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1 \Verifying the assumptions of SLR

1.1 Introduction

Evaluate model assumptior¥; ~ n(a +
Bx;,02), independent.

e Linearity
e Independence
e Normality

e Constancy of variance

Figure 1: Simulated data

The simple linear regression model can be formulated saottgias

Y, ~ n(a + Bx;,0?), independent

Hence the underlying random variables are assumed to camedrGaussian distribution, their mean
is a linear function of the-variables, their variance is constant and they are indzigren

e Linearity
e Independence
e Normality

e Constancy of variance

These assumptions are all used when hypotheses are testaufidence intervals obtained for param-
eters. For several other uses only some of these assumat®nsquired.

Naturally, each of these assumptions may be violated an@ sdrthese violations may influence the
validity of any conclusions drawn.

This tutorial introduces some methods for “regression megjcs”, i.e. techniques for checking the
validity of these assumptions. The first two sections/legicontain methods appropriate for simple
linear regression (SLR) whereas the subsequent sectitindirce methods which are used in multiple
regression.



Example: It will be useful to have a fixed example at hand to illustréie ¢oncepts and methods. The
following R commands will generate and plot data which $atise assumptions:

set.seed(19)
alpha<-1
beta<-2
sigma<-0.5
n<-10
x<-1:n

y.base<-alpha+beta*x+rnorm(10,sd=sigma)

y<-y.base

make sure we

#

# fix
# fix
# fix
# the
# set
# set

can repeat these results
intercept

slope

standard deviatoin

the true
the true
the true
base sample size
the base x-values
the base y-values

The simulated data can be plotted along with the regresgiemlith

plot(x,y)
abline(fm.base)

and analysed with

fm.base<-1m(y~x)
summary (fm.base)

which gives

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q
-0.45512 -0.16751 -0.08178 0.22318

3.473

Max
0.56482

0.0084 *x

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.84411 0.24303
X 2.01628

Signif. codes:

0.03917 51.478 2.25e-11 **x*

0 ?*xx? 0.001 ’*x” 0.01 ’%’ 0.05 *.” 0.1 * 1

Residual standard error: 0.3558 on 8 degrees of freedom

Multiple R-squared: 0.997,
F-statistic: 2650 on 1 and 8 DF,

Adjusted R-squared: 0.9966
p-value: 2.247e-11



Note 1: Recall that if we do not specify the distributionas@mptions, the simple linear regression
model can be written in short-hand notationEly] = X, whereX is ann x 2 matrix (and could in
general ben x p). In the following we frequently use this matrix notation.

Note 2: See influence.measures(), resid() and other furectaated to Im() in R.



1.2 Residuals

The first step in most diagnostic analyses is
to compute the residuals

& =Y ¥i

When we write the linear model in terms of the data,

yi =0+ px+e,
theg are the actual residuals which generated the numbers.
The estimated residuals, based on the fitted model, are defhe

& :=Yi—V

and these form the basis for most validation or diagnostistst
These are usually considered observed valuesinfthe model

Yi = o+ PBxi +&;
whereg; are usually taken to be i.i.ti(0,0?).

Note thaté = 0 always holds and hence the observed residuals are notendept observations. Since
the residuals in SLR correspond to estimation of two paramethe variance of the true residuals is
estimated with )
SZ = MSE = zin=le2 _ Zin=1 (y| _9|)
n—2 n—2 ’

which estimates?.

Since the true residuals have variamde a natural first step in standardizing the observed residsal
with
€

3

S

in order to obtain observations which are close to havingmzeao and variance 1, but it will be seen
later that there are many alternatives to this scaling ntetho

Example: Continuing with the previous example, the R commands

ehat<-resid(fm)

plot(x,ehat)

will compute the residuals from the regression and plot tagains the-variable.

