
Multiple linear regression

(STATS544.2: Applied multiple linear regression)

Gunnar Stefansson

August 8, 2013

Gunnar Stefansson () Multiple linear regression August 8, 2013 1 / 1



Datasets

We will mostly be working with two

datasets in the leture, stakloss

and LifeCyleSavings, both part of

the datasets pakage that omes

with your installation of R.
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Point estimation (with R)

Example (hemistry)

We get the data by writing:

data(stakloss)

We look at the data using a pairs plot:

pairs(stakloss)

We �t a model with stak.�ow as the dependent variable and the others

as independent variables using:

fit.stak <- lm(stak.loss~Air.Flow + Water.Temp + Aid.Con.,data=stakloss)

Writing:

summary(fit.stak)

returns the the point estimates of the parameters among other things.

If we only need the point estimates we write:

oeffiients(fit.stak)

Example (eonomis)

We get the data by writing:

data(LifeCyleSavings)

We look at the data using a pairs plot:

pairs(LifeCyleSavings)

We �t a model with sr as the dependent variable and the others as independent variables using:

fit.life <- lm(sr ~ pop15 + pop75 + dpi + ddpi ,data=LifeCyleSavings)

Writing:

summary(fit.life)

returns the the point estimates of the parameters among other things.

If we only need the point estimates we write:

oeffiients(fit.life)
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Interpreting oe�ients

> data(LifeCyleSavings)

> fit.life <- lm(sr ~ pop15 + pop75 + dpi + ddpi ,data=LifeCyleSavings)

> summary(fit.life)

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCyleSavings)

Residuals:

Min 1Q Median 3Q Max

-8.2422 -2.6857 -0.2488 2.4280 9.7509

Coeffiients:

Estimate Std. Error t value Pr(>|t|)

(Interept) 28.5660865 7.3545161 3.884 0.000334 ***

pop15 -0.4611931 0.1446422 -3.189 0.002603 **

pop75 -1.6914977 1.0835989 -1.561 0.125530

dpi -0.0003369 0.0009311 -0.362 0.719173

ddpi 0.4096949 0.1961971 2.088 0.042471 *

---

Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 3.803 on 45 degrees of freedom

Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797

F-statisti: 5.756 on 4 and 45 DF, p-value: 0.0007904

y 28 5661 0 4612x

1

1 6915x

2

0 0003x

3

0 4107x

4

where x

1

is the of population under 15, x

2

is the of population over 75, x

3

is the real

per-apita disposable inome and x

4

is the growth rate of dpi

This means that inreasing the of population under 15 by one unit dereases y by 0.4612

units (holding other variables onstant), inreasing the of population over 75 by one unit

dereases y by 1.6915 units (holding other variables onstant), inreasing the real per-apita

disposable inome by one unit dereases y by 0.0003 units (holding other variables onstant)

and inreasing the growth rate of dpi by one unit inreases y by 0.4107 units (holding other

variables onstant),
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R

2

The summary ommand gives the R

2

value.

It an also be extrated diretly, for use in omputations.

As usual, this is 1− SSE/SSTOT .

It is also the squared orrelation between y and ŷ .

Example (hemistry)

We ontinue working with the stakloss data.

We an get the R

2

along with other things writing:

summary(fit.stak)

The R

2

an be extrated with

summary(fit.stak)$r.squared

Example (eonomis)

We ontinue working with the LifeCyleSavings data.

We an get the R

2

along with other things writing:

summary(fit.life)

The R

2

an be extrated with

summary(fit.life)$r.squared
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P-values

Example (hemistry)

We ontinue working with the stakloss data.

By writing

summary(fit.stak)

we get some statistis and informations about out model. In the last olumn of the Coe�ients

table, marked Pr(> |t|) we get the p-values for the tests of the individual oe�ients.

On the last line of the output we get the p-value for the overal test that all the oe�ients of

the model are equal to zero.p

In general we rejet the null hypothesis that the oe�ient(s) is equal to zero if the p-value is

smaller than the α-value used.

Example (eonomis)

We ontinue working with the LifeCyleSavings data.

By writing

summary(fit.life)

we get some statistis and informations about out model. In the last olumn of the Coe�ients

table, marked Pr(> |t|) we get the p-values for the tests of the individual oe�ients.

On the last line of the output we get the p-value for the overal test that all the oe�ients of

the model are equal to zero.

In general we rejet the null hypothesis that the oe�ient(s) is equal to zero if the p-value is

smaller than the α-value used.
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Building a model

We an build models by

speifying all the terms and �tting a single model

starting from a null model, adding one variable at a time

starting from a full model with all available variables and dropping

one at a time
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Stepwise linear regression

Can formalise the model building proess

Forward stepwise regression

Bakwards stepwise regression

Need to hoose a riterion: P-value vs AIC et
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Thou shalt not seek a model with a shotgun (the

multipliity issue)

It is quite ommon that very many potential desriptors exist

Testing nonsense will eventually yield a signi�ant result

Example (biology): Consider again the Ielandi eosystem data. Suppose we want to searh

for signi�ane among the variables in the data set but also have 100 more variables - all of

whih are noise.

b<-read.table("http://tgax14.rhi.hi.is/html/data/biol/boreol.txt",header=T)

n<-nrows(b)

bad100<-matrix(rnorm(n*100),nrow=n)

newb<-as.data.frame(bind(b,bad100))

Now hek, whih variable is most highly orrelated with the growth, in variable G.
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Multipliity orretions

Can orret for multipliity: Bonferroni, She�e...

Simplest: Bonferroni

Better: Holm
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Comparing nested models

If one model is a submodel of another, then an F -test is used to ompare

the models.

H

0

: submodel is orret

F =

SSE(R)−SSE(F )
df (R)−df (F )

SSE(F )
df (F )

∼ F

df (R)−df (F ),df (F ), if H

0

is true.

The usual t-test for dropping one variable is a speial ase (t

2

= F ).

Example: Chek to see whether one or two straight lines are needed to explain a data set.
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Comparing non-nested models

Try to make them nested in a supermodel

Try to avoid the omparison

Worst-ase: Use the AIC or similar riterion

Example (biology): The ase of natural mortality vs serial orrelation in �sh stok assessments

(Myers et al).

Example (general): Variable interept vs variable slope.
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