STATS510.stats 51010 Odds ratios and relative risk

Thor Aspelund and Sigrún Helga Lund

July 22, 2012

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

1 Introduction to odds ratios and relative risk 3
1.1 Binary response 3
1.2 Odds 3
1.3 Relative Risk 4
1.4 Interpretation of Relative Risk 4
1.5 Odds Ratios 5
1.6 Interpretation of Odds Ratios 5
1.7 Advantages of Odds Ratios 6
1.8 Odds Ratios as a measure of Relative Risk 6
2 Odds ratios and relative risk with R 7
3 Maximum likelihood estimation 7
4 kx2 tables 7
5 Mantel Haenszel method 7

1 Introduction to odds ratios and relative risk

1.1 Binary response

A Binary Response is a variable that has
only two possible outcomes.
Binary responses are common in life sci-
ences.

Examples:

- Yes / No
- Success / Failure
- Sick / not sick
- Fractured hip / hip not fractured

Example of the occurrence of two binary responses, smoking and plaque.

	plaque	no plaque	total
Smoker	39	171	210
Non-smoker	73	679	752

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007. Results from a questionaire and "hálsæðaómun" at arrival.

1.2 Odds

```
Binary responses are commonly described
``` with odds.

The Odds of an outcome, is the prob-
ability that the outcome occurs divided
ability that the outcome occurs divided
by the probability that it does not occur
If the probability of the outcome is \(p_{1}\)
If the probability of the outcome is \(p_{1}\)
then
Odds \(=\frac{p_{1}}{1-p_{1}}\)
- The proportion of smokers with plaque:
\[
p_{1}=39 / 210=0.186 \text { or } 18.6 \%
\]
- The proportion of non-smokers with plaque:
\[
p_{0}=73 / 752=0.097 \quad \text { or } \quad 9.7 \%
\]
- Odds of plaque with smokers:
\[
\frac{p_{1}}{1-p_{1}}=\frac{0.186}{1-0.186}=0.229
\]
- Odds of plaque with non-smokers:
\[
\frac{p_{0}}{1-p_{0}}=\frac{0.097}{1-0.097}=0.107
\]

\subsection*{1.3 Relative Risk}

T
he Relative Risk of an outcome in two
populations is the proportion of the prob
ability of the outcome in the two popula-
ability of the outcome in the two popula-
tions. If we denote the probabilities with
\(p_{0}\) and \(p_{1}\) then
\[
\text { Relative Risk }=\frac{p_{1}}{p_{0}}
\]

Commonly, the probability \(p_{1}\) corresponds to the probability of the outcome in a population of interest, whereas \(p_{0}\) corresponds to the probability in a reference population.
\begin{tabular}{|r|rr|r|}
\hline & plaque & no plaque & total \\
\hline Smoker & 39 & 171 & 210 \\
Non-smoker & 73 & 679 & 752 \\
\hline
\end{tabular}

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.
The relative risk of plaque for smokers, compared to non-smokers:
\[
R R=\frac{p_{1}}{p_{0}}=\frac{0.186}{0.097}=1.91
\]

\subsection*{1.4 Interpretation of Relative Risk}
itemize
If \(R R=1\) the risk is equal in the two pop-
ulations.
If \(R R<1\) the risk is less in the population
of interest than in the reference popula-
tion.
If \(R R>1\) the risk is greater in the pop-
ulation of interest than in the reference
population.
\begin{tabular}{|r|rr|r|}
\hline & plaque & no plaque & total \\
\hline Smoker & 39 & 171 & 210 \\
Non-smoker & 73 & 679 & 752 \\
\hline
\end{tabular}

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.
The relative risk of plaque for smokers, compared to non-smokers is
\[
R R=\frac{p_{1}}{p_{0}}=\frac{0.186}{0.097}=1.91
\]

The relative risk is greater than 1 which shows that the risk is greater for smokers than non-smokers.
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c}
outcome \\
occurs
\end{tabular} & \begin{tabular}{c}
outcome \\
does not occur
\end{tabular} & total \\
\hline \begin{tabular}{c}
Population \\
of interest
\end{tabular} & a & b & \(\mathrm{a}+\mathrm{b}\) \\
\hline \begin{tabular}{c}
Reference \\
population
\end{tabular} & c & d & \(\mathrm{c}+\mathrm{d}\) \\
\hline
\end{tabular}

\subsection*{1.5 Odds Ratios}
```

Odds Ratios (OR) can be used as a mea-
sure of correlation with a binary response
T
he Odds Ratio of an outcome in two pop
ulations is the proportion of the odds of th
outcome in the two populations. If we de-
note the probabilities with p}\mp@subsup{p}{0}{}\mathrm{ and }\mp@subsup{p}{1}{}\mathrm{ then
Odds Ratio =}\frac{\frac{\mp@subsup{p}{1}{}}{1-\mp@subsup{p}{1}{}}}{\frac{\mp@subsup{p}{0}{}}{1-\mp@subsup{p}{0}{}}

```

Commonly, the probability \(p_{1}\) corresponds to the probability of the outcome in a population of interest, whereas \(p_{0}\) cor responds to the probability in a reference population

When odds ratios are calculated, the results are often represented in a table. With this representation the odds ratio
is:
\[
\frac{a d}{b c}
\]
\begin{tabular}{|r|rr|r|}
\hline & plaque & no plaque & total \\
\hline Smoker & 39 & 171 & 210 \\
Non-smoker & 73 & 679 & 752 \\
\hline
\end{tabular}

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.
\[
\text { Odds ratio }=\frac{39 \cdot 679}{73 \cdot 171}=2.14
\]

\subsection*{1.6 Interpretation of Odds Ratios}
```

Odds ratios are interpreted in a similar
manner as relative risk.
itemize
If OR=1 the odds areequal in the two
populations.
If OR <1 the odds are less in the pop
ulation of interest than in the referenc
population.
If OR >1 the odds are greater in the pop-
ulation of interest than in the referenc
population.

```
\begin{tabular}{|r|rr|r|}
\hline & plaque & no plaque & total \\
\hline Smoker & 39 & 171 & 210 \\
Non-smoker & 73 & 679 & 752 \\
\hline
\end{tabular}

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.
A smoker has higher odds for plaque than a non-smoker.
\[
\text { Odds ratio }=\frac{39 \cdot 679}{73 \cdot 171}=2.14
\]

The OR is > 1

There seems to be positive correlation between smoking and plaque.

\subsection*{1.7 Advantages of Odds Ratios}
- Odds Ratios can always be interpreted, independent on the study design:
- Cohort
- Cross sectional
- Case-control
- Binary responses are common in life sciences
- Odds Ratios can easily be estimated with logistic regres sion.

\subsection*{1.8 Odds Ratios as a measure of Relative Risk}

Figure 1: Amount by which odds ratios of \(>1\) overestimate relative risk, for different odds ratios and different levels of initial risk. Davies, H. T. O. et al. BMJ 1998;316:989-991
- Notice that if \(\mathrm{RR}>1\) then OR \(>\mathrm{RR}\)
- When the probability of an outcome in the reference population is less then \(20 \%\), OR in the range of 1.5 to 2 can be interpreted as a corresponding increase in risk
- According to the figure, the risk is overestimated by approximately \(20 \%\), but one keeps that in mind.

2 Odds ratios and relative risk with \(R\)

\section*{3 Maximum likelihood estimation}

4 kx2 tables

5 Mantel Haenszel method```