Example: It is easy to modify the base example to simulate data whichatcsatisfy the linearity

assumption, e.g. with

set.seed(19) make sure we can repeat these results

#
alpha<-1 # fix the true intercept
beta<-2 # fix the true slope
sigma<-0.5 # fix the true standard deviatoin
n<-10 # the base sample size
x<-1:n # set the base x-values
#

y.base<-alphatbeta*x+rnorm(10,sd=sigma) set the base y-values



y<-y.base
#plot(x,y)
#abline(fm.base)
fm.base<-1m(y~x)
#summary (fm.base)

# residual plots with and without quadratic terms
ehat<-resid(fm.base)
#plot (x,ehat)

y.nonlin<-alpha+beta*x+0.2*x*x+rnorm(10,sd=sigma)
fm.nonlin<-1m(y.nonlin"~x)
ehat.nonlin<-resid(fm.nonlin)

plot(x,ehat.nonlin)

Figure 2: Residuals vs independent variable. No errors idehassumptions.

1.3 Verifying the distribution

Kolmogorov-Smirnov: Compares data to a
theoretical distribution

1
Fn(x) = a izl'[ﬁ J,°>(><) forxeR

3 . Hp:P[X <X =F(x) forxeR.
. The statistic:

- Di*SQP\Fn(X) F(x)-

Given a set of measurements (possibly output such as davidtiom a model) it is possible to set up an
empirical distribution function. It is also possible to sgtan hypothesis which provides a theoretical
cumulative distribution function, such as for a Gaussiatritiution. These two distribution functions
can then be plotted together and compared to evaluate whbthdata fit the hypothesis.

The Kolmogorov-Smirnov testing procedure computes thgelstrpossible differenc®, between the
empirical and cumulative distribution functions.

The probability distribution ob has been tabulated and the null hypothesis of e.g. nornisligjected
for large enough values @&i.



More specifically, denote bly, the empirical distribution function (e.d.f.), so
1 n
Fa(X) i= =9 lix o) (X) forxe R
n i; [Xi,0)

wherel denotes the indicator function and heriggx) is simply the fraction of observations which
lie below the numbex for x € R. Let F denote the proposed cumulative distribution function,tso t
hypothesis to be tested is

Ho:P[X <x =F(x) forxeR.

The statistic to be used is
D := sup|F(x) — F(X)]. ()

XER

Example: Although R has a built-in function (ks.test) to evaluate K@mogorov-Smirnov test, it

is quite useful to formally plot and evaluate such diffeefienanually, or at least using transparent
commands. The following generates data froh(, 10)-distribution and then tests whether that really
is the distribution.

x<-runif (10)*10 # Generate some artificial ¢‘data’’
xs<-sort(x) # Sort the data
y<-rep(1l/length(x),length(x)) # The y-axis for Fn is given
ys<-cumsum(y) # -- just the cumulative sum of 1/n

xgrid<-c(0,xs[1],NA,rbind(xs[1: (length(ys)-1)],xs[2:1length(ys)],rep(NA,length(ys)-1)),xs[length
ygrid<-c(0,0,NA,rbind(ys[1: (length(ys)-1)] ,ys[1l:(length(ys)-1)],ys[1:(length(ys)-1)]1),1,1)
yhat<-xgrid/10

diff<-ygrid-yhat

adiff<-abs(diff)

D<-max(adiff,na.rm=T)

plot(xs,ys,xlim=c(0,10) ,ylim=c(0,1))

lines(xgrid,ygrid,lwd=2)

lines(c(0,10),c(0,1))

Dx<-xgrid[adiff==D]

Dy<-ygrid[adiff==D]

Dx<-Dx[!is.na(Dx)]

Dy<-Dy[!is.na(Dy)]

dropline<-diff [xgrid==Dx&ygrid==Dy]

dropline<-dropline[!is.na(dropline)]

lines(c(Dx,Dx),c(Dy,Dy-dropline))

