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1 Problem statement and estimators

1.1 Multiple linear regression problem

Fory-observations, we want descriptive and predictive lineadeh of several variables
Y = Baxy +BoXo + ...+ BpXp

Formulate with matrices...

y=XB+e

Note that intercept is implicit...
Statistical assumptions will be handled later!

1.1.1 Details

Consider the generic problem of fitting a model to data as lsirstimation problem.
Later we will add statistical assumption in order to drawral conclusions, but in this
section we will only consider point estimation.

When collecting measurements of a dependent variabley-bbservations, it is common
at the same time to have measurements of several indepeadambles.

In this case one needs a descriptive and predictive linedehad several (sap) variables,
i.e. amodel of the formy = B1x1 + BaoX2 +. ..+ BpXp. In this notation there is no distinction
between a multiplier§;) for a generak-measurement and the intercept. An “intercept”,
a, is implemented simply by setting = 1 anda = [3;.

In practise several-measurements will be made, sayThis can be formulated in matrix
notation viz

y=XB+e

where then-vectory contains all thei-measurements and the< p matrix contains all the
independent variables.

1.1.2 Examples

Example 1.1. When a straight line is not an appropriate model for exphgnihe
relationship between pairs of measuremepgsy;), it is possible to consider a quadragic
response function, i.e. define the mo@¥ = a +Bx +yx?, i=1,...,n. Defining
Xi1 =1, X2 =X, X3= x,-2, this becomes a multiple linear regression model.

This example illustrates clearly how the multiple lineagnession model refers tmea-
rity in the unknown parameters, not in the independent variables.

Example 1.2. Consider the following data set (from Stefansson, Skutadotd Peturs
son) of indices from Icelandic waters. Here T=temperatUrecatch per unit effort
(adult) shrimp, I=index of juvenile shrimp abundance, Ytebaof shrimp, B=bioma1




of capelin, G=measure of growth of cod from age 4 to 5, S=bgswd spawning coc
J=biomass of juvenile (immature) cod. This forms #de®system exampléo be usec
several times in this tutorial.

tTUIYBGSJ

79 0.5 75.7 2313 1.1 3177 809 447 872
80 5.7 79.8 4747 3.1 2210 777 602 880
81 2.7 77.6 3217 2.1 1442 398 389 704
82 2.7 76.4 1909 1.7 1128 595 266 623
83 1.2 85.0 4368 6.1 2182 725 214 584
84 3.5 86.0 2418 12.2 3579 997 219 605
85 5.0 93.0 3930 12.2 3688 851 268 577
86 3.5 89.0 4943 17.1 3987 873 268 768
87 4.4 77.5 4309 24.6 3727 725 253 921
88 1.7 65.8 4089 20.7 2990 620 193 818
89 3.3 72.0 4994 18.1 2677 785 269 595
90 3.2 81.6 8180 19.4 2146 570 344 408
91 3.6 87.1 8406 26.1 2454 771 232 508
92 4.3 83.5 6376 27.4 3050 570 244 357
93 4.3 94.0 7192 30.1 3185 1004 224 358
94 4.7 104.6 9611 42.1 3119 675 276 292
95 0.3 87.6 9742 49.2 3700 857 380 189

For a data set such as this one several research questiooisiaterest. One such q
estion is what factors affect the growth of cod, the predetdine system. To model ¢
growth as a function of the biomass of the two prey one canhes&tformulation

G~U+B
and read the data with

read.table("http://tutor-web.net/stats/statsb45.1/lecturel0/borecol-
dat.txt",header=T)

since it is available on the web. To store the data as an R toljetgive it a name,
command of the form

m<-read.table("http://tutor-web.net/stats/statsb545.1/lecturel0/
borecol-dat.txt" ,header=T)

is used.

d

1.2 Geometric visualization of the multiple regression prblem

¥

SSE=SSE(F)=lly—Xbll*

sp{X)

/ Xb —




1.2.1 Details

The least squares problem estimates parameﬁers,.,fip as those values dfy, ...

which minimise the sum of squared deviations,

n
f(by,...,bp) ==Y (v — (brXiz + boXiz + ... + bpxip))?
i=1

i.e. the estimates satisfy

f(By,....Bp) = Miny,, _p, f(br,...,bp).

The least squares problem now becomes the same as minirtheimgrm of a difference,

i.e. minimize
lly — Xb[?

over all vectord.

Notice thatXb is a linear combination of the column vectors of tematrix. The sety,
of all such combinations forms a subspac®8f commonly denoted bypar(X) or sp(X):

sp(X) :={Xb e R": b e RP}

Geometrically the problem is therefore equivalent to figdirnvectory in the vector space
V, which is closest ty. From a geometric viewpoint this will be seen to be the ortrad

projection ofy ontosp(X).

The solutiony, will be of the form of linear combinations of the columns béX-matrix,
i.e.y = Xp for some vectoB € RP. The original data vector can now be written as the sum
of two vectorsy =y +(y—9) = XB+ (y — XB), which will be seen to be orthogonal.

1.2.2 Examples

and the capelin biomass.

number. Reference by number is done with

> m[,c(3,6)]
UB

but it is much simple to use column names, as in

cols<—m[, C("U" , "B")]

with the dplyr package this becomes even easier:

To extract columns from the data from m, one can either reféré columns by name @r

Example 1.3. Consider the ecosystem example from before. To set up the tanL
three columns are needed to reflect the intercept along Wittshirimp biomass effeft




library(dplyr)
selcols<-select (mmm,U,I)

but this is not the entirX-matrix since the column of all ones is missing. This is eagy t
add, however:

n<-length (m$U)
one<-rep(1,n)
X<-cbind (one,selcols)
y<-m$G

so X and y have thus been set up. To easily manipulate thergaottheX-matrix one
can also extract them from the data frame:

U<-m$U
B<-m$B

In this examplen = 17 soy € R’ and the span of the columns of tKematrix is now the
three-dimensional subspace®t’ spanned by the three vectors called “one”, “U” dnd
“B”in R.

1.3 Normal equations

Have

X'XB =Xy

1.3.1 Details
Supposeg € R", andV is a subspace d&".

An orthogonal projection of § ontoV is a vectory € V such thay —y L V. Now consider
avectory inV = span(X), which can then be written §s= X[3. Assume it is a projection,
soy—y L V.

