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1 Problem statement and estimators

1.1 Multiple linear regression problem

Fory-observations, we want descriptive and predictive linear model of several variables
y= β1x1+β2x2+ . . .+βpxp

Formulate with matrices...

y = Xβ+e

Note that intercept is implicit...
Statistical assumptions will be handled later!

1.1.1 Details

Consider the generic problem of fitting a model to data as a simple estimation problem.
Later we will add statistical assumption in order to draw formal conclusions, but in this
section we will only consider point estimation.
When collecting measurements of a dependent variable, i.e.y-observations, it is common
at the same time to have measurements of several independentx-variables.

In this case one needs a descriptive and predictive linear model of several (sayp) variables,
i.e. a model of the form:y= β1x1+β2x2+ . . .+βpxp. In this notation there is no distinction
between a multiplier (β j ) for a generalx-measurement and the intercept. An “intercept”,
α, is implemented simply by settingx1 = 1 andα = β1.

In practise severaly-measurements will be made, sayn. This can be formulated in matrix
notation viz

y = Xβ+e

where then-vectory contains all they-measurements and then× p matrix contains all the
independent variables.

1.1.2 Examples

Example 1.1. When a straight line is not an appropriate model for explaining the
relationship between pairs of measurements,(xi ,yi), it is possible to consider a quadratic
response function, i.e. define the modelEYi = α+ βxi + γx2

i , i = 1, . . . ,n. Defining
xi1 = 1, xi2 = xi , xi3 = x2

i , this becomes a multiple linear regression model.

This example illustrates clearly how the multiple linear regression model refers tolinea-
rity in the unknown parameters, not in the independent variables.

Example 1.2. Consider the following data set (from Stefansson, Skuladottir and Peturs-
son) of indices from Icelandic waters. Here T=temperature,U=catch per unit effort of
(adult) shrimp, I=index of juvenile shrimp abundance, Y=catch of shrimp, B=biomass
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of capelin, G=measure of growth of cod from age 4 to 5, S=biomass of spawning cod,
J=biomass of juvenile (immature) cod. This forms theecosystem exampleto be used
several times in this tutorial.

t T U I Y B G S J

79 0.5 75.7 2313 1.1 3177 809 447 872

80 5.7 79.8 4747 3.1 2210 777 602 880

81 2.7 77.6 3217 2.1 1442 398 389 704

82 2.7 76.4 1909 1.7 1128 595 266 623

83 1.2 85.0 4368 6.1 2182 725 214 584

84 3.5 86.0 2418 12.2 3579 997 219 605

85 5.0 93.0 3930 12.2 3688 851 268 577

86 3.5 89.0 4943 17.1 3987 873 268 768

87 4.4 77.5 4309 24.6 3727 725 253 921

88 1.7 65.8 4089 20.7 2990 620 193 818

89 3.3 72.0 4994 18.1 2677 785 269 595

90 3.2 81.6 8180 19.4 2146 570 344 408

91 3.6 87.1 8406 26.1 2454 771 232 508

92 4.3 83.5 6376 27.4 3050 570 244 357

93 4.3 94.0 7192 30.1 3185 1004 224 358

94 4.7 104.6 9611 42.1 3119 675 276 292

95 0.3 87.6 9742 49.2 3700 857 380 189

For a data set such as this one several research questions areof interest. One such qu-
estion is what factors affect the growth of cod, the predatorin the system. To model cod
growth as a function of the biomass of the two prey one can use the R formulation

G~U+B

and read the data with

read.table("http://tutor-web.net/stats/stats545.1/le
ture10/bore
ol-

dat.txt",header=T)

since it is available on the web. To store the data as an R object and give it a name, a
command of the form

m<-read.table("http://tutor-web.net/stats/stats545.1/le
ture10/

bore
ol-dat.txt",header=T)

is used.

1.2 Geometric visualization of the multiple regression problem

6



1.2.1 Details

The least squares problem estimates parameters,β̂1, . . . , β̂p as those values ofb1, . . . ,bp

which minimise the sum of squared deviations,

f (b1, . . . ,bp) :=
n∑

i=1

(yi − (b1xi1+b2xi2+ . . .+bpxip))
2

i.e. the estimates satisfy

f (β̂1, . . . , β̂p) = minb1,...,bp f (b1, . . . ,bp).