Example: To continue with the base example wh¥re- a + Bx; + & andg; ~ n(0,0?) are independent,
residuals from this model can be computed as before

set.seed(19) # make sure we can repeat these results
alpha<-1 # fix the true intercept

beta<-2 # fix the true slope

sigma<-0.5 # fix the true standard deviatoin
n<-10 # the base sample size

x<-1:n # set the base x-values
y.base<-alpha+beta*x+rnorm(10,sd=sigma) #

y<-y.base

fm.base<-1m(y~x)

ehat<-resid(fm)

set the base y-values

and checked for normality by first computing residuals andlffrrunning the ks.test function with



# check the normality assumption
df<-fm.base$df.residual
MSE<-sum(ehat~2)/d4f

s<-sqrt (MSE)
ks.test(ehat,pnorm,sd=s)

Note that the pnorm()-command needs to get the argumens™sahich is done by passing it through
the ks.test-function.
Additional notes:

It should be noted that the supremum in Eq. 1 always correfptmone of the data points. However,
the e.d.f. jumps at each data point and is only continuous tiee right. Sincd~, is constant within
each interval between measurements,Fbig monotonically increasing, the individual differencedli
(before taking absolute value) must be decreasing withth ederval.

It follows that the absolute difference may either incresa maximum from the right (at the left
endpoint) or increase towards a supremum from the left.

It follows that the statistic may be computed as
D = max{max{|Fa(x) — F(x)|,|Fn(x) — F(xis1)|},1 <i < n},
i.e. simply by evaluating the differences at all the datafsoi

When there are no unknown parameters that need to be esliindtethe statistid has a distribution
which is independent df and the resulting test which rejects for large valueb @ therefore termed
a non-parametric test.

1.4 Constancy of variance

If the variance is constant, thed should

g not show a trend in any independent vari-
° 8 able.

Simple test: Regress2 onx and test in
usual manner.

Slightly more advanced: Breusch-Pagan
test takes properties ef into account.

Figure 3: Base model with correct assumptiomgs x.

A simple way to test whether the assumption of constant meeian regression analysis holds is to first
compute the residuals from the regression and define a néablaas the squared residuals.

These squared residuals should then not show a signifieart in any way, when plotted or modelled
as functions of the independent variables.

Alternative methods abound, such as splitting the datatimtogroups according to the levels of the
x-variable and computing separately the variance in eaalpgro

Example: Verifying the constancy of variance in the base example ieedo the following

set.seed(19) # make sure we can repeat these results



alpha<-1 # fix the true intercept

beta<-2 # fix the true slope

sigma<-0.5 # fix the true standard deviatoin
n<-10 # the base sample size

x<-1:n # set the base x-values
y.base<-alpha+beta*x+rnorm(10,sd=sigma) # set the base y-values

y<-y.base

fm.base<-1m(y~x)

ehat<-resid(fm)

# check whether the variance is constant
plot(x,ehat)

e.sq<-ehat~2

plot(x,e.sq)

The command
summary (lm(e.sq"x))

will then test whether the quadratic term is significant.

Example: It is also easy to generate an example with a variance whwkases as a function xf

# example with increasing variance

x.inc<-1:100
y.inc<-alphatbeta*x.inc+rnorm(100,sd=sigma*x.inc)
plot(x.inc,y.inc)
ehat.inc<-resid(lm(y.inc™x.inc))
plot(x.inc,ehat.inc)

e.sq<-(ehat.inc) "2

plot(x.inc,e.sq)

and a simple summary command will show a significant relatigmbetweer? andx.

(a) (b)

8000

6000

-
o
5
S
4000

2000

Figure 4: Example with increasing variance with x, (a) resid, e, vs x, (b¢2 Vs X

1.5 \Verifying linearity
Many tests available:

e Plot residuals against x-variable

10



Basic:

e Plot residuals against x-
variable

e Look for pattern

Later:
e Test for autocorrelation

7o e Multiple regression: Add a
quadratic term

e Lack-of-fit tests (replace x by
a factor)

Figure 5: Residuals vs independent variable. Error in litgassumption.