Now, lety = Xf3 be any other vector iW. Then

ly =912 =11y =9) + T+ = lly =912+ [[§+ 91> > ly - 91>

and we therefore see that such an orthogonal projectiom ise¢kt one can do.

It also follows that tha¥ is unique since the only wayy can get as close is by having
||y +¥|| = 0, which only happens when they are equal.

In conclusion, we have shown that an orthogonal projectfgn®R" ontoV is theunique
element inv which is closest ty. We now need to find a way to compute the projection.
Next, since the residual vectgr-y =y — X3, is orthogonal to each vectorVhit must also
be orthogonal to each column vectopgfi.e. x| (37 — Xf&) = 0 and therefor&’ (37 — Xf&) =

0.

Thus, the followingnormal equations describe how to find the parameters of the ort-
hogonal projection, i.e. the parameters which give the fitest

X'XB = X'y.

In general there is no guarantee that these equations hamg@eusolution and this is
related to the rank of th¥-matrix itself.



1.4 The solution

Solution:

B=(X'X) "Xy

Prediction:

A -1

=XB=X(X'X) "Xly.

<>

Estimated residuals:

a=y-g=y-Xp=(1-x(x'x)"xT)y.

1.4.1 Details

When the matrixX’X is invertible, the solution is well-known:
B=(X'X)"*Xly.

It should be noted, however, that in actual implementatitvespoint estimates can be
obtained using numerical techniques which do not requirerting the matrix. However,
the inverse is usually needed at a later stage.

The predicted valuesare
§=Xp=X (X/X>_1X/y.

The estimated (or observedsidualsare
a=y-g=y-xB=(1-X(XX)"'X)y.

1.4.2 Examples

Example 1.4. Consider again the ecosystem data. Xhaatrix andy-vector are set up
as before. The slope, fitted values and errors can then beutechpsing matrix algebrg:

m<-read.table("http://www.hi.is/“gunnar/kennsla/alsm/alsmintro/
borecol.dat" ,header=T)

selcols<-m[,c("U","B")]

n<-length (m$U)

one<-rep(1l,n)

X<-cbind (one,selcols)

X
one U B

11 75.7 3177
21 79.8 2210
31 77.6 1442
4 1 76.4 1128
5 1 85.0 2182
6 1 86.0 3579
7 1 93.0 3688
8 1 89.0 3987
91 77.5 3727




10 1 65.8 2990
11 1 72.0 2677
12 1 81.6 2146
13 1 87.1 2454
14 1 83.5 3050
15 1 94.0 3185
16 1 104.6 3119

17 1 87.6 3700
X<-as.matrix(X)
y<-m$G
b<-solve (t (X) %h*%X) %*xht (X) %xhy
yhat<-X/*%b
ehat<-y-yhat
b

[,1]
one 171.9236911
U 2.8758166
B 0.1157401

Example 1.5. A much better approach is to use the R functions for linear etsotb
compute these quantities:

1m(G~U+B,data=m)

Call:
Im(formula = G ~ U + B, data = m)

Coefficients:
(Intercept) U B
171.9237 2.8758 0.1157

Naturally, the results are the same.

1.5 Sums of squares and norms

Sum of squared errors ,
SSE= [[&l1> =3 (vi—%i)".

DenoteSSEby SSEF) or SSER) when comparing models.

1.5.1 Details

The sum of squared errors becomes
n

SSE= |[&][* = [ly - 911> = >_ (v —%0)*.
i=1
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When comparing models, e.g. a large or “full” model and a &nalr “reduced” model,
the notation is usually extended to take into account thevaimodels in question, notably
SSHEF) for the full model andSSER) for the reduced model.

1.6 Projection matrices

Projecton, “hat”, matrix ont = sp(X):
H=X(X'X) X’
and ontov+ = sp(X)*:
| —H=1—-X(X'X)"1X’

1.6.1 Details

The matrixH = X(X’X)~1X’ is a projection matrix (i.eH? = H), projectingR" onto the
subspace&/ := sp(X) . Conversely] —H =1 — X(X’X)~1X is the projection matrix onto
V+ =sp(X)*t, respectively.

The matrixH is usually termed the “hat matrix”, since it transforgnmto y.
Note 1.1.The diagonal elements;, of the hat matrix play a very important role in regressi-

on diagnostics: If a certain data point has a high value odliggonal, then this means that
it “predicts itself”, i.e. is influential.

ReferencedNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wassermani986. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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2 Distributions of linear projections of vectors of random
variables

2.1 Linear combinations of independent random variables

c a column vector

Y a vector of independent random variables
Sameo, expected values may diffég[Y]| = p
Then

E[cY]=cu

VY] = cco?

2.1.1 Details

Suppose a column vector andl a vector of independent random variables with a common
variance,0?, but possibly different expected values. Then the mean andnce of the
linear combination¢’Y, are given by

ElcY]=cu
V [dY] = cco?

These results are trivial to ascertain since the compongnre independent and hence
e.g.

VicY] = vlzijcivi]
= 2aViY]

= dco?

2.2 Covariance between linear combinations of independemandom
variables

a, b column vectors

Y a vector of independent random variables
Sameo, expected values may diffég[Y] = p
Then

Cov[aY,b'Y] = abo?

2.2.1 Details

Suppose, b are column vectors and a vector of independent random variables with a
common varianceg?, but possibly different expected values. Then the covaddmetween
the linear combinationsY andb’Y, is given by

Cov[a'Y,b'Y] = aba?

12



This follows from looking at the linear combinations as sushgomponents and noting
that the covariance is a sum of all possible combinatiohef athich are zero except where
the samé;-combinations appear:

Cov[dY,b’Y] = Cov

doaYi,> by,
i j

— ZcOv[aiYi,b,-Yj}
I

— iaibjCOV[Yi,Yﬂ
I

— ZlaibiCov[Yi,Yi]Jr.2'aibjCOV[Yi,Yj]
i i,

= D _abV[y] -

— al’bcr2

This result indicates that if the projection vectasgndb are orthogonal, then the covari-
ance remains zero. Note also that strictly, independendkeobriginal variables is not
required, but only zero covariance which is not the sameitiondn the general case.

