
Transformations and scale changes

Based on a book by Julian J. Faraway

University of Iceland

(UI) Estimation 1 / 30

Data

We will continue to use the savings dataset.

library(faraway) # you need to install the package first
data(savings)

The dataframe contains the following columns:

sr savings rate - personal saving divided by disposable income
pop15 percent population under age of 15
pop75 percent population over age of 75
dpi per-capita disposable income in dollars
ddpi percent growth rate of dpi

(UI) Estimation 2 / 30

Transformation

Where are we...

1 Transformation

2 Scale changes

3 Collinearity

(UI) Estimation 3 / 30

Transformation

Transformation

Transformations of the response and predictors can improve the fit
and correct violations of model assumptions such as constant error
variance.

We may also consider adding additional predictors that are functions
of the existing predictors like quadratic or crossproduct terms.

(UI) Estimation 4 / 30

Transformation

Transforming the response

When you use a log transformation on the response, the regression
coefficients have a particular interpretation:

log ŷ = β̂0 + β̂1x1 + ...+ β̂pxp

ŷ = eβ̂0eβ̂1x1 · · · eβ̂pxp

An increase of one in x1 would multiply the predicted response (in the
original scale) by eβ̂1 .

Thus when a log scale is used the regression coefficients can be interpreted
in a multiplicative rather than the usual additive manner.

(UI) Estimation 5 / 30

Transformation

Transforming the response

Although you may transform the response, you will probably need to
express predictions in the original scale.

This is simply a matter of back-transforming.

In the logged model above the predictions would be eŷ.

If the prediction confidence interval in the the logged scale was [l, u]
then you would use [el, eu]. This interval will not be symmetric but

this may be desirable.

(UI) Estimation 6 / 30

Transformation

Transforming the response

Regression coefficients will need to be interpreted with respect to the
transformed scale.

There is no straightforward way of backtransforming them to values
that can be interpreted in the original scale.

You cannot directly compare regression coefficients for models where
the response transformation is different.

Difficulties of this type may dissuade one from transforming the
response.

(UI) Estimation 7 / 30

Transformation

Box-Cox transformation

The Box-Cox method is a popular way to determine a tranformation
on the response.

It is designed for strictly positive responses and chooses the
transformation to find the best fit to the data.

The method transforms the response y → tλ(y) where the family of
transformations indexed by λ is

tλ(y) =

{
yλ−1
λ λ 6= 0

log y λ = 0

λ is estimated using maximum likelihood.

(UI) Estimation 8 / 30

Transformation

Finding the value of λ using boxcox()

library(MASS) # you need to install the package first
g <- lm(sr~pop15+pop75+dpi+ddpi,savings)
boxcox(g,plotit=T)

−2 −1 0 1 2

−
20

0
−

10
0

λ

lo
g−

Li
ke

lih
oo

d

 95%

(UI) Estimation 9 / 30

Transformation

Box-Cox transformation

The Box-Cox method gets upset by outliers - if you find λ̂ = 5 then this is
probably the reason - there can be little justification for actually making
such an extreme transformation.

What if some yi < 0? Sometimes adding a constant to all y can work
provided that the constant is small.

If maxiyi/miniyi is small then the Box-Cox won’t do anything because
power transforms are well approximated by linear transformations over short
intervals.

Should the estimation of λ count as an extra parameter to be taken account
of in the degrees of freedom? This is a difficult question since λ is not a
linear parameter and its estimation is not part of the least squares fit.

(UI) Estimation 10 / 30

Transformation

Transforming the predictors

You can take a Box-Cox style approach for each of the predictors,
choosing the transformation to minimize the RSS.

This takes time and furthermore the correct transformation for each
predictor may depend on getting the others right too.

(UI) Estimation 11 / 30

Transformation

Transforming the predictors

Another way of generalizing the Xβ part of the model is to add polynomial
terms. In the one-predictor case, we have

y = β0 + β1x+ ...+ βdx
d + ε

which allows for a more flexible relationship although we usually don’t
believe it exactly represents any underlying reality.

(UI) Estimation 12 / 30

Transformation

Transforming the predictors

There are two ways to choose d:
Keep adding terms until the added term is not statistically significant.

Start with a large d — eliminate not statistically significant terms
starting with the highest order term.