Look for pattern
Later:

Use factors

Test for autocorrelation

Multiple regression: Add a quadratic term

Lack-of-fit test

1.6 Tests are approximate

Testing for normality etc is only approxi-
mate

Most of the tests used for diagnostics are only approximate.

The Kolmogorov-Smirnov test is derived under the assumptiat the distribution is fully specified
under the null hypothesis. However, the residuals in OLSareputed after fitting a model and hence
they are not independent.

Similarly when plottinge? againsix.

Note that exact tests exist, but these simple approximste &ee often adequate.

2 Further diagnostics in SLR

2.1 Outliers and influential cases

It is in particular important to search for
outliers or influential cases in the x or y-
measurements.

Typically use residuals and/or hat matrix:

9=Xp=XX'X)"Ix'y = Hy

Methods for this will be introduced.

An important part of verifying a model is to search for oulier influential cases in the x or y-
measurements.

11



Methods for this will be introduced.

Recall that in the regression problem wiHy] = XB (andX of full rank), the least squares estimator
is B = (X'X)~1X'y and the predicted values of tevector are given by = X = X(X'X)"1X’y. The
case of simple linear regression involvesX@matrix of dimensions x 2 but most of this tutorial also
applies to more general cases (multiple regression, i.ee than one-variable).

The matrixH = X(X’'X)~1X’ therefore transforms thgvector into the predicted valugs= Hy and
is therefore termed thieat matrix . The hat matrix is symmetri¥y’ = H and it is a projection so that
H2=H.

The residuals are correspondingly obtained véth (I — H)y wherel —H is also symmetric and a
projection matrix. It is therefore easy to see that the exadance-covariance matrix of the observed
residuals is given witle = 0°(I — H) and in particular the variance of the i'th observed residal

V(g)= 0'2(1— hii).

Naturally, this is not the same ¥¢;) = 0 since theg are functions of severgtmeasurements and
thus severat’s through the hat matrix.

Example: Some examples of deviations from assumptions can be segjuwith

set.seed(19) # make sure we can repeat these results
alpha<-1 # fix the true intercept

beta<-2 # fix the true slope

sigma<-0.5 # fix the true standard deviatoin
n<-10 # the base sample size

x.base<-1:n # set the base x-values

y.base<-alpha+beta*x.base+rnorm(10,sd=sigma) # set the base y-values
par (mfrow=c(2,2))
y<-y.base

x<-x.base

plot(x,y)
fm.base<-1m(y~x)
#summary (fm.base)
abline(fm.base)
title("(a)")

# Outlier in x
y<-y.base

x<-x.base
x[n]<-2*x[n]
fm<-1m(y~x)
plot(x,y)
abline(fm,col="red")
abline(fm.base)
title("(b)")

# Outlier in y at end
y<-y.base

x<-x.base

y [n]<-2*y[n]
fm<-1m(y~x)

plot(x,y)
abline(fm,col="red")
abline(fm.base)
title("(c)")

12



# Outlier in y in center
y<-y.base

x<-x.base
y[floor(n/2)]1<-2*y[floor(n/2)]
fm<-1m(y~x)

plot(x,y)

abline(fm,col="red")
abline(fm.base)

title("(d)")

The hat matrix can now be set up directly using matrix alg@bRby first setting up the X matrix and
then using the usual formulas with

y<-y.base

x<-x.base

one<-rep(1,n)

X<-cbind(1,x)
H<-XY*%solve (t (X) %*%X) %xht (X)

Upon which H contains the following diagonal elements

> round(diag(H),2)
[1] 0.35 0.25 0.18 0.13 0.10 0.10 0.13 0.18 0.25 0.35

Figure 6: Effects of some outlier types on simple linear esgion.

