Further diagnostics in SLR
 (STATS545.3: Regression diagnostics)

Gunnar Stefansson

September 19, 2014

Outliers and influential cases

It is in particular important to search for outliers or influential cases in the x or y -measurements.
Typically use residuals and/or hat matrix:

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{H y}
$$

Methods for this will be introduced.

Same example as before - insert outliers in different locations and investigate effects.

Figure: Effects of some outlier types on simple linear regression.

Diagnostics based on residuals

Diagnostics for residuals include tests for normality and constancy of variance.
Semistudentized residuals $\left(e_{i} / \sqrt{(M S E)}\right)$ are commonly used but studentized

$$
e_{i} / \sqrt{(M S E)\left(1-h_{i i}\right)}
$$

would obviously be better.

Outliers in y - consider deleted residuals

Outliers can be considered a particular deviation from normality Can base analysis on the concept

$$
\frac{Y_{h}-\left(\hat{\alpha}+\hat{\beta} x_{h}\right)}{\hat{\sigma}_{Y_{h}-\hat{Y}_{h}}} \sim t_{n-2}
$$

i.e. use the deleted residual:

$$
d_{i}=y_{i}-\hat{y}_{i(i)}
$$

Computing deleted residuals

In principle, compute deleted residuals or studentized deleted residuals through fitting model without i'th observations, compute fitted, $\hat{y}_{i(i)}$, and compute $d_{i}=y_{i}-\hat{y}_{i(i)}, t_{i}=d_{i} / s_{d_{i}}$.
Simpler

$$
t_{i}=e_{i}\left[\frac{n-p-1}{\operatorname{SSE}\left(1-h_{i i}\right)-e_{i}^{2}}\right]^{\frac{1}{2}}
$$

Can use Bonferroni test with $t_{1-\alpha /(2 n), n-p-1}$

Autocorrelation

Autocorrelation refers to correlation between Y_{i} and Y_{i+1}. Only makes sense if i is "time".

Leverage values

Hat matrix $H=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ so $\hat{y}=H y$ and $\hat{e}=(I-H) y$ with $\Sigma_{\hat{e}}=$ $\sigma^{2}(I-H)$ and $V\left(\hat{e}_{i}\right)=\sigma^{2}\left(1-h_{i i}\right)$.
$h_{i i}=$ leverage values. $\sum_{i=1}^{n} h_{i i}=p \quad 0 \leq h_{i i} \leq 1$. Average $h_{i i}$ is p / n so e.g. $2 p / n$ is "large", or use rules of thumb such as 0.2 or 0.5 as "large" values.

Influential observations, DFFITS

Influential observations:

$$
\operatorname{DFFITS}_{i}=\frac{\hat{Y}_{i}-\hat{Y}_{i(i)}}{\sqrt{M S E_{i} h_{i i}}}=t_{i}\left(\frac{h_{i i}}{1-h i i}\right)^{\frac{1}{2}}
$$

Cooks distance

Measures total effect of i 'th on all predictions

$$
D_{i}=\frac{\sum_{j}\left(\hat{y}_{j}-\hat{y}_{i(i)}\right)^{2}}{p M S E}
$$