The least squares problem now becomes the same as minimizingthe norm of a difference,
i.e. minimize

||y−Xb||2

over all vectorsb.

Notice thatXb is a linear combination of the column vectors of theX-matrix. The set,V,
of all such combinations forms a subspace ofR

n, commonly denoted byspan(X) or sp(X):

sp(X) := {Xb ∈ R
n : b ∈ R

p}

Geometrically the problem is therefore equivalent to finding a vectorŷ in the vector space
V, which is closest toy. From a geometric viewpoint this will be seen to be the orthogonal
projection ofy ontosp(X).

The solution,̂y, will be of the form of linear combinations of the columns of theX-matrix,
i.e. ŷ= Xβ̂ for some vector̂β ∈R

p. The original data vector can now be written as the sum
of two vectors:y = ŷ+(y− ŷ) = Xβ̂+(y−Xβ̂), which will be seen to be orthogonal.

1.2.2 Examples

Example 1.3. Consider the ecosystem example from before. To set up the X matrix,
three columns are needed to reflect the intercept along with the shrimp biomass effect
and the capelin biomass.

To extract columns from the data from m, one can either refer to the columns by name or
number. Reference by number is done with

> m[,
(3,6)℄

U B

1 75.7 3177

2 79.8 2210

3 77.6 1442

4 76.4 1128

...

but it is much simple to use column names, as in


ols<-m[,
("U","B")℄

with the dplyr package this becomes even easier:
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library(dplyr)

sel
ols<-sele
t(mmm,U,I)

but this is not the entireX-matrix since the column of all ones is missing. This is easy to
add, however:

n<-length(m$U)

one<-rep(1,n)

X<-
bind(one,sel
ols)

y<-m$G

so X and y have thus been set up. To easily manipulate the vectors in theX-matrix one
can also extract them from the data frame:

U<-m$U

B<-m$B

In this examplen= 17 soy ∈R
17 and the span of the columns of theX-matrix is now the

three-dimensional subspace ofR
17 spanned by the three vectors called “one”, “U” and

“B” in R.

1.3 Normal equations

Have
X′Xβ̂ = X′y

1.3.1 Details

Supposey ∈ R
n, andV is a subspace ofRn.

An orthogonal projection of ŷ ontoV is a vector,̂y∈V such thaty− ŷ⊥V. Now consider
a vector,̂y in V = span(X), which can then be written asŷ= Xβ̂. Assume it is a projection,
soy− ŷ ⊥V.

Now, let ỹ = Xβ̃ be any other vector inV. Then

||y− ỹ||2 = ||(y− ŷ)+(ŷ+ ỹ)||2 = ||y− ŷ||2+ ||ŷ+ ỹ||2 ≥ ||y− ŷ||2

and we therefore see that such an orthogonal projection is the best one can do.
It also follows that that̂y is unique since the only waỹy can get as close is by having
||ŷ+ ỹ||= 0, which only happens when they are equal.
In conclusion, we have shown that an orthogonal projection of y ∈R

n ontoV is theunique
element inV which is closest toy. We now need to find a way to compute the projection.
Next, since the residual vector,y− ŷ= ŷ−Xβ̂, is orthogonal to each vector inV it must also
be orthogonal to each column vector ofX, i.e. x′i

(

ŷ−Xβ̂
)

= 0 and thereforeX′
(

ŷ−Xβ̂
)

=
0.
Thus, the followingnormal equations describe how to find the parameters of the ort-
hogonal projection, i.e. the parameters which give the bestfit:

X′Xβ̂ = X′y.

In general there is no guarantee that these equations have a unique solution and this is
related to the rank of theX-matrix itself.
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1.4 The solution

Solution:
β̂ =

Ä

X′X
ä−1

X′y

Prediction:

ŷ = Xβ̂ = X
Ä

X′X
ä−1

X′y.

Estimated residuals:

ê= y− ŷ = y−Xβ̂ =
Å

I −X
Ä

X′X
ä−1

XT
ã

y.

1.4.1 Details

When the matrixX′X is invertible, the solution is well-known:

β̂ =
Ä

X′X
ä−1

X′y.