2.2 Diagnostics based on residuals

Diagnostics for residuals include tests for
normality and constancy of variance.
Semistudentized residualg; (\/(MSE))
are commonly used but

studentized //(MSE)(1—h;j)

would obviously be better.

Diagnostics for residuals include tests for normality aodstancy of variance.

Semistudentized residualax\/(MSE)) are commonly used. This referséobeing an observation of
&, which has variance® andMSE estimatesr?.

Studentizedd //(MSE)(1 — h;;) would be better since the varianceepfs nota? buta? (1 — hyj).

13



Example: The base SLR example hgs=i fori =1,...,n= 10 and we can set up th&matrix in R
with

> one<-rep(1,n)
> X<-cbind(one,x)

This is then used to compute thg-values with

> round (diag(X¥%*%solve (t (X)%*%X) %*%t (X)) ,2)
[1] 0.35 0.25 0.18 0.13 0.10 0.10 0.13 0.18 0.25 0.35

and it is seen that there is considerable variation amorggtiievalues since in this example the vari-
ance to the ends is more than three times the variance in thdieni

2.3 Ouitliers iny - consider deleted residuals

Outliers can be considered a particular de-
viation from normality
Can base analysis on the concept

Yh (ﬁ4ﬁ><h) N

th-2
N

i.e. use the deleted residual:

di =Yi — i)

Outliers can cause havoc with all inference in linear regjogs These atypicatvalues can stem from
instrument failure or non-normality of the process itselfr example, if a gamma distribution is a better
model than a Gaussian distribution, then outliers will beerfeequent.

Recall that .
Yh— O+Bx)
———— ~h2

Oy, %,

for a new measurement at a locatix where the divisor is the "appropriate divisor".

With this in hand it is a relatively straightforward task tevélop a test for outliers by simply deleting
one observation at a time from the data set, refitting theessjon line and evaluating the above ratio
(replacingn by n— 1 in all computations to take into account the deletion of aseovation.

This technique is referred to as the method of deleted relsidwhere the deleted residual itself is
denoted

di = yi — i)
and the parenthesis indicates a model fit without heobservation.

Note that the deleted residual is a linear function of thginél y-vector and formulae are available to
compute these without refitting the regression lirténes.

14



2.4 Computing deleted residuals

In principle, compute deleted residuals or
studentized deleted residuals through fit-
ting model without i'th observations, com-
pute fmed‘yi’(i), and computed; = yj —
Vi) ti = di/s; -

Simpler

1

. n-p-1_ |2
0 sy -@

Can use Bonferroni test with
Y—a/(2n),n—p-1

Consider deleted residuals or studentized deleted rdsittvaugh fitting model without i'th observa-
tions, compute fittedy; ;) and defined; = yi — Y.

Definet; = d /sq; to obtain
1

Can now use Bonferroni test witQ_q /(2n)n-p-1

Notes: The deleted residuals are based on repeatedly fitting the samdel but deleting dropping a
single observation each time. In principle this involvesaping observationfrom both thexX-matrix
and they-vector and fitting a model to this reduced data set. Assum&tmatrix is of full rank, as
well as the matrices with deleted rows.

Denote theX-matrix without thei’th observation byX ;) and the correspondingly reducgdector by
Y(i)- Using this reduced data set will result in a revised fittecapeeter vecto ;). The solution to the
normal equations fqﬁ(i) will give

Bay = (XX i) XYy

and in order to derive the various equations of interestresgions need to be obtained for this quantity.

Now, some algebra can be used to see that

n

X'X— = zixixi’
i=

and hence

Further the following can be verified using simple matrix tiplication if A is a nonsingular matrix and
u, v are column vectors, all of matching dimensions:

1

N=1_ pA-1_
(A+u/) " =A 1T-VA I

(A~tw (VA
(c.f. Rao (1965), p. 33).
From this equations foy;j) and similar quantities can be derived, e.g.

