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Outliers and in�uential ases

It is in partiular important to searh for outliers or in�uential ases in the

x or y-measurements.

Typially use residuals and/or hat matrix:

ŷ = Xβ̂ = X(X′
X)−1

X

′
y = Hy

Methods for this will be introdued.

Same example as before - insert outliers in di�erent lo-

ations and investigate e�ets.
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Figure: E�ets of some outlier types

on simple linear regression.
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Diagnostis based on residuals

Diagnostis for residuals inlude tests for normality and onstany of vari-

ane.

Semistudentized residuals (e

i

/
√

(MSE )) are ommonly used but studen-

tized

e

i

/
√

(MSE )(1− h

ii

)

would obviously be better.
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Outliers in y - onsider deleted residuals

Outliers an be onsidered a partiular deviation from normality

Can base analysis on the onept

Y

h

− (α̂+ β̂x
h

)

σ̂
Y

h

−Ŷ

h

∼ t

n−2

i.e. use the deleted residual:

d

i

= y

i

− ŷ

i(i)
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Computing deleted residuals

In priniple, ompute deleted residuals or studentized deleted residuals

through �tting model without i'th observations, ompute �tted, ŷ

i(i), and

ompute d

i

= y

i

− ŷ

i(i), ti = d

i

/s
d

i

.

Simpler

t

i

= e

i

[

n − p − 1

SSE (1− h

ii

)− e

2

i

]
1

2

Can use Bonferroni test with t

1−α/(2n),n−p−1
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Autoorrelation

Autoorrelation refers to orrelation between Y

i

and Y

i+1

.

Only makes sense if i is �time�.
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Leverage values

Hat matrix H = X (X ′
X )−1

X

′
so ŷ = Hy and ê = (I − H)y with Σ

ê

=
σ2(I − H) and V (ê

i

) = σ2(1− h

ii

).
h

ii

=leverage values.

∑

n

i=1

h

ii

= p 0 ≤ h

ii

≤ 1. Average h

ii

is p/n so

e.g. 2p/n is �large�, or use rules of thumb suh as 0.2 or 0.5 as �large�

values.
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In�uential observations, DFFITS

In�uential observations:

DFFITS

i

=
Ŷ

i

− Ŷ

i(i)√
MSE

i

h

ii

= t

i

(

h

ii

1− hii

)
1

2
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Cooks distane

Measures total e�et of i 'th on all preditions

D

i

=

∑

j

(

ŷ

j

− ŷ

i(i)

)

2

pMSE
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