Warning: Do not eliminate lower order terms from the model even if they
are not statistically significant.

(UI) Estimation 13 / 30

Transformation

Regression splines

Polynomials have the advantage of smoothness but the disadvantage
that each data point affects the fit globally.

With splines we get smoothness and local influence.

A spline is a numeric function that is piecewise-defined by polynomial
functions, and which possesses a high degree of smoothness at the
places where the polynomial pieces connect (which are known as
knots)

(UI) Estimation 14 / 30

Transformation

”Modern” methods

Generalized additive models (GAM)

ACE (Alternating Conditional Expectations), AVAS (Additivity and
variance stabilization), MARS (Multivariate adaptive regression
splines)

Regression trees

(UI) Estimation 15 / 30

Transformation

Transforming the predictors in R

We can use the poly() function to construct orthogonal polynomials.

We can us the bs() function to generate the B-spline basis matrix for
a polynomial spline.

(UI) Estimation 16 / 30

Scale changes

Where are we...

1 Transformation

2 Scale changes

3 Collinearity

(UI) Estimation 17 / 30

Scale changes

Changes of scale

Suppose we re-express xi as xi+a
b . We might want to do this because

Predictors of similar magnitude are easier to compare. β̂ = 3.51 is
easier to parse than β̂ = 0.00000351.

A change of units might aid interpretability.

Numerical stability is enhanced when all the predictors are on a similar
scale.

(UI) Estimation 18 / 30

Scale changes

Changes of scale

Rescaling xi with some constant 1/b leaves the t- and F tests and σ̂2

and R2 unchanged but the estimate of its parameter is multiplied with
b.

Rescaling y with some constant 1/a leaves the t- and F tests and R2

unchanged but all the β̂-s and σ̂2 are divided by a.

(UI) Estimation 19 / 30

Scale changes

Standardizing the variables

One rather thorough approach to scaling is to convert all the variables
to standard units - mean 0 and variance 1.

This can be done using the scale() command.

Such scaling has the advantage of putting all the predictors and the
response on a comparable scale, which makes comparisons simpler.

It also avoids some numerical problems that can arise when variables
are of very different scales.

The downside of this scaling is that the regression coefficients now
represent the effect of a one standard unit increase in the predictor on
the response in standard units — this might not always be easy to
interpret.

(UI) Estimation 20 / 30

Scale changes

Standardizing the variables

variables on original scale
fit.1<-lm(sr~pop15+pop75+dpi+ddpi,data=savings)
summary(fit.1)

##
Call:
lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)
##
Residuals:
Min 1Q Median 3Q Max
-8.2422 -2.6857 -0.2488 2.4280 9.7509
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
pop15 -0.4611931 0.1446422 -3.189 0.002603 **
pop75 -1.6914977 1.0835989 -1.561 0.125530
dpi -0.0003369 0.0009311 -0.362 0.719173
ddpi 0.4096949 0.1961971 2.088 0.042471 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

(UI) Estimation 21 / 30

Scale changes

Standardizing the variables

x - variables scaled
fit.2<-lm(sr~I(scale(pop15))+I(scale(pop75))+I(scale(dpi))+I(scale(ddpi)),data=savings)
summary(fit.2)

##
Call:
lm(formula = sr ~ I(scale(pop15)) + I(scale(pop75)) + I(scale(dpi)) +
I(scale(ddpi)), data = savings)
##
Residuals:
Min 1Q Median 3Q Max
-8.2422 -2.6857 -0.2488 2.4280 9.7509
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.6710 0.5378 17.983 <2e-16 ***
I(scale(pop15)) -4.2207 1.3237 -3.189 0.0026 **
I(scale(pop75)) -2.1833 1.3987 -1.561 0.1255
I(scale(dpi)) -0.3338 0.9226 -0.362 0.7192
I(scale(ddpi)) 1.1758 0.5631 2.088 0.0425 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

(UI) Estimation 22 / 30

Scale changes

Standardizing the variables

y - variable scaled
fit.3<-lm(scale(sr)~pop15+pop75+dpi+ddpi,data=savings)
summary(fit.3)

##
Call:
lm(formula = scale(sr) ~ pop15 + pop75 + dpi + ddpi, data = savings)
##
Residuals:
Min 1Q Median 3Q Max
-1.83962 -0.59944 -0.05553 0.54191 2.17635
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.217e+00 1.641e+00 2.569 0.0136 *
pop15 -1.029e-01 3.228e-02 -3.189 0.0026 **
pop75 -3.775e-01 2.419e-01 -1.561 0.1255
dpi -7.519e-05 2.078e-04 -0.362 0.7192
ddpi 9.144e-02 4.379e-02 2.088 0.0425 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.8487 on 45 degrees of freedom
Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

(UI) Estimation 23 / 30

Collinearity

Where are we...

