Transformations and scale changes

Based on a book by Julian J. Faraway

University of Iceland

We will continue to use the savings dataset.

library(faraway) # you need to install the package first
data(savings)

The dataframe contains the following columns:

- sr savings rate personal saving divided by disposable income
- pop15 percent population under age of 15
- pop75 percent population over age of 75
- dpi per-capita disposable income in dollars
- ddpi percent growth rate of dpi

Where are we...

2 Scale changes

Transformation

- Transformations of the response and predictors can improve the fit and correct violations of model assumptions such as constant error variance.
- We may also consider adding additional predictors that are functions of the existing predictors like quadratic or crossproduct terms.

Transforming the response

When you use a log transformation on the response, the regression coefficients have a particular interpretation:

$$\operatorname{og} \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$
$$\hat{y} = e^{\hat{\beta}_0} e^{\hat{\beta}_1 x_1} \cdots e^{\hat{\beta}_p x_p}$$

An increase of one in x_1 would multiply the predicted response (in the original scale) by $e^{\hat{\beta}_1}$.

Thus when a log scale is used the regression coefficients can be interpreted in a multiplicative rather than the usual additive manner.

Transforming the response

- Although you may transform the response, you will probably need to express predictions in the original scale.
- This is simply a matter of back-transforming.
- In the logged model above the predictions would be $e^{\hat{y}}$.
- If the prediction confidence interval in the the logged scale was [l, u] then you would use $[e^l, e^u]$. This interval will not be symmetric but this may be desirable.

Transforming the response

- Regression coefficients will need to be interpreted with respect to the transformed scale.
- There is no straightforward way of backtransforming them to values that can be interpreted in the original scale.
- You cannot directly compare regression coefficients for models where the response transformation is different.
- Difficulties of this type may dissuade one from transforming the response.

Box-Cox transformation

- The Box-Cox method is a popular way to determine a tranformation on the response.
- It is designed for strictly positive responses and chooses the transformation to find the best fit to the data.
- The method transforms the response $y\to t_\lambda(y)$ where the family of transformations indexed by λ is

$$t_{\lambda}(y) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \lambda \neq 0\\ \log y & \lambda = 0 \end{cases}$$

• λ is estimated using maximum likelihood.

Finding the value of λ using boxcox()

library(MASS) # you need to install the package first g <- lm(sr~pop15+pop75+dpi+ddpi,savings) boxcox(g,plotit=T)

Box-Cox transformation

- The Box-Cox method gets upset by outliers if you find $\hat{\lambda} = 5$ then this is probably the reason there can be little justification for actually making such an extreme transformation.
- What if some $y_i < 0$? Sometimes adding a constant to all y can work provided that the constant is small.
- If max_iy_i/min_iy_i is small then the Box-Cox won't do anything because power transforms are well approximated by linear transformations over short intervals.
- Should the estimation of λ count as an extra parameter to be taken account of in the degrees of freedom? This is a difficult question since λ is not a linear parameter and its estimation is not part of the least squares fit.

Transforming the predictors

- You can take a Box-Cox style approach for each of the predictors, choosing the transformation to minimize the RSS.
- This takes time and furthermore the correct transformation for each predictor may depend on getting the others right too.

Transforming the predictors

Another way of generalizing the $X\beta$ part of the model is to add polynomial terms. In the one-predictor case, we have

$$y = \beta_0 + \beta_1 x + \dots + \beta_d x^d + \varepsilon$$

which allows for a more flexible relationship although we usually don't believe it exactly represents any underlying reality.

Transforming the predictors

There are two ways to choose d:

- Keep adding terms until the added term is not statistically significant.
- Start with a large *d* eliminate not statistically significant terms starting with the highest order term.

Warning: Do not eliminate lower order terms from the model even if they are not statistically significant.