N €
Yi — Vi) = 1—h

15



2.5 Autocorrelation

Autocorrelation refers to correlation be-
tweenYj andYj 1.
Only makes sense ifis “time”.

An incorrect covariance structure can invalidate infeegrsince this affects the variance computations
of B, used when computing thestatistics (o) used for testing.

It should be noted, however, that the covariance structaservt used when deriving the result that the
estimators in linear regression are unbiased.

The term autocorrelation only has meaning when some sontdafr@xists among thevariables. In
some cases there is an underlying time of year or day, whicteaised for ordering, but in other cases
length or some other variable can be used. The first questairatises in this context is whether there
is a correlation betweeY; andY;_ 1.

Several tests for autocorrelation exist. Simple plots aeful, e.g. plottingg”againsti, followed

by simple linear regression & againsti. Alternatively one can plog vs §_1 and investigate the
corresponding correlations. Either approach has the gnoltihat the observed errors are correlated in
nature since they are computed based on the fitted values.

More advanced techniques are also available such as fitfiogreal time series (or other) error struc-
ture to the residuals simultaneously with estimating theapeters, or implementing some two-stage
method.

2.6 Leverage values

Hat matrixH = X(X'X)~1X/ soy = Hy
ande= (1 —H)ywith 5g = 62(1 —H) and
V(§) = 02(1-hjj).

hjj=leverage values.zirLl hij=p 0<
hjj < 1. Averagehjj is p/nsoe.g. d/nis
“large”, or use rules of thumb such a0
or 0.5 as “large” values.

The diagonal values of the hat matrix; are termedeverage values Each of these indicate how
strongly the corresponding “predicts itself”.

Denote byx! the i'th row of theX-matrix, soX’ = [x1:Xp]. Sincehjj is the element of the i'th row and
i'th column of H = X(X’'X)~1X/, it is formed from the left through the i'th row of and from the right
by the i'th column ofX’, which is the transpose of the i'th row ¥f. It follows that

hii = X{(X/X)flxi.

Now, X'X is always symmetric and sinc¢ is of rank p, X'X is also positive definite and so is the
inverse.

It follows thath;; > 0.
Recall that 0< V [&] = 6% (1 — h;i) and hencéy;i < 1.

We have shown that
0<h; <1

n
i;hii =p.

16
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The average value of th®; is thereforep/n so e.g. d/nis “large”, or use rules of thumb such a0
or 0.5 as “large” values.

2.7 Influential observations, DFFITS

Influential observations:

G _¥ 1
Y =Yg ﬂ( hii )2
/MSER; '\ 1—hii

DFFITS =

Influential observations:

¥i — Vi hi )2
DFFITS = 77,\/'95(?))?1” =t <m>
where
i =§ [—n—p—l r
SSE(1-—hyi) — QZ
as before.

Note thatMSE ;) refers to estimation a#? while leaving out thé'th observation.

{\bf Example:} Age and live weight of lambs. Project: Compeegression analysis with detailed
diagnostics.

\begin{verbatim} days weight 135 39 125 35 120 33 126 38 12337 38 133 36 140 41 130 38 129
3612334 1324012938121 34126 35137 44 121 34 137 41 130 3B1\end{verbatim}

2.8 Cooks distance

Measures total effect dfth on all predic-
tions

s (V‘I)’vgm)z

The DFFITS above only describe how a single observatio&tbe prediction of itself. Naturally one
could also consider how observatioaffects the prediction of thgth observation by looking a; ). If
one were to carry this through and try to analyze how an observaffects the prediction of all other
observations, this would lead to a somewhat intractalxe matrix.

Cook’s distance is a single measure describing how an ithdaliobservation affects all predictions,
thus summarizing the information into arvector.