It should be noted, however, that in actual implementationsthe point estimates can be
obtained using numerical techniques which do not require inverting the matrix. However,
the inverse is usually needed at a later stage.

Thepredicted valuesare
ŷ = Xβ̂ = X

Ä

X′X
ä−1

X′y.

The estimated (or observed)residualsare

ê= y− ŷ = y−Xβ̂ =
Å

I −X
Ä

X′X
ä−1

X′
ã

y.

1.4.2 Examples

Example 1.4. Consider again the ecosystem data. TheX matrix andy-vector are set up
as before. The slope, fitted values and errors can then be computed using matrix algebra:

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/

bore
ol.dat",header=T)

sel
ols<-m[,
("U","B")℄

n<-length(m$U)

one<-rep(1,n)

X<-
bind(one,sel
ols)

X

one U B

1 1 75.7 3177

2 1 79.8 2210

3 1 77.6 1442

4 1 76.4 1128

5 1 85.0 2182

6 1 86.0 3579

7 1 93.0 3688

8 1 89.0 3987

9 1 77.5 3727
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10 1 65.8 2990

11 1 72.0 2677

12 1 81.6 2146

13 1 87.1 2454

14 1 83.5 3050

15 1 94.0 3185

16 1 104.6 3119

17 1 87.6 3700

X<-as.matrix(X)

y<-m$G

b<-solve(t(X)%*%X)%*%t(X)%*%y

yhat<-X%*%b

ehat<-y-yhat

b

[,1℄

one 171.9236911

U 2.8758166

B 0.1157401

Example 1.5. A much better approach is to use the R functions for linear models to
compute these quantities:

lm(G~U+B,data=m)

Call:

lm(formula = G ~ U + B, data = m)

Coeffi
ients:

(Inter
ept) U B

171.9237 2.8758 0.1157

Naturally, the results are the same.

1.5 Sums of squares and norms

Sum of squared errors
SSE= ||ê||2 =

∑

i

(yi − ŷi)
2 .

DenoteSSEby SSE(F) or SSE(R) when comparing models.

1.5.1 Details

The sum of squared errors becomes

SSE= ||ê||2 = ||y− ŷ||2 =
n∑

i=1

(yi − ŷi)
2 .
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When comparing models, e.g. a large or “full” model and a smaller or “reduced” model,
the notation is usually extended to take into account the various models in question, notably
SSE(F) for the full model andSSE(R) for the reduced model.

1.6 Projection matrices

Projecton, “hat”, matrix ontoV = sp(X):

H = X(X′X)−1X′

and ontoV⊥ = sp(X)⊥:

I −H = I −X(X′X)−1X′

1.6.1 Details

The matrixH = X(X′X)−1X′ is a projection matrix (i.e.H2 = H), projectingRn onto the
subspaceV := sp(X) . Conversely,I −H = I −X(X′X)−1X′ is the projection matrix onto
V⊥ = sp(X)⊥, respectively.

The matrixH is usually termed the “hat matrix”, since it transformsy into ŷ.

Note 1.1.The diagonal elements,hi j , of the hat matrix play a very important role in regressi-
on diagnostics: If a certain data point has a high value on thediagonal, then this means that
it “predicts itself”, i.e. is influential.

ReferencesNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W.1996. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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2 Distributions of linear projections of vectors of random
variables

2.1 Linear combinations of independent random variables

c a column vector
Y a vector of independent random variables
Sameσ, expected values may differ,E[Y] = µ
Then

E
î

c′Y
ó

= c′µ

V
î

c′Y
ó

= c′cσ2

2.1.1 Details

Supposec a column vector andY a vector of independent random variables with a common
variance,σ2, but possibly different expected values. Then the mean and variance of the
linear combination,c′Y, are given by

E
î

c′Y
ó

= c′µ

V
î

c′Y
ó

= c′cσ2

These results are trivial to ascertain since the components, Yi , are independent and hence
e.g.