In the case of two Gaussian random variables, it is, howeueg, that they have zero
covariance if and only if they are independent. This can ba &y observing the bivariate
Gaussian density function which neatly factors if and ohtir@ covariance is zero.

2.3 Linear projections of independent random variables

A ann x n matrix
Y a vector ofn independent random variables, mgaN [Y;] = ¢°.
Then
E[AY]=p
V[AY] = AA/G?
2.3.1 Details

Let A be aq x n matrix andY ann-vector of independent random variables with common
variance but possibly different expected values, then

E[AY]| =Au
V [AY] = AA'G?
This can be derived either by considering the componenteaseposition ofAY or by
writing A as a collection of row vectors and using the earlier results.
2.3.2 Examples

Example: Assuming that all expected values exist, it is easy to detgecovariance
CoX+Y,X —Y), either directly or using the above formula, assumitg] = V[Y].

13



2.4 Linear transformations of dependent random variables

A a matrix

Y a vector of random variables whose variances and covasamadst as a matrixg. =
<0ij) with gj; = COV(Yi,Yj).

Then

V[AY] = ASA/

2.4.1 Details

Let A be ann x n matrix andY a vector of random variables whose variances and covari-
ances exist as a matriX,= (ajj ), whereaj; = Cov(Y,,Y;).

This general situation occurs in regression analysis wheasorements arrive in such a
fashion that they can not be assumed to be independent.absueh examples certainly
exist and the theory therefore needs to be properly develope

This is also an important result when studying distribugigproperties of estimators, which
are typically already linear combinations of original adoies and hence no longer in-
dependent.

The first step is to derive the variance of projections of stariables. As before, this can
be done by studying components or by looking at vector-wissal combinations.

We obtain

V[AY] = ASA’

3 Expected values and variances in multiple linear regressi
on

3.1 Expected values in multiple linear regression

Expected values in multiple linear regression

- only depends on mean structure

3.1.1 Details
The estimator in multiple linear regressiﬁtt (X'X)~1X'y is unbiased.
This only depends on the assumption on the mean functiorgmtie variance structure,

nor the probability distribution around the mean. In paitae, the estimator is still unbiased
even if the measurements are correlated.

3.1.2 Examples

Example 3.1. Sometimes an dependent variable does not vary in a simglarliashior
as a function of two independent variables aE¥= a + X + yw;. In particular, it ma
become obvious that the response, as a functiog dbes not have the same slope1for
two different values of. In this case ainteraction model is required:y; = o + Bx +

14



regression model.

ywi +0xwi. Definingx1 = 1, Xi2 = X, Xi3 = Wi, Xia = Xjw;, this becomes a multiple line

-

r

3.2 Variances in multiple linear regression

A

V[
= V[(X'X)"IXy]

ao?(X'x)~L.

Depends on true variance structure - not on p.d.f.

= ((X'X) XYV [y] (X))

3.2.1 Details

If X'is of rankp, the estimator
B=(XX)"*Xy

in multiple linear regression has the variance-covarianatrix:

V [B] =V [(X'X)IXy] = (X)) "XV [y] (X'X) X)) = ... = a?(X'X) "

A consequence of this is that although numerical methods exestimate the coefficients,
the inverse is required in order to obtain the variance-tamae matrix.

Note 3.1.This depends on true variance structure - not on a Gausssamasion.

3.2.2 Examples

measurements.

Yij m+ej j=1,...
Yo = Metey j=1,...
Yij = Ww+ej j=1,...

i.e. measurements are made on each ofeans, giving a total oh=J; + ...+ J,

Assuming constant variance, the least squares estimatotsecderived from the matr

Example 3.2. Theone-way analysis of variancas the analysis of data with the modLI

X

form of the linear model. The basic model is of the form:

15



fyu] [10 0]
Y12 10 0
Y1y, 10 0
Y21 01 0
Y22 01 0
: P : Ha
y=|Y2% | =01 011" e
Hi
Vi1 00 1
Yi2 00 1
L Vi3, L 00 1 i
Here it is easy to evaluate the least squares estimatorsytr@ances and covariancgs
from the matrix representation.

3.3 Covariances between parameter estimates

Var-cov matrices also have correlations between estimates

Also get numerical estimates of the var-cov matrix as weklilasorrelations once an
estimated?, of 0% becomes available.

3.3.1 Details

The above derives the theoretical formulae for the variaos@riance matrix, i.e. the true
var-cov matrix. Naturally, this needs to be estimated basedata since it contains an
unknown parameter.

Numerical estimates of the variances and covariances &@el once an estimat&?, of
02 becomes available.

Note 3.2.Note that the estimates of covariances become unbiasetiriats of 0 are
unbiased.

3.3.2 Examples

Example 3.3. Take the case of simple linear regression, Wth- [1:x], B = (a,B)’ and
the model for the data ig = X3+ e. Here it is easy to derive the theoretical variarices
and covariance af and.

16



Example 3.4. Revisiting the ecology example, we can evaluate the stdndewors
compute-statistics and the like with the following R commands

m<-read.table("http://www.hi.is/“gunnar/kennsla/alsm/alsmintro/
borecol.dat" ,header=T)

selcols<-m[,c("U","B")]

n<-length (m$U)

selcols<-m[,c("U","B")]

n<-length (m$U)

one<-rep(1l,n)

X<-cbind(one,selcols) # The X-matriz

y<-m$G # The y-vector

p<-length(b) # The number of regressors

SSE<-sum((y-yhat)~2)

82<-SSE/(n-p) # The estimate of sigma~2

varb<-s2xdiag (XpXinv)

seb<-sqrt(varb) # The estimated s.e. of b

data.frame (Estimate=b,se=seb,t=b/seb,p=2*(1-pt (abs(b/seb) ,n-p)))
Estimate se t p

one 171.9236911 284.2704735 0.6047891 0.55499548

U 2.8758166 3.6162040 0.7952584 0.43973854

B 0.1157401 0.0404542 2.8610155 0.01257369

As usual, a much better approach is to use the built-in fonstin R, in this case Im arjd
summary:

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/
borecol.dat" ,header=T)

fm<-1m(G~U+B,data=m)

summary (fm)

Call:
Im(formula = G ~ U + B, data = m)

Residuals:
Min 1Q Median 3Q Max
-195.062 -87.215 4.916 72.809 193.117

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 171.92369 284.27047 0.605 0.5550
U 2.87582 3.61620 0.795 0.4397
B 0.11574 0.04045 2.861 0.0126 x*

Residual standard error: 125 on 14 degrees of freedom
Multiple R-squared: 0.458, Adjusted R-squared: 0.3806
F-statistic: 5.915 on 2 and 14 DF, p-value: 0.01374

Naturally, the answers are the same.

