STATS510.stats 510 10 Odds ratios and relative risk

Thor Aspelund and Sigrún Helga Lund

July 22, 2012

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

1	Intro	oduction to odds ratios and relative risk	3
	1.1	Binary response	3
	1.2	Odds	3
	1.3	Relative Risk	4
	1.4	Interpretation of Relative Risk	4
	1.5	Odds Ratios	5
	1.6	Interpretation of Odds Ratios	5
	1.7	Advantages of Odds Ratios	6
	1.8	Odds Ratios as a measure of Relative Risk	6
2	Odd	s ratios and relative risk with R	7
3	Max	imum likelihood estimation	7
4	kx2	tables	7
5	Man	tel Haenszel method	7

1 Introduction to odds ratios and relative risk

1.1 Binary response

Example of the occurrence of two binary responses, smoking and plaque.

	plaque	no plaque	total
Smoker	39	171	210
Non-smoker	73	679	752

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007. Results from a questionaire and "hálsæðaómun" at arrival.

1.2 Odds

with odds	sponses are commonly described
The Odd	s of an outcome, is the prob-
by the pr	obability that it does not occur.
If the pro	obability of the outcome is p_1 ,
then	$\mathbf{Odds} = \frac{p_1}{p_1}$

• The proportion of smokers with plaque:

$$p_1 = 39/210 = 0.186$$
 or 18.6%

• The proportion of non-smokers with plaque:

$$p_0 = 73/752 = 0.097$$
 or 9.7%

• Odds of plaque with smokers:

$$\frac{p_1}{1-p_1} = \frac{0.186}{1-0.186} = 0.229$$

• Odds of plaque with non-smokers:

$$\frac{p_0}{1 - p_0} = \frac{0.097}{1 - 0.097} = 0.107$$

	plaque	no plaque	total
Smoker	39	171	210
Non-smoker	73	679	752

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.

The relative risk of plaque for smokers, compared to non-smokers:

$$RR = \frac{p_1}{p_0} = \frac{0.186}{0.097} = 1.91$$

1.4 Interpretation of Relative Risk

	plaque	no plaque	total
Smoker	39	171	210
Non-smoker	73	679	752

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.

The relative risk of plaque for smokers, compared to non-smokers is

$$RR = \frac{p_1}{p_0} = \frac{0.186}{0.097} = 1.91$$

The relative risk is greater than 1 which shows that the risk is greater for smokers than non-smokers.

	outcome	outcome	
	occurs	does not occur	total
Population			
of interest	а	b	a+b
Reference			
population	с	d	c+d

1.5 Odds Ratios

Odds	Ratios (OR) can be used as a mea-
sure o	f correlation with a binary response.
т	
he Od	Ids Ratio of an outcome in two pop-
ulatio	ns is the proportion of the odds of the
outcon	me in the two populations. If we de-
note th	he probabilities with p_0 and p_1 then
	Odds Ratio = $\frac{\frac{p_1}{1-p_1}}{\frac{p_0}{1-p_0}}$
Comn	nonly, the probability p_1 corre-
spond	s to the probability of the outcome in
a pop	ulation of interest, whereas p_0 cor-
respor	ds to the probability in a reference
popul	ation.

When odds ratios are calculated, the results are often represented in a table. With this representation the odds ratio

is:

ad	
bc	

	plaque	no plaque	total
Smoker	39	171	210
Non-smoker	73	679	752

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.

Odds ratio =
$$\frac{39 \cdot 679}{73 \cdot 171} = 2.14$$

1.6 Interpretation of Odds Ratios

Odds	ratios are interpreted in a similar
manr	er as relative risk.
item	ze
If Ol	R = 1 the odds areequal in the two
popu	lations.
If Oi	R <1 the odds are less in the pop-
ulati	on of interest than in the reference
popu	lation.
If OI ulati	R >1 the odds are greater in the pop- on of interest than in the reference lation

	plaque	no plaque	total
Smoker	39	171	210
Non-smoker	73	679	752

Data: 35 to 70 year old men, not on statin-treatments from Hjartavernds risk factor survey 2006-2007.

A smoker has higher odds for plaque than a non-smoker.

Odds ratio
$$= \frac{39 \cdot 679}{73 \cdot 171} = 2.14$$

The OR is > 1

There seems to be positive correlation between smoking and plaque.

1.7 Advantages of Odds Ratios

1.8 Odds Ratios as a measure of Relative Risk

Figure 1: Amount by which odds ratios of >1 overestimate relative risk, for different odds ratios and different levels of initial risk. Davies, H. T. O. et al. BMJ 1998;316:989-991

- 2 Odds ratios and relative risk with R
- 3 Maximum likelihood estimation
- 4 kx2 tables
- 5 Mantel Haenszel method