V
î

c′Y
ó

= V

[
∑

i

ciYi

]

=
∑

i

c2
i V [Yi ]

= c′cσ2

2.2 Covariance between linear combinations of independentrandom
variables

a, b column vectors
Y a vector of independent random variables
Sameσ, expected values may differ,E[Y] = µ
Then

Cov
î

a′Y,b′Y
ó

= a′bσ2

2.2.1 Details

Supposea, b are column vectors andY a vector of independent random variables with a
common variance,σ2, but possibly different expected values. Then the covariance between
the linear combinations,a′Y andb′Y, is given by

Cov
î

a′Y,b′Y
ó

= a′bσ2

12



This follows from looking at the linear combinations as sumsof components and noting
that the covariance is a sum of all possible combinations, all of which are zero except where
the sameYi-combinations appear:

Cov
î

a′Y,b′Y
ó

= Cov




∑

i

aiYi ,
∑

j

b jYj





=
∑

i, j

Cov
î

aiYi ,b jYj
ó

=
∑

i, j

aib jCov
î

Yi ,Yj
ó

=
∑

i

aibiCov[Yi ,Yi ]+
∑

i, j :i 6= j

aib jCov
î

Yi ,Yj
ó

=
∑

i

aibiV [Yi ]

= a′bσ2

This result indicates that if the projection vectors,a andb are orthogonal, then the covari-
ance remains zero. Note also that strictly, independence ofthe original variables is not
required, but only zero covariance which is not the same condition in the general case.
In the case of two Gaussian random variables, it is, however,true that they have zero
covariance if and only if they are independent. This can be seen by observing the bivariate
Gaussian density function which neatly factors if and only if the covariance is zero.

2.3 Linear projections of independent random variables

A ann×n matrix
Y a vector ofn independent random variables, meanµ, V[Yi ] = σ2.
Then

E [AY ] = µ

V [AY ] = AA ′σ2

2.3.1 Details

Let A be aq×n matrix andY ann-vector of independent random variables with common
variance but possibly different expected values, then

E [AY ] = Aµ

V [AY ] = AA ′σ2

This can be derived either by considering the componentwisecomposition ofAY or by
writing A as a collection of row vectors and using the earlier results.

2.3.2 Examples

Example: Assuming that all expected values exist, it is easy to derivethe covariance
Cov(X+Y,X−Y), either directly or using the above formula, assumingV[X] =V[Y].

13



2.4 Linear transformations of dependent random variables

A a matrix
Y a vector of random variables whose variances and covariances exist as a matrix,Σ =
Ä

σi j
ä

with σi j =Cov(Yi ,Yj).
Then

V [AY ] = AΣA′

2.4.1 Details

Let A be ann×n matrix andY a vector of random variables whose variances and covari-
ances exist as a matrix,Σ =

Ä

σi j
ä

, whereσi j =Cov(Yi,Yj).
This general situation occurs in regression analysis when measurements arrive in such a
fashion that they can not be assumed to be independent. Several such examples certainly
exist and the theory therefore needs to be properly developed.
This is also an important result when studying distributional properties of estimators, which
are typically already linear combinations of original variables and hence no longer in-
dependent.
The first step is to derive the variance of projections of suchvariables. As before, this can
be done by studying components or by looking at vector-wise linear combinations.
We obtain

V [AY ] = AΣA′

3 Expected values and variances in multiple linear regressi-
on

3.1 Expected values in multiple linear regression

Expected values in multiple linear regression

E[β̂] = β

- only depends on mean structure

3.1.1 Details

The estimator in multiple linear regressionβ̂ = (X′X)−1X′y is unbiased.

This only depends on the assumption on the mean function, noton the variance structure,
nor the probability distribution around the mean. In particular, the estimator is still unbiased
even if the measurements are correlated.

3.1.2 Examples

Example 3.1. Sometimes an dependent variable does not vary in a simple linear fashion
as a function of two independent variables as inEYi = α+βxi +γwi . In particular, it may
become obvious that the response, as a function ofx, does not have the same slope for
two different values ofz. In this case aninteraction model is required:yi = α+βxi +

14



γwi +δxiwi . Definingxi1 = 1, xi2 = xi , xi3 =wi , xi4= xiwi , this becomes a multiple linear
regression model.

3.2 Variances in multiple linear regression

V
[

β̂
]

= V
î

(X′X)−1X′y
ó

=
Ä

(X′X)−1X′äV [y]
Ä

(X′X)−1X′ä′

= . . .

= σ2(X′X)−1.

Depends on true variance structure - not on p.d.f.