Regression splines

- Polynomials have the advantage of smoothness but the disadvantage that each data point affects the fit globally.
- With splines we get smoothness and local influence.
- A spline is a numeric function that is piecewise-defined by polynomial functions, and which possesses a high degree of smoothness at the places where the polynomial pieces connect (which are known as knots)

"Modern" methods

- Generalized additive models (GAM)
- ACE (Alternating Conditional Expectations), AVAS (Additivity and variance stabilization), MARS (Multivariate adaptive regression splines)
- Regression trees

Transforming the predictors in R

- We can use the poly() function to construct orthogonal polynomials.
- We can us the bs() function to generate the B-spline basis matrix for a polynomial spline.

Where are we...

Changes of scale

Suppose we re-express x_i as $\frac{x_i+a}{b}$. We might want to do this because

- Predictors of similar magnitude are easier to compare. $\hat{\beta} = 3.51$ is easier to parse than $\hat{\beta} = 0.00000351$.
- A change of units might aid interpretability.
- Numerical stability is enhanced when all the predictors are on a similar scale.

Changes of scale

- Rescaling x_i with some constant 1/b leaves the t- and F tests and $\hat{\sigma}^2$ and R^2 unchanged but the estimate of its parameter is multiplied with b.
- Rescaling y with some constant 1/a leaves the t- and F tests and R^2 unchanged but all the $\hat{\beta}$ -s and $\hat{\sigma}^2$ are divided by a.

- One rather thorough approach to scaling is to convert all the variables to standard units mean 0 and variance 1.
- This can be done using the scale() command.
- Such scaling has the advantage of putting all the predictors and the response on a comparable scale, which makes comparisons simpler.
- It also avoids some numerical problems that can arise when variables are of very different scales.
- The downside of this scaling is that the regression coefficients now represent the effect of a one standard unit increase in the predictor on the response in standard units this might not always be easy to interpret.

```
# variables on original scale
fit.1<-lm(sr~pop15+pop75+dpi+ddpi,data=savings)
summary(fit.1)
## Call:
## lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings)
## Residuals:
##
      Min
             1Q Median
                              30
                                     Max
## -8.2422 -2.6857 -0.2488 2.4280 9.7509
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28,5660865 7,3545161 3,884 0,000334 ***
## pop15 -0.4611931 0.1446422 -3.189 0.002603 **
## pop75
         -1.6914977 1.0835989 -1.561 0.125530
## dpi
         -0.0003369 0.0009311 -0.362 0.719173
             0.4096949 0.1961971 2.088 0.042471 *
## ddpi
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```

```
# x - variables scaled
fit.2<-lm(sr~I(scale(pop15))+I(scale(pop75))+I(scale(dpi))+I(scale(ddpi)),data=savings)
summary(fit.2)</pre>
```

```
## Call:
## lm(formula = sr ~ I(scale(pop15)) + I(scale(pop75)) + I(scale(dpi)) +
      I(scale(ddpi)), data = savings)
##
## Residuals:
              10 Median
      Min
                              30
                                     Max
## -8.2422 -2.6857 -0.2488 2.4280 9.7509
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 9.6710
                              0.5378 17.983 <2e-16 ***
## I(scale(pop15)) -4.2207 1.3237 -3.189 0.0026 **
## I(scale(pop75)) -2.1833 1.3987 -1.561 0.1255
## I(scale(dpi)) -0.3338 0.9226 -0.362
                                             0.7192
## I(scale(ddpi)) 1.1758
                          0.5631 2.088
                                              0.0425 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3,803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```

```
# y - variable scaled
fit.3<-lm(scale(sr)~pop15+pop75+dpi+ddpi,data=savings)
summary(fit.3)
## Call:
## lm(formula = scale(sr) ~ pop15 + pop75 + dpi + ddpi, data = savings)
## Residuals:
##
       Min
               10 Median
                                         Max
                                  30
## -1.83962 -0.59944 -0.05553 0.54191 2.17635
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.217e+00 1.641e+00 2.569 0.0136 *
## pop15 -1.029e-01 3.228e-02 -3.189 0.0026 **
        -3.775e-01 2.419e-01 -1.561 0.1255
## pop75
## dpi
         -7.519e-05 2.078e-04 -0.362
                                          0.7192
             9.144e-02 4.379e-02 2.088
                                          0.0425 *
## ddpi
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8487 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
```

Where are we...