Di = pMSE

1.,. .
= @Hy—y(i)ﬂz

Given deletion formulas, it is not too hard to see that
&  hy
Di=—YL——
: ps? (1- hii)z
and it is seen that this measure is large when either theuadsidis large or the influence measurg
from the hat matrix is large.
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3 \Validating multiple regression models: Model diagnostis

3.1 Introduction and overview

Diagnostics include: Same as in simple lin-
ear regression

Diagnostics for residuals (normality, y-
outliers, constancy of variance)

Identifying X-outliers: Hat matrix
Identifying influential cases
Multicollinearity

Later: Testing for lack of fit

Diagnostics include the same as in simple linear regresbignmore are possible in the multiple re-
gression setting and more things can go wrong.

Partial regression plots: Regress»arand plot residual against residuals from regression @intox;.
Provides indication of whethew should be added and if so, how.

Diagnostics for residuals include tests for normality andstancy of variance. Semistudentized resid-

uals €/+/(MSE)) are commonly used but studentizesl/(/(MSE)(1— hj;) (see below) would be
better.

Itis in particular important to search for outliers or infiuial cases in the x or y-measurements.
Note: One should always plot the residuals againstas well as against each independent variable.

Identifying y-outliers: Hat matrisH = X(X’X)~1X’ soy' = Hy and€= (I — H)y with s = ¢?(1 — H)
andv(g) = 0'2(1— hii).

Further, consider deleted residuals or studentized dktetsiduals through fitting model without i'th
observations, compute fittegl;;, and compute = yi — ¥, ti = di /sy, with
N n-p-—1 2
e[
' SSE(1— hyj) — &
Can use Bonferroni test withh ¢ /(2n) n—p-1

hi=leverage valuesy{' ; hij = p 0< h;j < 1. Averageh; is p/nso e.g. p/nis “large”, or use rules
of thumb such as.Q or 05 as “large” values.

Influential observations: L
N): — \J- - .. 2
DFFITS = 520 _y, ( i )

Cook’s distance...

DFBETAS - influence on coefficients
Multicollinearity...

Later: Testing for lack of fit

See also section 10 in Neter et al.
See Belsley et al

See help(dffits) in R
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3.2 Partial regressions

Partial regression plots: Regress onxll
and plot residual against residuals from re-
gression oky ontox; . Provides indication
of whetherxy should be added and if so,
how.

Partial regression plots: Regress onxaland plot residual against residuals from regression @into
X1. Provides indication of whethes should be added and if so, how.

3.3 DFBETAS

DFBETAS - influence on coefficients

The variance-covariance matrix of the estimated paranwetﬂor,f% = (X’X)"IX'y is given byZ; =
a?(X'X) L.

Denote bycy the diagonal elements ¢X’X)~! so the variance d is given by

VB = Ck0>.

Use(i) to denote a fit without observatighn 0 <i <nand Ietfﬁk be one of the parameters<lk < p.

Define

By — ﬁk(i)

DFBETAS) = — £ o

as a measure of the influence of measurementcoefficienk.

3.4 Multicollinearity

Multicollinearity...

Multicollinearity refers to the case when the columns of Xrenatrix are “almost” linearly dependent
and thus th&X’X-matrix is difficult to invert. This basically means that seindependent variables can
be predicted based on the remaining set.

Commonly this simply reflects a poorly defined problem andetimes it is possible to redefine the
regression problem in terms of a different sekafariables which are “less dependendent”, i.e. are less
correlated.

This situation arises in polynomial regression, wheiis to be predicted based on a linear combination
of x;, x,-2, x1-3, etc. Naturally, if some of the-values are larger than unity, then the raised values can
become arbitrarily large and this alone will cause problefdgence the variables are at a minimum
scaled so that all raised values are limited to a reasonaaimitude. Simple scaling is not enough
however, since as higher powers are usedtmeatrix with columns containing k;, xi2 etc will become
increasingly more difficult. The obvious solution here isriake the columns orthogonal by replacing
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the columns with an orthonormal basis. Since the basis gp@&nsame space as the columns of the
original X-matrix, the projection (fitted values) will be the same.