3.2.1 Details

If X is of rankp, the estimator
β̂ = (X′X)−1X′y

in multiple linear regression has the variance-covariancematrix:

V
[

β̂
]

=V
î

(X′X)−1X′y
ó

=
Ä

(X′X)−1X′äV [y]
Ä

(X′X)−1X′ä′ = . . .= σ2(X′X)−1.

A consequence of this is that although numerical methods exist to estimate the coefficients,
the inverse is required in order to obtain the variance-covariance matrix.

Note 3.1.This depends on true variance structure - not on a Gaussian assumption.

3.2.2 Examples

Example 3.2. Theone-way analysis of varianceis the analysis of data with the model

y1 j = µ1+e1 j j = 1, . . . ,J1

y2 j = µ2+e2 j j = 1, . . . ,J2

...

yI j = µI +eI j j = 1, . . . ,JI ,

i.e. measurements are made on each ofI means, giving a total ofn = J1 + . . .+ JI

measurements.

Assuming constant variance, the least squares estimators can be derived from the matrix
form of the linear model. The basic model is of the form:
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y =









































y11

y12
...
y1J1

y21

y22
...
y2J2
...
...
...
yI1

yI2
...
yIJI









































=









































1 0 0
1 0 0
...

...
...

1 0 0
0 1 0
0 1 0
...

...
...

0 1 0
...

...
...

...
...

. . .
...

...
...

...
0 0 1
0 0 1
...

...
...

0 0 1

















































µ1

µ2
...
µI









+e

Here it is easy to evaluate the least squares estimators, their variances and covariances
from the matrix representation.

3.3 Covariances between parameter estimates

Var-cov matrices also have correlations between estimates.

Also get numerical estimates of the var-cov matrix as well asall correlations once an
estimate,̂σ2, of σ2 becomes available.

3.3.1 Details

The above derives the theoretical formulae for the variance-covariance matrix, i.e. the true
var-cov matrix. Naturally, this needs to be estimated basedon data since it contains an
unknown parameter.

Numerical estimates of the variances and covariances are obtained once an estimate,σ̂2, of
σ2 becomes available.

Note 3.2.Note that the estimates of covariances become unbiased if estimate of σ2 are
unbiased.

3.3.2 Examples

Example 3.3. Take the case of simple linear regression, withX = [1
...x], β = (α,β)′ and

the model for the data isy = Xβ+e. Here it is easy to derive the theoretical variances
and covariance ofα andβ.
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Example 3.4. Revisiting the ecology example, we can evaluate the standard errors,
computet-statistics and the like with the following R commands

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/

bore
ol.dat",header=T)

sel
ols<-m[,
("U","B")℄

n<-length(m$U)

sel
ols<-m[,
("U","B")℄

n<-length(m$U)

one<-rep(1,n)

X<-
bind(one,sel
ols) # The X-matrix

y<-m$G # The y-ve
tor

p<-length(b) # The number of regressors

SSE<-sum((y-yhat)^2)

s2<-SSE/(n-p) # The estimate of sigma^2

varb<-s2*diag(XpXinv)

seb<-sqrt(varb) # The estimated s.e. of b

data.frame(Estimate=b,se=seb,t=b/seb,p=2*(1-pt(abs(b/seb),n-p)))

Estimate se t p

one 171.9236911 284.2704735 0.6047891 0.55499548

U 2.8758166 3.6162040 0.7952584 0.43973854

B 0.1157401 0.0404542 2.8610155 0.01257369

As usual, a much better approach is to use the built-in functions in R, in this case lm and
summary:

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/

bore
ol.dat",header=T)

fm<-lm(G~U+B,data=m)

summary(fm)

Call:

lm(formula = G ~ U + B, data = m)

Residuals:

Min 1Q Median 3Q Max

-195.062 -87.215 4.916 72.809 193.117

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) 171.92369 284.27047 0.605 0.5550

U 2.87582 3.61620 0.795 0.4397

B 0.11574 0.04045 2.861 0.0126 *

---

Residual standard error: 125 on 14 degrees of freedom

Multiple R-squared: 0.458, Adjusted R-squared: 0.3806

F-statisti
: 5.915 on 2 and 14 DF, p-value: 0.01374

Naturally, the answers are the same.
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4 Orthogonal projections in multiple regression

4.1 Subspaces and degrees of freedom

Assumerank(X) = r

We havey−Xβ̂ ⊥ Xβ̂ so thaty−Xβ̂ ∈ V⊥ = {v : v⊥ sp(X)} anddim(V⊥) = n− r.