1 Transformation

2 Scale changes

3 Collinearity

(UI) Estimation 24 / 30

Collinearity

Collinearity

If XTX is singular, that is some predictors are linear combinations of
others, we have exact collinearity and there is no unique LS estimate
of β.
If XTX is close to singular we have approximate collinearity or
multicollinearity.
This causes serious problems with the estimation of β and associate
quantities as well as interpretation.
We can detect possible problems by looking at a correlation matrix of
the predictors.

(UI) Estimation 25 / 30

Collinearity

Collinearity

Collinearity can lead to:

Imprecise estimates of β.
t-tests which fail to reveal signifficant factors.
missing importance of predictors.

(UI) Estimation 26 / 30

Collinearity

Collinearity

str(longley)

'data.frame': 16 obs. of 7 variables:
$ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
$ GNP : num 234 259 258 285 329 ...
$ Unemployed : num 236 232 368 335 210 ...
$ Armed.Forces: num 159 146 162 165 310 ...
$ Population : num 108 109 110 111 112 ...
$ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
$ Employed : num 60.3 61.1 60.2 61.2 63.2 ...

(UI) Estimation 27 / 30

Collinearity

Collinearity

fit<-lm(Employed ~ ., data=longley)
summary(fit)

##
Call:
lm(formula = Employed ~ ., data = longley)
##
Residuals:
Min 1Q Median 3Q Max
-0.41011 -0.15767 -0.02816 0.10155 0.45539
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **
GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141
GNP -3.582e-02 3.349e-02 -1.070 0.312681
Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **
Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***
Population -5.110e-02 2.261e-01 -0.226 0.826212
Year 1.829e+00 4.555e-01 4.016 0.003037 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925
F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10

(UI) Estimation 28 / 30

Collinearity

Collinearity

cor(longley)

GNP.deflator GNP Unemployed Armed.Forces Population
GNP.deflator 1.0000000 0.9915892 0.6206334 0.4647442 0.9791634
GNP 0.9915892 1.0000000 0.6042609 0.4464368 0.9910901
Unemployed 0.6206334 0.6042609 1.0000000 -0.1774206 0.6865515
Armed.Forces 0.4647442 0.4464368 -0.1774206 1.0000000 0.3644163
Population 0.9791634 0.9910901 0.6865515 0.3644163 1.0000000
Year 0.9911492 0.9952735 0.6682566 0.4172451 0.9939528
Employed 0.9708985 0.9835516 0.5024981 0.4573074 0.9603906
Year Employed
GNP.deflator 0.9911492 0.9708985
GNP 0.9952735 0.9835516
Unemployed 0.6682566 0.5024981
Armed.Forces 0.4172451 0.4573074
Population 0.9939528 0.9603906
Year 1.0000000 0.9713295
Employed 0.9713295 1.0000000

(UI) Estimation 29 / 30

Collinearity

Collinearity

fit<-lm(Employed ~ GNP + Unemployed + Armed.Forces, data=longley)
summary(fit)

##
Call:
lm(formula = Employed ~ GNP + Unemployed + Armed.Forces, data = longley)
##
Residuals:
Min 1Q Median 3Q Max
-0.83085 -0.22306 0.01735 0.10699 1.08090
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 53.306461 0.716342 74.415 < 2e-16 ***
GNP 0.040788 0.002207 18.485 3.49e-10 ***
Unemployed -0.007968 0.002134 -3.734 0.00285 **
Armed.Forces -0.004828 0.002552 -1.892 0.08286 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.4793 on 12 degrees of freedom
Multiple R-squared: 0.9851, Adjusted R-squared: 0.9814
F-statistic: 264.4 on 3 and 12 DF, p-value: 3.189e-11

(UI) Estimation 30 / 30

	Transformation
	Scale changes
	Collinearity

