Transformations and scale changes

Based on a book by Julian J. Faraway

University of Iceland

Data

We will continue to use the savings dataset.

```
library(faraway) # you need to install the package first
data(savings)
```

The dataframe contains the following columns:
sr savings rate - personal saving divided by disposable income
pop15 percent population under age of 15
pop75 percent population over age of 75
dpi per-capita disposable income in dollars
ddpi percent growth rate of dpi

Where are we...

(1) Transformation

22 Scale changes

(3) Collinearity

Transformation

- Transformations of the response and predictors can improve the fit and correct violations of model assumptions such as constant error variance.
- We may also consider adding additional predictors that are functions of the existing predictors like quadratic or crossproduct terms.

Transforming the response

When you use a log transformation on the response, the regression coefficients have a particular interpretation:

$$
\begin{gathered}
\log \hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\ldots+\hat{\beta}_{p} x_{p} \\
\hat{y}=e^{\hat{\beta}_{0}} e^{\hat{\beta}_{1} x_{1}} \cdots e^{\hat{\beta}_{p} x_{p}}
\end{gathered}
$$

An increase of one in x_{1} would multiply the predicted response (in the original scale) by $e^{\hat{\beta}_{1}}$.

Thus when a log scale is used the regression coefficients can be interpreted in a multiplicative rather than the usual additive manner.

Transforming the response

- Although you may transform the response, you will probably need to express predictions in the original scale.
- This is simply a matter of back-transforming.
- In the logged model above the predictions would be $e^{\hat{y}}$.
- If the prediction confidence interval in the the logged scale was $[l, u]$ then you would use $\left[e^{l}, e^{u}\right]$. This interval will not be symmetric but this may be desirable.

Transforming the response

- Regression coefficients will need to be interpreted with respect to the transformed scale.
- There is no straightforward way of backtransforming them to values that can be interpreted in the original scale.
- You cannot directly compare regression coefficients for models where the response transformation is different.
- Difficulties of this type may dissuade one from transforming the response.

Box-Cox transformation

- The Box-Cox method is a popular way to determine a tranformation on the response.
- It is designed for strictly positive responses and chooses the transformation to find the best fit to the data.
- The method transforms the response $y \rightarrow t_{\lambda}(y)$ where the family of transformations indexed by λ is

$$
t_{\lambda}(y)= \begin{cases}\frac{y^{\lambda}-1}{\lambda} & \lambda \neq 0 \\ \log y & \lambda=0\end{cases}
$$

- λ is estimated using maximum likelihood.

Finding the value of λ using boxcox ()

```
library(MASS) # you need to install the package first
g <- lm(sr~pop15+pop75+dpi+ddpi,savings)
boxcox(g,plotit=T)
```


Box-Cox transformation

- The Box-Cox method gets upset by outliers - if you find $\hat{\lambda}=5$ then this is probably the reason - there can be little justification for actually making such an extreme transformation.
- What if some $y_{i}<0$? Sometimes adding a constant to all y can work provided that the constant is small.
- If $\max _{i} y_{i} / \min _{i} y_{i}$ is small then the Box-Cox won't do anything because power transforms are well approximated by linear transformations over short intervals.
- Should the estimation of λ count as an extra parameter to be taken account of in the degrees of freedom? This is a difficult question since λ is not a linear parameter and its estimation is not part of the least squares fit.

Transforming the predictors

- You can take a Box-Cox style approach for each of the predictors, choosing the transformation to minimize the RSS.
- This takes time and furthermore the correct transformation for each predictor may depend on getting the others right too.

Transforming the predictors

Another way of generalizing the $X \beta$ part of the model is to add polynomial terms. In the one-predictor case, we have

$$
y=\beta_{0}+\beta_{1} x+\ldots+\beta_{d} x^{d}+\varepsilon
$$

which allows for a more flexible relationship although we usually don't believe it exactly represents any underlying reality.

Transforming the predictors

There are two ways to choose d:

- Keep adding terms until the added term is not statistically significant.
- Start with a large d - eliminate not statistically significant terms starting with the highest order term.

Warning: Do not eliminate lower order terms from the model even if they are not statistically significant.

Regression splines

- Polynomials have the advantage of smoothness but the disadvantage that each data point affects the fit globally.
- With splines we get smoothness and local influence.
- A spline is a numeric function that is piecewise-defined by polynomial functions, and which possesses a high degree of smoothness at the places where the polynomial pieces connect (which are known as knots)

"'Modern" methods

- Generalized additive models (GAM)
- ACE (Alternating Conditional Expectations), AVAS (Additivity and variance stabilization), MARS (Multivariate adaptive regression splines)
- Regression trees

Transforming the predictors in R

- We can use the poly() function to construct orthogonal polynomials.
- We can us the bs () function to generate the B-spline basis matrix for a polynomial spline.

Where are we...

(1) Transformation

(2) Scale changes

(3) Collinearity

Changes of scale

Suppose we re-express x_{i} as $\frac{x_{i}+a}{b}$. We might want to do this because

- Predictors of similar magnitude are easier to compare. $\hat{\beta}=3.51$ is easier to parse than $\hat{\beta}=0.00000351$.
- A change of units might aid interpretability.
- Numerical stability is enhanced when all the predictors are on a similar scale.

Changes of scale

- Rescaling x_{i} with some constant $1 / b$ leaves the t - and F tests and $\hat{\sigma}^{2}$ and R^{2} unchanged but the estimate of its parameter is multiplied with b.
- Rescaling y with some constant $1 / a$ leaves the t - and F tests and R^{2} unchanged but all the $\hat{\beta}$-s and $\hat{\sigma}^{2}$ are divided by a.