ê
︸︷︷︸

n×1

= y−Xβ̂ = y−X(X′X)−1X′y

= (I −X(X′X)−1X′)y= (I −H)y

andrank(I −H) = dim(V⊥) = n− p

4.1.1 Details

Assumerank(X) = r ≤ p (X is n× p).

Parameters in the modely = Xβ+ e1 are estimated witĥβ = (X
′
X)−1X

′
y if the inverse

exists or in general with anŷβ which is such that̂y = Xβ̂ is a projection onto the subspace
sp(X).

By definition, a projection̂y simply corresponds to a decomposition of the original vector
into two orthogonal components, i.e. writingy = ŷ+ ê. We havêe= y−Xβ̂ ⊥ ŷ = Xβ̂ so
thaty−Xβ̂ ∈ V⊥ = {v : v⊥ sp(X)} anddim(V⊥) = n− r.

ê
︸︷︷︸

n×1

= y−Xβ̂ = y−X(X
′
X)−1X

′
y

= (I −X(X
′
X)−1X

′
)y= (I −H)y

andrank(I −H) = dim(V⊥) = n− r

4.2 The multivariate normal and related distributions

4.2.1 Handout

SupposeZ1, ...,Zn are independent Gaussian with mean zero and variance one (Z1, ...,Zn ∼
n(0,1) iid) so their joint density is

f (ξ) =
n∏

i=1

1√
2π

exp(−ξ2
i /2) =

1

(2π)n/2
exp(−(1/2)ξTξ)

Let A be an invertiblen×n matrix andµ∈ R
n and defineY = AZ+µ.

Recall from calculus that ifg is a 1−1 functiong : Rn →R
n

∫

f (ξ)dξ =
∫

f (g(y))|J|dy

whereJ is the Jacobian of the transformation

J =

∣
∣
∣
∣
∣

dξ
dy

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂g(y)
∂y

∣
∣
∣
∣
∣

and the integrals are over corresponding regions.
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It follows that the joint pdf ofY is h with h(y) = f (g(y))|J|.
Some linear algebra gives

h(y) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(y−µ)TΣ−1(y−µ))

whereΣ = AAT .
This leads to a natural definition of the multivariate normaldistribution.
The n-dimensional random vector,Y is said to have a multivariate normal distribution,
denotedY ∼ n(µ,Σ) if the density ofY is of the form

h(y) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(y−µ)TΣ−1(y−µ))

whereµ∈ R
n andΣ is a symmetric positive definiten×n matrix.

It is left to the reader to prove that ifY ∼ n(µ,Σ) andB is an p×n matrix of full rank p
(p< n), thenBY also has a multivariate normal distribution.
If Z ∼ n(0,1) is standard normal, then we define the chi-squared distribution on one degree
of freedom,χ2

1 to be the distribution ofU := Z2 and writeU ∼ χ2
1. If U1, . . . ,Up are i.i.d.

χ1, then we defineχ2
p to be the distribution of their sum:

∑p
i=i Ui ∼ χ2

p.
Finally, if U ∼ χ2

ν1
andV ∼ χ2

ν2
are independent, then we define theF distribution on ν1

and ν2 degrees of freedomto be the distribution of the ratioU/ν1/
V/ν2

and write

U/ν1/

V/ν2
∼ Fν1,ν2.

4.3 A basis for the span of X

Orthonormal basis,{u1, . . . ,un} for Rn:

Using Gram-Schmidt, first generateu1, . . . ,ur which spansp{X}, with rank{X}= r and
the rest,ur+1, . . . ,un are chosen so that the entire set,u1, . . . ,un spansRn.

Xβ̂ = ζ̂1u1+ . . . ζ̂rur

y = ζ̂1u1+ . . . ζ̂rur + ζ̂r+1ur+1+ . . .+ ζ̂nun

4.3.1 Details

The probability distributions can best be viewed by defininga new orthonormal basis,
{u1, . . . ,un} for Rn.