2 Scale changes

- If X^TX is singular, that is some predictors are linear combinations of others, we have exact collinearity and there is no unique LS estimate of β.
- If $X^T X$ is close to singular we have approximate collinearity or multicollinearity.
- This causes serious problems with the estimation of β and associate quantities as well as interpretation.
- We can detect possible problems by looking at a correlation matrix of the predictors.

Collinearity can lead to:

- Imprecise estimates of β .
- t-tests which fail to reveal signifficant factors.
- missing importance of predictors.

str(longley)

'data.frame': 16 obs. of 7 variables: ## ## \$ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ... ## \$ GNP 234 259 258 285 329 ... : num ## \$ Unemployed : num 236 232 368 335 210 ... \$ Armed.Forces: num ## 159 146 162 165 310 ... ## \$ Population : num 108 109 110 111 112 ... \$ Year 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ... ## : int \$ Employed : num 60.3 61.1 60.2 61.2 63.2 ... ##

```
fit<-lm(Employed ~ ., data=longley)</pre>
summarv(fit)
##
## Call:
## lm(formula = Employed ~ ., data = longley)
## Residuals:
       Min
              10 Median 30
                                          Max
## -0.41011 -0.15767 -0.02816 0.10155 0.45539
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **
## GNP.deflator 1.506e-02 8.492e-02 0.177 0.863141
         -3.582e-02 3.349e-02 -1.070 0.312681
## GNP
## Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **
## Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***
## Population -5.110e-02 2.261e-01 -0.226 0.826212
## Year
         1.829e+00 4.555e-01 4.016 0.003037 **
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3049 on 9 degrees of freedom
## Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925
## F-statistic: 330.3 on 6 and 9 DF. p-value: 4.984e-10
```

cor(longley)

Employed

##		GNP.deflator	GNP	Unemployed	Armed.Forces	Population
##	GNP.deflator	1.0000000	0.9915892	0.6206334	0.4647442	0.9791634
##	GNP	0.9915892	1.0000000	0.6042609	0.4464368	0.9910901
##	Unemployed	0.6206334	0.6042609	1.0000000	-0.1774206	0.6865515
##	Armed.Forces	0.4647442	0.4464368	-0.1774206	1.0000000	0.3644163
##	Population	0.9791634	0.9910901	0.6865515	0.3644163	1.0000000
##	Year	0.9911492	0.9952735	0.6682566	0.4172451	0.9939528
##	Employed	0.9708985	0.9835516	0.5024981	0.4573074	0.9603906
##		Year En	nployed			
##	GNP.deflator	0.9911492 0.9	9708985			
##	GNP	0.9952735 0.9	9835516			
##	Unemployed	0.6682566 0.5	5024981			
		0.4172451 0.4				
##	Population	0.9939528 0.9	9603906			
##	Year	1.0000000 0.9	9713295			

0.9713295 1.0000000

```
fit<-lm(Employed ~ GNP + Unemployed + Armed.Forces, data=longley)
summary(fit)
##
## Call:
## lm(formula = Employed ~ GNP + Unemployed + Armed.Forces, data = longley)
##
## Residuals:
       Min
                 10 Median
                                   30
                                          Max
## -0.83085 -0.22306 0.01735 0.10699 1.08090
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 53.306461 0.716342 74.415 < 2e-16 ***
              0.040788 0.002207 18.485 3.49e-10 ***
## GNP
## Unemployed -0.007968 0.002134 -3.734 0.00285 **
## Armed.Forces -0.004828 0.002552 -1.892 0.08286 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4793 on 12 degrees of freedom
## Multiple R-squared: 0.9851, Adjusted R-squared: 0.9814
## F-statistic: 264.4 on 3 and 12 DF, p-value: 3.189e-11
```