17



ReferencedNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wassermai 986. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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4 Orthogonal projections in multiple regression

4.1 Subspaces and degrees of freedom

Assumerank(X) =r
We havey — XB L X so thaty — XB € V- = {v:v L sp(X)} anddim(VL) =n—r.
—y—XB=y—X(X'X)"X'y

e
~—
nx1

= (I =X(X'X)" X )y= (I =H)y
andrank(l —H) =dim(V+)=n-p

4.1.1 Details
Assumerank(X) =r < p(Xisnx p).
Parameters in the modgl= X3+ e, are estimated Witlﬁ = (X/X)*lx/y if the inverse

exists or in general with any which is such thay = X3 is a projection onto the subspace

sp(X).

By definition, a projectiory simply corresponds to a decomposition of the original vecto
into two orthogonal components, i.e. writigg=y+&. We havee=y—-XpB L §=Xp so
thaty— XB € V+ = {v:v L spX)} anddim(V+) =n—r.

A v '\_ _ / I
L& =Y XB=y-X(XX)""Xy

nx1
= (1 =X(XX) X )y = (1 ~H)y
andrank(l —H) =dim(V+) =n—r

4.2 The multivariate normal and related distributions
4.2.1 Handout

Supposes, ..., Z, are independent Gaussian with mean zero and varianc&gne,Z, ~
n(0,1) iid) so their joint density is
£(8) = [T o expl—87/2) = — s expl~(L/2)878)
~ LV PO T

Let A be an invertiblen x n matrix andu € R" and defineY = AZ + .
Recall from calculus that ij is a 1— 1 functiong : R" — R"

[ t&)de = [ t(g(y)) 1y
wherel is the Jacobian of the transformation

_[d€| _|og(y)
dy ay
and the integrals are over corresponding regions.

19



It follows that the joint pdf ofY is h with h(y) = f(g(y))|J|.
Some linear algebra gives

h(y) = W exp(—%(y —WTHy W)

whereX = AAT.
This leads to a natural definition of the multivariate noriiatribution.
The n-dimensional random vectoY, is said to have a multivariate normal distribution,

denotedY ~ n(y, %) if the density ofY is of the form
1 1
h e _ _ Tzfl _
(v) CaREEE exp(—5(y—H) 2y~ 1)

wherep € R" andZ is a symmetric positive definitex n matrix.

It is left to the reader to prove that f ~ n(y, %) andB is an p x n matrix of full rank p
(p < n), thenBY also has a multivariate normal distribution.

If Z ~n(0,1) is standard normal, then we define the chi-squared disiitvoh one degree
of freedom,x? to be the distribution o) := Z2 and writeU ~ X3. If Uy,...,Up are i.i.d.
X1, then we defing3 to be the distribution of their sumio”; U; ~ 3.

Finally, if U ~ x3, andV ~ X3, are independent, then we define fhelistribution on v;

and v, degrees of freedonto be the distribution of the rati //‘312/ and write

Ui/
V/V2 Viver

4.3 A basis for the span of X

Orthonormal basisus,...,un} for R™

Using Gram-Schmidt, first generatg, . . .,u; which sparsp{ X}, with rank{X} =r and
the restur.1,...,Un are chosen so that the entire sat,. .., u, spansR".

A

XB - §1U1—|— .. .grUr ~ ~
y = Qui+...{Ur+ U1+ ...+ Chun

4.3.1 Details

The probability distributions can best be viewed by definengew orthonormal basis,
{us,...,upn} for R".

This basis is defined by first generating a set géctorsus,...,u; which span the space
defined bysp{X}, and the restu,.1,...,u, are chosen so that the entire sef,...,uy,
spansR". This is obviously always possible using the method of G&shmidt. This
gives the following sequence of spaces and spans:

sp{X} = sp{uy,...,ur}

R" = sp{ui,...,Ur,Urs1,...Un}
One can then write each &3 andy in terms of the new basis as follows:

XB — §1u1+...§rUr ~ ~
y = Qui+...{Ur+ U1+ ... (pun

20



where it is well-known thaii =Uuj-Yy.

It is important to note that the same coefficief\tare obtained for X i <r. This follows
from considering the coefficient of in the basis and noting thgt= X3 + & where the
residual vectogé is orthogonal to all column vectors &f and therefore also to; for 1 <
i <r. Therefore,

Gi=uiy=ui-Xp

4.4 Q-R decomposition

Q:=[uguz...up
is theQ in the Q-R decomposition of.
If o A

Z= (Zl7(27~~-71n)
then

z=Q'y
and hence
Elz] = Q'XB
V [z = Q'0%IQ =o?l
4.4.1 Details

Q :=[u1Uz...up] is theQ in the Q-R decomposition of.

Q has important properties, e@'Q=1s0Q 1= Q"

If

Z= (117127"'7Zn)
then

z=Q'yandy = Qz
and hence

Elz]=Q'Xp
V(7 =Q'd%Q = o2l

4.5 Variances of coefficients

For each we obtain R
V|G| = 0?
45.1 Detalls
For each we trivially obtain A
V(G| =o?
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4.6 Normality and independence of coeffients

Note thatzi are linear combinations of the varioylﬁsincezi =uj-y.

When they; are independent Gaussian random variatflehave zero covariance and
are thus also independent.

4.6.1 Details

Note thatzi are linear combinations of the varioys sincezi =u;-y. The Zi have zero

covariance and when thgare independent Gaussian random variableszithee also in-
dependent.

This final result uses the fact that Gaussian random vagathech have zero covariance
are also independent. The fact that they have zero covariareasy to establish, but the
corrollary of independence is a result from multivariatemal theory.