The approach of replacing the original columns of Xaatrix by an orthogonal set is perfectly general
and is clearly applicable whenever the interest is eithprédiction or in simply testing for significance.
If, however, the interest is in the parameter values therasethen this is not sufficient.

3.5 Remedial measures

Need to improve model based on diagnos-
tics

Error distribution: Transform data?
Unequal variances: Weighting or transfor-
mation, possibly variance function of x-
variable(s)?

Outliers in'y, or non-normality: Robust re-
gression?

Nonlinear mean response: Loess or other
smoothers (later) or polynomial?
Non-independence: Use variance-
covariance matrix?

May need to abandon LS and go to ML

Need to improve model based on diagnostics

Error distribution: Transform data?

Unequal variances: Weighting or transformation, possilalyance function of x-variable(s)?
Outliers in'y, or non-normality: Robust regression?

Nonlinear mean response: Loess or other smoothers (latpolynomial?
Non-independence: Use variance-covariance matrix?

May need to abandon LS and go to ML

Notes: Model diagnostics will typically identify some problem aseand thus the model needs to be
modified.

The investigation of the error distribution and the consyanf variances (homoscedasticity) are tightly
linked. The most common problem is probably of inflated vaces with increased values of an
variable and this is commonly associated with a observdu-sgewed distribution of the residuals,
which again corresponds to tlyevalues having a right-skewed distribution, rather tham$séan. The
solution in this case may be to log-transform (at least)ytialues and perform a corresponding trans-
formation of the model. Notably this commonly replaced aditie model with a multiplicative model
and in many cases this is a reasonable approach. When lofakipgedictions on the original scale,
however, this method is problematic and a bias is introduced

Alternatively a weighted regression may be used for takimg &ccount heteroscedasticity alone. A lin-
ear transformation may possibly be appropriate to takedontmunt a correlation and variance structure
(see below).

A different class of modelgyeneralized linear modelsor generalized additive modelanay also be
used to take into account different error structures witlmesorting to transformation of the data.

When the analysis of residuals, leverage values, delewduas, DFFITS or DFBETAS identifies
outliers or influential observations some action is needeis. not good practice to merely delete the
corresponding values. Usually the detection of such prolalues requires investigation of the initial
data in order to find the source of the problem. In many reahsiins a data-entry problem can be
found in this manner and appropriately corrected. In otlases the data point will have to be deleted
since the investigation reveals that it is an impossibla g@int. The final resort will be to delete the
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data point simply because it is in discordance with the emést of the data set.
Robust regressionmay be used to avoid the problems of outliers, influential@aland non-normality.

Naturally a residual plot may indicate nonlinearity in thean response. This may possibly be resolved
using loess or other smoothers (e.g. generalized additbdefs) or polynomial regression?

In difficult situations a move from least squares estimatmmaximum likelihood with a complex
mean-variance structure may be required. A special cadgsistwhen the residuals are found to be
statistically dependent (below).

3.6 Correlated data

If Y are not independery # o2l then adjustments are needed.

The special case when the correlations are known is of péatisignificance. This case can be solved
and is also quite common. Assume therefore that the varieoeariance matrix can be written in the
form Xy = 0B with B>0.

Use Cholesky factorisation to wrig= T'T andT = U1

Now defineY = U'Y....

3.7 Further reading

Standard regression texts such as Neter et al (1996) alidg@ome methods for simple regression
diagnostics and the theoretical foundations for these edndmnd or derived in theoretical texts such as
Scheffe (1959).

More detailed treatment of diagnostics per se can be fousgenific texts on this topics, e.g. Belsey et
al (1980) which use theoretical results from linear algetinach can be found e.g. in Rao (1965).

Robust regression is handled in many textbooks, with seuseful cases for robust and exploratory
analysis given in Hoaglin et al (1983).
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