Standardizing the variables

- One rather thorough approach to scaling is to convert all the variables to standard units - mean 0 and variance 1 .
- This can be done using the scale() command.
- Such scaling has the advantage of putting all the predictors and the response on a comparable scale, which makes comparisons simpler.
- It also avoids some numerical problems that can arise when variables are of very different scales.
- The downside of this scaling is that the regression coefficients now represent the effect of a one standard unit increase in the predictor on the response in standard units - this might not always be easy to interpret.

Standardizing the variables

```
# variables on original scale
fit.1<-lm(sr~pop15+pop75+dpi+ddpi,data=savings)
summary(fit.1)
##
## Call:
## lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -8.2422 & -2.6857 & -0.2488 & 2.4280 & 9.7509
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr
## (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
## pop15 -0.4611931 0.1446422 -3.189 0.002603 **
## pop75 -1.6914977 1.0835989 -1.561 0.125530
## dpi 
## ddpi 0.4096949 0.1961971 2.088 0.042471 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```


Standardizing the variables

```
# x - variables scaled
fit.2<-lm(sr~I(scale(pop15))+I(scale(pop75))+I(scale(dpi))+I(scale(ddpi)), data=savings)
summary(fit.2)
##
## Call:
## lm(formula = sr ~ I(scale(pop15)) + I(scale(pop75)) + I(scale(dpi)) +
## I(scale(ddpi)), data = savings)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\(\# \#\) & -8.2422 & -2.6857 & -0.2488 & 2.4280 & 9.7509
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 9.6710 0.5378 17.983 <2e-16 ***
## I(scale(pop15)) -4.2207 1.3237 -3.189 0.0026 **
## I(scale(pop75)) -2.1833 1.3987 -1.561 0.1255
## I(scale(dpi)) -0.3338 0.9226 -0.362 0.7192
## I(scale(ddpi)) 1.1758 0.5631 2.088 0.0425 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```


Standardizing the variables

```
# y - variable scaled
fit.3<-lm(scale(sr)~pop15+pop75+dpi+ddpi,data=savings)
summary(fit.3)
##
## Call:
## lm(formula = scale(sr) ~ pop15 + pop75 + dpi + ddpi, data = savings)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -1.83962 & -0.59944 & -0.05553 & 0.54191 & 2.17635
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & \(4.217 \mathrm{e}+00\) & \(1.641 \mathrm{e}+00\) & 2.569 & \(0.0136 *\) \\
\#\# pop15 & \(-1.029 \mathrm{e}-01\) & \(3.228 \mathrm{e}-02\) & -3.189 & 0.0026 ** \\
\#\# pop75 & \(-3.775 \mathrm{e}-01\) & \(2.419 \mathrm{e}-01\) & -1.561 & 0.1255 & \\
\#\# dpi & \(-7.519 \mathrm{e}-05\) & \(2.078 \mathrm{e}-04\) & -0.362 & 0.7192 \\
\#\# ddpi & \(9.144 \mathrm{e}-02\) & \(4.379 \mathrm{e}-02\) & 2.088 & \(0.0425 *\)
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8487 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```


Where are we...

(1) Transformation

(2) Scale changes
(3) Collinearity

Collinearity

- If $X^{T} X$ is singular, that is some predictors are linear combinations of others, we have exact collinearity and there is no unique LS estimate of $\boldsymbol{\beta}$.
- If $X^{T} X$ is close to singular we have approximate collinearity or multicollinearity.
- This causes serious problems with the estimation of $\boldsymbol{\beta}$ and associate quantities as well as interpretation.
- We can detect possible problems by looking at a correlation matrix of the predictors.

Collinearity

Collinearity can lead to:

- Imprecise estimates of $\boldsymbol{\beta}$.
- t-tests which fail to reveal signifficant factors.
- missing importance of predictors.

Collinearity

```
str(longley)
## 'data.frame': 16 obs. of 7 variables:
## $ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
## $ GNP : num 234 259 258 285 329 ...
## $ Unemployed : num 236 232 368 335 210 ...
## $ Armed.Forces: num 159 146 162 165 310 ...
## $ Population : num 108 109 110 111 112 ...
## $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
## $ Employed : num 60.3 61.1 60.2 61.2 63.2 ...
```


Collinearity

```
fit<-lm(Employed ~ ., data=longley)
summary(fit)
##
## Call:
## lm(formula = Employed ~ ., data = longley)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\(\# \#\) & -0.41011 & -0.15767 & -0.02816 & 0.10155 & 0.45539
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrll} 
\#\# & Estimate & Std. Error & t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & \(-3.482 \mathrm{e}+03\) & \(8.904 \mathrm{e}+02\) & -3.911 & 0.003560
\end{tabular} **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3049 on 9 degrees of freedom
## Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925
## F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10
```


Collinearity

cor(longley)						
		GNP.deflator		GNP	Unemployed	Armed.Forces

Collinearity

```
fit<-lm(Employed ~ GNP + Unemployed + Armed.Forces, data=longley)
summary(fit)
##
## Call:
## lm(formula = Employed ~ GNP + Unemployed + Armed.Forces, data = longley)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -0.83085 & -0.22306 & 0.01735 & 0.10699 & 1.08090
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr
## (Intercept) 53.306461 0.716342 74.415 < 2e-16 ***
## GNP 0.040788 0.002207 18.485 3.49e-10 ***
## Unemployed -0.007968 0.002134 -3.734 0.00285 **
## Armed.Forces -0.004828 0.002552 -1.892 0.08286 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4793 on 12 degrees of freedom
## Multiple R-squared: 0.9851, Adjusted R-squared: 0.9814
## F-statistic: 264.4 on 3 and 12 DF, p-value: 3.189e-11
```

