=2, lty=2)

To add a dashed vertical line (with a different line type):
abline(v=2, lty=5)

Adding points with a different colour and shape:
points(x, y-10, ph=3, ol=2)

To plot more than one plot on the device:
For 2 rows and 3 columns of plots:
par(mfrow=(2,3))

plot(x,y)

plot(x,y,type="l")

With more than one plot on a page it can be useful to have a titlefor the whole page. To do this a wider
border is required.
par(mfrow=(2,2), oma=(2,1.5,2.5,1.5))

plot(x,y)

plot(x,y,type="l")

mtext("My plots", outer=T)

To save a plot to a file:
dev.print(file="<filename.ps>")
where you define<filename>.

8.2 More plot commands

More plots

It is important to look at data before using it – for some understanding and to identify possible problems.

Histograms

Histograms plot the frequency of data.

A data frame with only year and number:
y <- rep(2000:2001, rep(20,2))

n <- round(abs(rnorm(40, 20,20)))

ndat <- data.frame(year = y, num = n)

Histogram of the number:
hist(ndat$n)

By year
hist(ndat$n[ndat$year==2000℄)

42

hist(ndat$n[ndat$year==2001℄)

Barplots

Barplots plot the number by category.

A data frame with only year and length:
y <- rep(2000:2001, rep(10,2))

l <- sample(4:8, 20, replae=T)

ldat2 <- data.frame(year = y, len = l)

Plot the number in each length group:
tmp <- table(ldat2$len)

barplot(tmp)

Or simply
barplot(table(ldat2$len))

By year
tmp <- table(ldat2$year, ldat2$len)

barplot(tmp[1,℄, main="2000")

barplot(tmp[1,℄, main="2001")

Alternatively:
Using:
x <- seq(5,25,5)

y <- (2,4,6,7,4)

z <- (3,4,7,6,3)

ldat3 <- data.frame(len = x,num = y, num2 = z)

Lines can be overlaid on the barplot by storing the position on the x axis of the bars.
x <- barplot(ldat3$num, names=ldat3$len)

lines(x, ldat3$num2)

Boxplots

Box (and whisker) plots summarise data – graphically providing information on the distribution of the
data by category.

To plot summary statistics on the length distribution by year from ldat2:
boxplot(split(ldat2$len,ldat2$year), xlab="year")

To plot summary statistics on the number of fish by year, age and length in ldat:
par(mfrow=(2,3))

boxplot(split(ldat$num,ldat$year), xlab="year")

boxplot(split(ldat$num,ldat$age), xlab="age")

boxplot(split(ldat$num,ldat$len), xlab="length")

Or
boxplot(num ∼ year, data=ldat, xlab="year")

boxplot(num ∼ age, data=ldat, xlab="age")

boxplot(num ∼ len, data=ldat, xlab="length")

Linear regression

Create a dataset and plot it:
x <- 1:20

w <- 1 + sqrt(x)/2

y <- (2*x + rnorm(x)*w)

plot(x,y)

43

Fit a linear regression line through the data:
rf <- lm(y ∼ x)

Plot the data and the fitted line:
plot(x,y)

abline(rf, ol=2)

To see the details of the regression:
summary(rf)

From the linear regression we can look at the residuals - the difference between the line and the actual
values.

plot(fitted(rf), resid(rf), xlab="fitted values", ylab="residuals")

abline(h=2, lty=2)

abline(h=-2, lty=2)

9 Programming R

9.1 The if statement

if(length(x)>5) m<-mean(x) else print(“x
isn’t long enough”)

The "if" statement can be used to perform a computaton only when a certain condition is satisfied.

If the average of the elements of x is to be computed only when the length of x is larger then 5 then the
following sequence can be used:

if(length(x)>5){

m<-mean(x)

}

Another statement that can be used with the if statement is the else-statement. To continue the above
example, and in addition print error messages if x isn’t longenough then an else-part can be added:

if(length(x)>5){

m<-mean(x)

} else{

print(``x isn't long enough'')

}

9.2 Loops - for

sum<-0 for(i in 1:100) sum<-sum+i*i

Loops are used when similar operations need to be performed.For example, when adding the squared
integers 1*1, 2*2, 3*3, ... up to 100*100, this can either be done by

44

sum<-0

sum<-sum+1*1

sum<-sum+2*2

...

sum<-sum+100*100

or through a for-loop:

sum<-0

for(i in 1:100){

sum<-sum+i*i

}

It should be noted that when a loop is used to add numbers, the variable containing the sum should be
set to zero before starting the loop.

