Simple linear regression
 stats544-1-slr Applied simple linear regression

Gunnar Stefansson

July 18, 2019

Introduction

The following section give a review of:

- Scatter plots
- Correlation
- Simple linear regression - SLR

Scatter plot

Scatter plot

Scatter plots are used to investigate the relationship between two numerical variables.
The value of one variable is on the y-axis (vertical) and the other on the x-axis (horizontal).
When one of the variable is an explanatory variable and the other one is a response variable, the response variable is always on the y-axis and the explanatory variable on the x-axis.

Response variables and explanatory variables

The straight line

The equation of a straight line
The equation of a straight line describes a linear relationship between two variables, x and y. The equation is written

$$
y=\beta_{0}+\beta_{1} x
$$

where β_{0} is the intercept of the line on the y -axis and β_{1} is the slope of the line.

Linear relationship
We say that the relationship between two variables is linear if the equation of a straight line can be used to predict which value the response variable will take based on the value of the explanatory variable.

There can be all sorts of relationship between two vari-

Correlation coefficient

Sample coefficient of correlation
Assume that we have n measurements on two variables x and y.
Denote the mean and the standard deviation of the variable x with \bar{x} and s_{x} and the mean and the standard deviation of the y variable with \bar{y} and S_{y}.
The sample coefficient of correlation is

$$
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

Warning: The correlation only estimates the strength of a linear relationship!

The magnitude and direction of a linear relationship

The direction of a linear relationship
The sign of the correlation coefficients determines the direction of a linear relationship. It is either positive or negative.

- If the correlation coefficient of two variables is positive, we say that their correlation is positive.
- If the correlation coefficient of two variables is negative, we say that their correlation is negative.

ERROR: Unknown script MIM Traceback (most recent ca File "/home/plone/mobil raise ValueError("Unk ValueError: Unknown scrip

The magnitude of a linear relationship
The absolute value of a correlation coefficient describes the magnitude of the

Correlation and causation

- Causation is when changes in one variable cause changes in the other variable.
- There is often strong correlation between two variables although there is no causal relationship.
- In many cases, the variables are both influenced by the third variable which is then a lurking variable.
- Therefore, high correlation on its own is never enough to claim that there is a causal relationship between two variables.

Informal regression

Input: Have data as (x, y)-pairs
Supose a scatterplot indicates a linear relationship
Loosely: Want to "fit a line" through the data
Next: Evaluate the fit

Formal regression

Consider fixed numbers, x_{i}
Random variables: $Y_{i} \sim n\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$ or: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ $\epsilon_{i} \sim n\left(0, \sigma^{2}\right)$ independent and identically distributed (i.i.d.)
The data:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}
$$

The linear regression model

The linear regression model
The simple linear regression model is written

$$
Y=\beta_{0}+\beta_{1} x+\varepsilon
$$

when β_{0} and β_{1} are unknown parameters and ε is a normally distributed random variable with mean 0 .

The aim of the simple linear regression is first and foremost to estimate the parameters β_{0} and β_{1} with the measurements of the two variables, x and Y.

Figure: Many lines, but which one is the best?

The most common estimation method is through least squares.

The least squares method

Least squares estimation technique minimizes:

$$
S=\sum\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

Maximum likelihood estimation assumes a probability distribution for the data and maximizes the corresponding likelihood function.

In the case of normal distributions the two methods results in the same estimates - we
 will use least squares.

The least squares regression line

Denote the mean and standard deviation of the x variable with \bar{x} and s_{x} and the y variable with \bar{y} and s_{y} and their correlation coefficient with r.