The normal theory is fairly simple in this case:

Z= (217227"'72!’1) :Q,y
and
y ~n(XB,o%)

It follows that z is multivariate normal and from the earlier derivations lné mean and
variance we have

z~n(Q'XB,0?).

4.7 Expected values of coefficients

Fori=r+1,...,nwe obtain

A

E[¢] =0

4.7.1 Details

The expected values of the coefficienﬁs,depend on which space these correspond to.
Define )
(=E [Zi}

and by linearity we obtain

G =E[ui-y]=ui-(XB).
Now note that we have defined the basis vectors in three séesfirbt is such that they
span the same space as the columré.dfhe second set complements the first to span the
X and the last set complements the set to span &I'ofThe basis vectors are of course all

orthogonal and each basis vector is orthogonal to all vedtospaces spanned by preced-
ing vectors.

Fori=r+1,...,nwe obtain

A

E{Zi} =ui-(XB)=0

since X3 is trivially in the space spanned by the column vectorXand is therefore a
linear combination ofi,, . .., u, andu; is orthogonal to all of these.
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4.8 Sums of squares and norms

SSHEF)=|ly-XB|2 = 3 &

i=p+1

4.8.1 Details

It is now quite easy to see how to form sums of squared dewstirased on the new
orthonormal basis, since each set of deviations corresptnd specific portion of the
space.

SSEF)=|ly-XB|? = 3 ¢

i=r+1

4.9 Degrees of freedom

SSHEF )hasn—r degrees of freedom.

4.9.1 Details

SSHEF) hasn—r degrees of freedom.
ReferencedNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wassermani986. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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5 Linear hypotheses in multiple regression

5.1 Null hypotheses and geometry
5.1.1 Details

Tests of hypotheses in linear models can be considered ¢geoaflg. The hypothesis
H; : B = 0in simple linear regression is the question of whether th&im

1
z=| :
1

can be used in place o, i.e. whether the projection gfontospan(Z) is too much farther
away fromy than the projection ontspan(X).

5.2 Null hypotheses and matrices
5.2.1 Details

Null hypotheses are almost always concerned with how onéreaice” or simplify the
model, in this case usually whether one can reduce the nuofilbelumns inX or by some
other means reduce the number of coefficients in the model.

5.3 Null hypothesis as matrices

Have X and\Z/ s.t.spanZ) C spanX).
nxp nxq
Can estimate models

y=XB+¢e

y=2y+e
Will derive test for

Ho: XB =2y

5.3.1 Details
Assume thatX and_Z are matrices such thapar(Z) C spar(X).
~~ ~—~—

nxp nxq
We can estimate coefficients in the model

y=XB+e

and in the reduced model
y=2y+e

We will derive tests for the general null hypothesis

Ho: XB=2Zy

which is typically some hypothesis stating that some of theffecients in theg3-vector are
zero or otherwise restricted.
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5.3.2 Examples

Example 5.1. In simple linear regressiow, = a + % + &, the most common test is f@r

B=0.

5.4 Geometric comparisons of models

Y

sp(X)

N
e
T SSE=SSE(F)=lly—Xbll 2

* =SSE(R)-SSE(F)

sp(Z) Testing linear hypotheses in lineg

=

models corresponds to projecting onto subspaces.

5.4.1 Details

Relationships between sums of squares in two linear moslélsst viewed geometrically.

Starting with a base model as befoye; X+ e, there is a need to investigate whether this
model can be simplified in some manner. A simpler model cangoetéd by = Zy+e
whereZ is a matrix, typically with fewer columns thax, and the column vectors &
span a subspace of that spanneby

5.4.2 Examples

Example 5.2. A typical hypothesis test would start with a basic (full) nebdf the formI
yi = o + Bx; + g, wanting to test the null hypothedi : 3 = 0.

Define the matrix

so the model in matrix notation becomes- X +e.

The null hypothesis can be writtenas- Zy+ e, where
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[ —

z=| - |. )

5.5 Bases for the span of X

Orthonormal basisus,...,un} for R™

Using Gram-Schmidt, first generata,...,u; which spansp{Z}, the next vectors,
Ug+1,---,Ur are chosen so that,...,u, spansp{X}, with rank{X} =r, and the rest
Uri1,...,Un are chosen so that the entire set,. .., u, spansk".

zy = 21U1+-~-2quq

XB = 21U1+---unq+2q+1uq+1+---2rur

y = 21U1+---unq+2q+1uq+1+---2rur
+2r+lur+l+~-~2nun

5.5.1 Details

The probability distributions can best be viewed by definengew orthonormal basis,
{u1,...,un} for R". This basis is defined by first generating a set ectorsug, ..., uq
which span the space defined by the null hypothesi&Z }, whererank{Z} = g, subsequ-
ently the next vectorsiq,1,...,Ur are chosen so as to span the remaindepfX }, where
rank{X} =r, and thereforsp{X} = sp{us,...,u}, and the rest; 1, ...,u, are chosen
so that the entire saty, ..., u, spansk". This is obviously always possible using the met-
hod of Gram-Schmidt.

This gives the following sequence of spaces and spans:

sp{Z} = sp{uy,...,uq}
Sp{X} - Sp{ul,...,Uq,Uq+l,...,Ur}
R" = sp{ui,...,Uq,Ugt1,---,Ur,Urs1,...Un}

One can then write each &, Xf&, y in terms of the new basis as follows:

XB = Quui+...lguq+ Lg1Ugrr+ ... Gy
y = Qui+...{gug+{gr1Ugr1+ ... {rUr +Crpalr 11+ ... {nUn

where it is left to the reader to see that f}n&:oefficients are indeed the same.
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5.6 Expected values of coefficients

Fori=r+1,...,nwe obtain

A

E {Z,} =0
If Ho: Xp = Zyis true then foi = q+1,...,r we obtain

A

E[Zi} =ui-(Z2y)=0

5.6.1 Details

The expected values of the coefficierit;sdepend on which space they correspond to.

Define R
(i=E [Zi]
and by linearity we obtain
Gi=E[ui-y]=ui-(XB).
Now note that we have defined the basis vectors in three séesfirbt is such that they
span the same space as the columrig.afhe second set complements the first to span the
X and the last set complements the set to span &I'ofThe basis vectors are of course all

orthogonal and each basis vector is orthogonal to all vedtospaces spanned by preced-
ing vectors.