In the loop itself, 1:100 simply denotes the sequence of numbers 1, 2, 3, ... 100 and the notation

for(i in 1:100){

...

}

indicates that the commands within the brackets should be run 100 times, while the variable "i" is set
first to 1, then 2 and so on.

9.3 Storing loop results

x<-NULL x<-c(x,item1) x<-c(x,item2)
x<-c(x,item3) ... orx<-NULL for(i in 1:5)
x<-c(x,i) or (much better)x<-rep(NA,5)
for(i in 1:5) x

i

<-i It is better to define a full-length vec-
tor and install elements than to keep mod-
ifying its length. Even better: Just do vec-
tor/matrix manipulation.

It is often useful to first initialise an object and then use itto collect results repeatedly.

Without a loop this kind of collection might proceed as follows.

x<-NULL

x<-(x,item1)

x<-(x,item2)

x<-(x,item3)

...

It is much more useful to use a loop for this purpose.

Example:

>row<-NULL # an also use row<-()

>for(i in 1:5){

row<-(row,1:i) # append the numbers 1,..,i to the row

45

}

>row

[1℄ 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 # the result

9.4 Loops - while

sum<-0 i<-0 while(sum<100) i<-i+1
sum<-sum+i

A while loop can be used to perform operations until a certaincondition is satisfied. For example to add
the numbers 1,2,3,... until the sum reaches 100:

sum<-0

i<-0

while(sum<100){

i<-i+1

sum<-sum+i

}

(This while-loop would stop when sum=105 and i=14)

When given a while command, R will run the sequence of commands in the brackets repeatedly until
sum is greater than or equal to 100.

Practicals

Sourcing a file

It is not necessary to type R commands directly into R. Files can be written and ‘sourced’. If all your
commands are in a file (myfile.r) and R is open in the same directory as the file, the command:
soure("myfile.r")

reads in the commands and runs them in R.

Create a file in Emacs called myfile.r containing:
x <- 1:10

y <- x*5

plot(x,y)

print(x)

print(x) returnsx in the same wayx does when typed directly into R.

Then, in R type:
soure("myfile.r")

In Linux, files can be also run from the terminal.
R �slave < myfile.r

R — loops and functions

Loops –for

It is often useful to be able to repeat the same operation and one way to do this is using a for–loop.

• In a text file save this code:

for(i in 1:5){

46

print(i*i)

}

• Run the script in R.

• A loop can be used to compare samples from a Normal distribution. In the example belowσ
varies.

x <- seq(0.5,2.5, 0.5)

t <- 0

plot(density(rnorm(100, 0, 1)), ylim=(0, 0.1), type="n")

for(i in x) {

t <- t+1

lines(density(rnorm(100, 0, i)), ol=t)

}

• What doestype="n" do?

• Compare samples from Normal distributions where you repeatthe same sampling procedure.
What happens as you decrease/increasen?

• Try the examples in your lecture notes.

Loops –while

It is also possible to write loops with thewhile command.

• Try this:

sumi <- 0

i <- 0

while(sumi < 10){

i <- i+1

sumi <- sumi+i

print((sumi, i))

}

• awhile loop repeats the commands between the {}’s until the while statement is met.

47

Theif statement

eg

• eg

x <- 1:10

if(length(x) > 5){

print(mean(x))

}

• can also toif condelse eg

x <- 1:3

if(length(x) >= 5){

print(mean(x))

} else {

print("Error: x < 5")

}

Writing a function in R

• Create the following function:

mymean <- funtion(data){

m <- sum(data)/length(data)

return(m)

}

• Create a small datasetx.

• Comparemymean(x) with mean(x)

10 Further reading

10.1 Reading material

Reading material for R is available on the
Internet
Dozens of books are available
Within R use
help(topic) or ?topic, e.g.
> ?lm

Search the Internet on any topic, e.g. using Google to look for phrases such as

“linear models with R”

and this will typically return several useful links.

48