Let b_{0} denote the estimate of β_{0} and b_{1} denote the estimate of β_{1}. Then b_{0} and b_{1} are given with the equation

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=r \frac{s_{y}}{s_{x}}
$$

and

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

These are the least squares estimates of the coefficient of a regression line through the data points (x, y).
Remember: It is assumed that the only errors are in the y-measurements. Example - using the first expression for b_{1} : Suppose we have a few measurements, (x, y), to be used in a regression analysis.

	x	y	$x-\bar{x}$	$(x-\bar{x})^{2}$	$(y-\bar{y})$	$(y-\bar{y})^{2}$	$(x-\bar{x})(y-\bar{y})$	\hat{y}	y
	1	1.0	-2	4	-5	25	10	$=2.6$	July 18,2019

SLR in R

It is easy to perform linear regression in R using the $\operatorname{lm}()$ function. For simple linear regression the syntax is
fit <- lm(x ... y, data=nameofdataset)
The results can then be looked at using the summary () function summary (fit)
Typical complete interactive R session:
> beers $<-c(5,2,9,7,3,3,4,5,8,3,5,5,6,7,1,4)$
$>$ alcohol<-c $(0.1,0.03,0.19,0.095,0.07,0.02,0.07,0.085,0.12,0.04,0.06,0.05,0.1,0.09$
$>$
> fit<-lm(alcohol~beers)
$>$ summary (fit)

Call:
lm (formula $=$ alcohol ~ beers)

Prediction

We often want to use our regression model to predict the outcome of our response variable for some value(s) of the explanatory variable.

Prediction
We can predict the value of Y for some value of x using

$$
\hat{y}=b_{0}+b_{1} \cdot x
$$

Interpolation

Interpolation
If the regression model is used to predict a value of Y for some value of x which is similar to the x-values that were used to estimate the model is referred to as interpolating.

Extrapolation

Extrapolation
Extrapolating is using the regression model to predict a value of Y for some value of x which is far from the x-values that were used to estimate the model.
It can be very questionable to extrapolate!

On expected values and variances

Expected value:

$$
E[Y]=\int y f(y) d y
$$

Variance:

$$
V[Y]=E\left[(Y-\mu)^{2}\right]
$$

In the regression model:

$$
V[Y]=E\left[\left(Y-\left(\beta_{0}+\beta_{1} x\right)\right)^{2}\right]
$$

Estimating dispersion

A point estimate of σ^{2}, the variance of the y-measurements, is obtained with

$$
s^{2}=\frac{\sum_{i}\left(y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right)^{2}}{n-2}
$$

The predicted value of y at a given x is often denoted by $\hat{y}=b_{0}+b_{1} x$ and therefore

$$
s^{2}=\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}
$$

Commonly $\hat{\sigma}^{2}$ is used in place of s^{2}, but that is not stricly correct.
Example R summary which gives the variance estimate (simulated data):

```
> x<-1:10
> alpha<-2
> beta<-3
> sigma<-2
y<-alpha+beta*x+rnorm(10)*sigma
> plot(x,y)
```


Correlation and explained variation

Recall the the correlation coeffficient r is always between -1 and 1 . Write SSE $=\sum(y-\hat{y})^{2}$ (sum of squared errors, i.e. error after regression), and SSTOT $=\sum(y-\bar{y})^{2}$ (total sum of squares, i.e. before regression)

The explained variation
The explained variation, often called the coefficient of determination, is calculated with

$$
R^{2}=1-\frac{S S E}{S S T O T}
$$

Note:

$$
R^{2}=1-\frac{\sum(y-\hat{y})^{2}}{\sum(y-\bar{y})^{2}}=\ldots=r^{2}
$$

Interpreting package output

Mathematical model:

$$
y=\beta_{0}+\beta_{1} x+e
$$

R definition:

$$
y \sim x
$$

$\operatorname{lm}\left(y^{\sim} \mathrm{x}\right)$
Storing the output
fit<-lm ($\mathrm{y}^{\sim} \mathrm{x}$).

Figure : Example output from a simple linear model fit of the form $y=a+b x$. Items (1)-(2) are the estimates of a and b respectively. The estimate of the standard error of b is given by (3). The P-value for testing whether the true (underlying) value of b is zero is in (4). Items (5)-(7) give the MSE,

R -squared and P -value for the entire model, respectively.

A sequence:

Copyright 2018, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