Fori=r+1,...,nwe obtain

E (8] =ui- (XB) =0
sinceXp is trivially in the space spanned by the column vectorXadnd is therefore a
linear combination ofiy, ..., u; andu; is orthogonal to all of these.

If the null hypothesis that E[Y] can be written asHp : X3 = Zy is true then fori =
g+1,...,r we obtain

E[¢]=ui-(2y)=0
but this only holds under the null hypothesis.

5.7 Sums of squares and norms

SSHF) = [ly — XBJ[? -3
i=r+1

SSHF)—-SSHER) =[|Z§-XB|[2 = > &
i=g+1

SSHR) = ||y — 22 =3 ¢
i=g+1

5.7.1 Details

It is now quite easy to see how to form sums of squared dewstirased on the new
orthonormal basis, since each set of deviations corresptnd specific portion of the
space.
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SSEF) = [ly — XB|? =3 2

i=r+1

~ r ~

SSEF)—SSER) = ||IZ§—-XB|[* = > ¢
i=0-+1

n ~

SSER) = [ly - Z§i|? = >
i=g+1

Since eacH; is a coordinate in an orthonormal basis, this is formed asiaariproduct
with the corresponding basis vector, ilg=y - u;.

5.8 Some probability distributions
5.8.1 Detalils

Suppose we have two matrices,andZ which satisfyrank(Z) = q < p = rank(X) and
sp(Z) Csp(X) (usuallyZ isnx gandX isnx p).

ThenHp : E[Y] = Zyis a reduction from the mod@&[Y] = X§3.
Write F = full model andR = for the reduced model.

Then we have

1)y—XB L XB-2Z§

2) |ly— XB|[? and||XB — Z§||* are independent

3)")’%%2 ~ Xa_p if the model is correct

4) HXB;#HZ ~ X8 g if Ho is correct.

5) SSEF) = [ly—XB||*

and A

SSHR) — SSEF) = ||Xf - Z§i|?

are independent.

6) (SSER)_SSEF))/(P=q) _, £
SSEF)/(n—p) p—ag,n—p
HereFy, v, is the distribution of a ratio

U
S IAL
V/vz

of independeng?-random variabled) ~ x3,, andV ~ x3,.

5.9 General F-tests in linear models
5.9.1 Detalls

In general one can compute the sum of squares from the fultm88EF ) as above and
then compute the sum of squared deviations from the reduoeeif$SER) = |y — Z¥||2.
Denote the corresponding degrees of freedond by ) andd f(R), and assume that both
matricesZ andX have full ranks, i.erank(X) = pandrank(Z) =r. Thendf(F) =n—p
anddf(R)=n—r.

The null hypothesis can then be tested by noting that

r _ (SSER)~SSHF))/(p—r)
SSEF)/(n—p)
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is a realisation of a random variable from an F-distributith p—r andn — p degrees of
freedom undeHp.

ReferencedNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wassermani986. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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6 Building a multiple regression model

6.1 Introduction

Have several independent variables

Want to select some into regression

Want to evaluate quality of resulting model
Want to improve into a final model

6.1.1 Details

Building multiple regression models includes several stéfis, firstly, rarely pre-defined
what independent variables should be included in the medeal method for selecting these
is needed. Having obtained an initial model one needs taiat@hot only the assumptions
of the model but also identify possible influential obseimas and possibly undertake other
diagnostics. Having obtained regression diagnostic, thdeihneeds to be improved by
taking these into account.

6.2 Variable selection: Measuring quality
o R?
e AIC

e BIC
e SSE
e MSE

P-values

6.2.1 Details
o R2

e AIC
e BIC
e SSE
e MSE

P-values

6.2.2 Examples

Example 6.1. Use the ecosystem data set and select a single variablenmpéedinea
regression to predict the growth of cod. Compare the vamoiteria.
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6.3 Variable selection: Forward or backward

Model selection:
e All subset regression

e Forward stepwise regression

e Backwards stepwise regression

6.3.1 Details

Several methods exist to select a regression model.

All subset regression simply considers every possible @oation of independent varia-
bles. Although this will indicate all possible “good” modehnd will certainly find the
“best” model (using any given criterion), this is often neasible.

Backwards stepwise regression starts by taking all inddg@nvariables into a single
model and then dropping variables one at a time. The vartable dropped is the one
giving the least increase in SSE. This approach is ofteremed, but is not feasible if the
total number of variables are very large.

Forward stepwise regression selects a sequence of vajatleach stage deciding what
variable to add next. The addition is based on including t#gable giving the largest
amount of (marginal) explained variation.

Forward stepwise regression is often augmented by allowwayiable to be dropped after
a variable has been added. Thus a sequence of insertions ak@yan earlier variable
redundant and thus dropped. Either version of forward ssjpe is quite feasible but may
lead to an incorrect or bad model since important combinatiof variables may not be
found.

Each approach thus has good and bad points.

6.3.2 Examples

Example 6.2. Use the ecosystem data set and conduct a forward stepwisssem ta
predict the growth of cod. Compare the various criteria foded selection.
R commands: addl repeatedly - followed by anova(fm.finalyiii

Example 6.3. Use the ecosystem data set and conduct a backwards stepgiisssio
to predict the growth of cod. Compare the various criterraniodel selection.
R commands: dropl or summary - followed by anova(fm.finafitt)

ReferencedNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wassermai986. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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Belsey, D. A., Kuh, E. and Welsh, R. E. 1980. Regression diatics: Identifying influ-
ential data and sources of collinearity. John. Wiley andsSolew York. 292pp.
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7 Prediction in the linear model

7.1 Prediction and prediction uncertainty

A new observationxy _ A
The predictionyp = E [yh] = XnB
The varianceo?x], (X'X) ! x;

Prediction uncertainty [y, — Y|

7.1.1 Details

A new observationxy _ A
The predictionyp = E [yn] = XnB
The varianceo?x), (X'X)~x;

Prediction uncertaintyV/ [y, — Vi

7.1.2 Examples

Example 7.1. Age and live weight of lambs. Project: Predict the WeighttI(l.I/i
uncertainty) at a given day.

days weight
135 39
125 35
120 33
126 38
125 37
137 38
133 36
140 41
130 38
129 36
123 34
132 40
129 38
121 34
126 35
137 44
121 34
137 41
130 39
137 43
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8 Estimable functions

8.1 Estimable functions: The problem

If X is not of full rank, then the LS problem does not have a uniqlet®n forf3.
In general not all combinations of the foru:iﬁ may have unique solutions.

A linear combinationc’ is anestimable functionif there is a vector of numbers,
such that

Elay]=cB
for all 3.
NB: Viewed as a function of the unknown parameter vedior,

NB: The E-operator depends off, could write g(B) = ¢ and requireg(B) =
Eglay] VP for somea.

8.1.1 Details

If X is not of full rank, then the LS problem does not have a uniclati®n for [3 In
general not all combinations of the forti3 may have unique solutions.

A linear combinatiort’p is anestimable functionif there is a vector of numbers, such
that

Eldy] =cB
for all 3.

The terminology is not accidental as the linear combinatibparameters is viewed as a
function of the unknown parameter vectfr,In words the requirement is simply that it is

possible to obtain a linear unbiased estimator.

8.1.2 Examples

Example 8.1. The one-way layout is the simplest example givifignatrices which ar
not of full rank when writing the model in the form

Yij = L+ Qi + &jj.

Example 8.2. A common issue in regression is whether the same line can teetfito
data sets or e.g. whether different slopes should be useslicaimbe modelled by writing

Yij = O + BXij + €] (4)

for the simple model with the same slopes and

Yij = O+ BiXij + &ij (5)
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for a model with different slopes in the the groups.

Alternatively one may be interested in how the slopes in tloaigs differ and/or in @
simple evaluation of whether a single slope can be used.idrcse it is reasonable fo
rewrite the complex model as

Yij = o+ Bxij + Bixij + &j (6)

and the test of whether the reduced model is enough is a tedtather the;-values aré
all zero (and can be dropped).

Naturally, equatio 6 is not completely determined. On ttreeohand, the model cdn
easily be fit to data - most statistical packages will simplgst an arbitrary LS estimage
of the parameter set unless told explicitly to select a $jpe@presentation. All such
solutions will lead to the same tests. The tests are reahbased on comparing whettjer
SSE(R) is too much smaller than SSE(F) and these sums are tvasiee LS projection

onto subspaces. The projections are uniquely defined diegearre based on the span,
V, of the column vectors in the X-matrix. This spa¢aloes not change when colunps
are added, as long as these columns are linear combinafiexssting ones - or whep
such columns are dropped.

Packages such as R will easily compare 6 [@nd 4 with the dropftrand sincél4 co
responds to deleting a term frdrh 6. The better-determinediefifbcan be compared fo
4 using an anova-command in R siride 4 is indeed a reduced rfrodel5 through &
restriction of the fornP, = ... = .

8.1.3 Handout

Some further clarifications to the above definitions may lefuls

It must be emphasized that tkeoperator depends on the vectors of unknown parameters,
B, since the underlying model B]y] = X. One could therefore writé(B) := Eg[y] and

g(B) := B so the criterion of estimability would be th&{B) = g(B) VB € R". This
formal approach has the merit that the meaning is clear,Hmihbtation becomes quite
cumbersome.

Estimable functions are commonly denoted by the symih@.g. = 1 — B2 etc.

Note 8.1.Recall that if\/X/ with n > pis of full rank if rank(X) = dim(sp(X)) = p and
nxp
also rankX) = rank(X’X) soX is of full rank iff XX has an inverse. Hence Xfis of full

A

rank we can writd = (X’X)’lx’y which satisfie€ [B} =B.

From this we also see that

A

dB = c’E[B}
= E|¢(XX)'xYy|
= Elay]
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wherea = (X’X) 1 X’. Hence any linear combinatiaf is estimable i¥ is of full rank.

Conversely, ifX is not of full rank then we can find vectopsandy with (3 # y such that
X (B—y) =0 and therefor& [y]i = X3 = Xy can be expressed in more than one way.

Existence of non-estimable functions are therefore anesgon of the matrix not being of
full rank.

8.2 Classification of estimable functions

Theorem: A parametric functionp = ¢/ is estimable if and only i€’ = a’X for some
acR".

8.2.1 Details

Theorem 8.1. A parametric functionp = ¢ is estimable if and only it/ = a'X for
somea € R".

8.2.2 Examples

Example 8.3. In the linear modeY;j = p+a; + &, the coefficients are not all estimatie.

8.2.3 Handout

Proof of theorem: By definition,) = ¢ is estimable if and only if there is a vect@e R"
such tha€ [@y] = ¢ for all B. This is equivalent to requiring

axXp=cp

for all B which is equivalent to

Example 8.4. The reader should take the simple exampje= p+aj+¢€jj, 1< )<
J 1<i<I,setuptheX-matrix and consider the form of the vect@&X for the case
| =2,J1=n,J0=m

Writing @ X = (u,v,u—V), it is seen that the resulting estimable functions are pedyg
M+ a1, U+ a2 andag — as.

8.3 Gauss-Markov theorem

D

Theorem: (Gauss-Markov theorem): L&Y = XB, VY = ¢?l. Then every estimabl
functionc’f has a unique unbiased linear estimate which has minimuraneiin the
class of all unbiased linear estimates. This estimate cavritten the formc’B whereB
is any LS estimator.
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8.3.1 Detalils

A fundamental result in the theory of linear models is théitesble functions have unique
unbiased linear estimates.

Lemma: If ¢ = B is estimable an& = sp(X) then there is a unique linear unbiased
estimator o3 of the forma’y with a € V. If agy is unbiased foc'p thena s the projecti-
on ofag ontoV.

Theorem 8.2 (Gauss-Markov theorem).Let E[y] = XB, V]y] = 6?l. Then every
estimable functior’ has a unique unbiased linear estimate which has minimurnjvari
ance in the class of all unbiased linear estimates. Thimastican be written the forjn
B wherep is any LS estimator.

Note 8.2.For estimable functions this is defined as the LS estimator.

8.3.2 Examples

Example 8.5. In the modelx = p+ai + e, itis clear that parameters are not estimgble
but it is easy to see that — o are estimable.

8.3.3 Handout

Proof of lemma: Supposep = ¢'f is estimable so we can firmle R" such thaE[a'y] =
Y.Now writea = a* + b* with a* € V andb* 1V, i.e. we define" as the projection o&
ontoV. Then it is easy to see thEb*'y = 0 sinceb* is perpendicular to the columns Xf
all of which are inv. Hence) = Ea’y = Ea*’y and henca*'y is unbiased fog anda* € V.

For uniqueness od*, supposeEa’y = | for somea € V. Then 0= Ea''y — Ea'y =
(a* —a)’XB. This holds for all € RP and hencga* —a)’X = 0. Since(a*—a) is
perpendicular to all columns of thé-matrix, it follows that(a* — a) € V+. But both
vectors were iV to begin with, so

(a*—a)eVnVi={0}
i.e. @ = a soa® is unique. Sinc&™ was taken as the projection afontoV, the proof is

complete.

Proof of Gauss-Markov theorem: Use the lemmato find a unigaé ¢ V with Ea*'y = '8
and leta’y be any unbiased linear estimateynfThena* = projy(a) and||a||? = ||a*||? +
la—a*||* so
Vay = d3ja=0?||a||?
= o?([a’||* + 0®|la—a’||* = Va'y + o’l|a—a"||> > Va'y
and equality holds ifa = a* soa*y is best.

Now IetB be any least squares estimate.
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Note 8.3.Note thata® € V andy — Xﬁ € V- so thata*(y — XB) = 0 and therefora*y =
a"Xp.
Further, sincep = ¢ is estimable and*'y is the unbiased linear estimaté3 = Ea*y =

a*Xp and this holds for an3 € RP soc’ = *'X. Combining this with the previous para-
graph,a’y = a XB c’B which concludes the proof.

8.4 Testing hypotheses in the linear model

~ 2
LBt L)
nx 1 NXP px1 nxn

Theorem: { ~ n(y,Zg), ”y_c#”z ~ X2_, and these two quantities are independent

8.4.1 Details
-~ 2
Let\;; n(\X/ B .o J/)

nx1 NXP 1 nxn
and assumeank(X) =r < p.

The interest will be in obtaining some joint confidence staat on a vecto = (Yy, ..., Yq),
where each; = ¢{f is an estimable function. Writd = ({1, ..., §iy) for the least squares

estimates withfij = ¢; [3 WhereB is any LS estimate and one can therefore also Write ajy
for uniqueg; € sp(X).

The above can be written more conciselywas: C[3 using obvious definitions. It follows
that A
(= Ay = CB~n(CB,0°AA)

and the variance-covariance matrix of the estimates witdrsoted
V] =2y

which leads to the following theorem.

Theorem 8.3. ) ~ n(W,Zg), W%B”Z ~ X2_, and these two quantities are independgnt.

It follows that hypothesis tests can be constructed in anooisvmanner for individual
estimable functions.

8.4.2 Handout

Proof: Let {&1,.. . &n} bg an orthonormal basis f&" such tha{&;, . .. ,§r} form a basis

for sp(X) anq letls,...,(, be the cqordinates of in this basis, so that; = & -y. Also

define¢; = E[(j]. Itis established tha}; are independent, Gaussian with common variance
2

o°.
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Write z = (21,...,Zn)/, P=[&1,...,&) and note thaP’ = [€;...&,]. It is then clear that

the rows ofP’ are independent s@' is invertible (as isP). Clearly, PP =1 soP'P=1.
Further,z = Py and thereforgy = P'z.

As elsewhere, write the LS estimates of the estimable fanstin the form}; = aly where

i.e. the estimable functions are all formed from the firef theZi and are all of the form
r ~
Pi => k¢ (7)
1

for some constants, ..., k.. This important result is quite general and basically stttat
anything that can be estimated can be derived fyothrough the column vectors of the
X-matrix.

On the other hand it is also known the[%js the projection ofy onto the space spanned by
&1,...,& and therefore the residugl— X is in the span o€, 1,...,&, and in fact

n
ly=XBlI= > & (8)
j=r+1
All the results in the theorem follow easily froml (7) and (8).
ReferencedNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wassermani986. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
Scheffe, H. 1959. The analysis of variance. John Wiley antsSloc, New York. 477pp.
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9 Ranks, constraints and correlations in multivariate regressi-
on

9.1 Problem statement

9.1.1 Details
Whenr = rank(X) < k, the estimateé is not unique. Similarlyf in E[Y] = X is not
——
nxp

unique.@ But if the functiony = ¢'B is estimable, then the numbeé is unique, i.e. the
same for alB in the set{b: EY = Xb}, sinceXp is unique and’3 = a’X[3 for somea.

9.2 Constraints

To specifyB uniquely we can add constraints...

9.2.1 Detalils

In order to specify the vectds andB one could simply drop some of these until tke
matrix becomes of full rank. More generally it is possibleattd constraints of the form
HB=0

~~

txp

This can be formulated in the following manner: Suppose we Baand we want unique
B throughXp = X andHpB = 0.

Theorem 9.1. # is unique ifrank((3})) = p andp are then estimabl@.

The reader is referred to Scheffe (1959) for the proof of hie®tem.

9.2.2 Examples

Example 9.1. If Yix ~ n(u+ aj,02), independent, with £ k < n; and 1<i <, then
one can use the constraint; = 0.

It is a useful exercise to write thé-matrix andH-matrix for this problem.

9.2.3 Handout

Write G = (}3) for the joint data and constraint matrices.

1This is easy to see sincext, ..., X, are the columns of th¥-matrix thenE[Y] = X is a linear comb-
ination ofxy, ..., Xxp which only span a-dimensional space and a subsexgf .., x, can be used to span this
space. The vectd[Y] can be written as a linear combination of vectors in any sublset.
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Note that we obtain XB
GB =
= (%)
G'GR = X'XP

whereG'G is invertible and we can write

and thus

B=(X'X+HH)"'X'XB (9)

and we have

~
<

B= (XX +HH) X'y
an unbiased estimate.

Note 9.1.The vectorfi defined in Eq.[(B) is a vector of elements, each of which isealin
function of 3 and each of these functions is estimable since each is obthea X 3.

ReferencedSBN: 0256117365
ISBN: 0471758345
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