This basis is defined by first generating a set ofr vectorsu1, . . . ,ur which span the space
defined bysp{X}, and the rest,ur+1, . . . ,un are chosen so that the entire set,u1, . . . ,un

spansRn. This is obviously always possible using the method of Gram-Schmidt. This
gives the following sequence of spaces and spans:

sp{X} = sp{u1, . . . ,ur}
Rn = sp{u1, . . . ,ur ,ur+1, . . .un}

One can then write each ofXβ̂ andy in terms of the new basis as follows:

Xβ̂ = ζ̂1u1+ . . . ζ̂rur

y = ζ̂1u1+ . . . ζ̂rur + ζ̂r+1ur+1+ . . . ζ̂nun
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where it is well-known that̂ζi = ui ·y.

It is important to note that the same coefficientsζ̂i are obtained for 1≤ i ≤ r. This follows
from considering the coefficient ofy in the basis and noting thaty = Xβ̂+ ê where the
residual vector̂e is orthogonal to all column vectors ofX and therefore also toui for 1≤
i ≤ r. Therefore,

ζ̂i = ui ·y = ui ·Xβ̂

4.4 Q-R decomposition

Q := [u1u2 . . .un]

is theQ in the Q-R decomposition ofX.

If
z=

(

ζ̂1, ζ̂2, . . . , ζ̂n

)

then
z= Q′y

and hence
E [z] = Q′Xβ

V [z] = Q′σ2IQ = σ2I

4.4.1 Details

Q := [u1u2 . . .un] is theQ in the Q-R decomposition ofX.

Q has important properties, e.g.Q′Q = I soQ−1 = Q′.

If
z=

(

ζ̂1, ζ̂2, . . . , ζ̂n

)

then
z= Q′y andy = Qz

and hence
E [z] = Q′Xβ

V [z] = Q′σ2IQ = σ2I

4.5 Variances of coefficients

For eachi we obtain
V
[

ζ̂i

]

= σ2

4.5.1 Details

For eachi we trivially obtain
V
[

ζ̂i

]

= σ2
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4.6 Normality and independence of coeffients

Note thatζ̂i are linear combinations of the variousy j sinceζ̂i = ui ·y.

When theyi are independent Gaussian random variables,ζ̂i have zero covariance and
are thus also independent.

4.6.1 Details

Note thatζ̂i are linear combinations of the variousy j sinceζ̂i = ui · y. The ζ̂i have zero
covariance and when theyi are independent Gaussian random variables, theζ̂i are also in-
dependent.

This final result uses the fact that Gaussian random variables which have zero covariance
are also independent. The fact that they have zero covariance is easy to establish, but the
corrollary of independence is a result from multivariate normal theory.

The normal theory is fairly simple in this case:

z=
(

ζ̂1, ζ̂2, . . . , ζ̂n

)

= Q′y

and
y ∼ n

Ä

Xβ,σ2I
ä

.
It follows that z is multivariate normal and from the earlier derivations of the mean and
variance we have

z∼ n
Ä

Q′Xβ,σ2I
ä

.

4.7 Expected values of coefficients

For i = r +1, . . . ,n we obtain
E
[

ζ̂i

]

= 0

4.7.1 Details

The expected values of the coefficients,ζ̂i depend on which space these correspond to.
Define

ζi = E
[

ζ̂i

]

and by linearity we obtain
ζi = E [ui ·y] = ui · (Xβ) .

Now note that we have defined the basis vectors in three sets. The first is such that they
span the same space as the columns ofZ. The second set complements the first to span the
X and the last set complements the set to span all ofRn. The basis vectors are of course all
orthogonal and each basis vector is orthogonal to all vectors in spaces spanned by preced-
ing vectors.

For i = r +1, . . . ,n we obtain
E
[

ζ̂i

]

= ui · (Xβ) = 0

sinceXβ is trivially in the space spanned by the column vectors ofX and is therefore a
linear combination ofu1, . . . ,ur andui is orthogonal to all of these.
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4.8 Sums of squares and norms

SSE(F) = ||y−Xβ̂||2 =
n∑

i=p+1

ζ̂2
i

4.8.1 Details

It is now quite easy to see how to form sums of squared deviations based on the new
orthonormal basis, since each set of deviations corresponds to a specific portion of the
space.

SSE(F) = ||y−Xβ̂||2 =
n∑

i=r+1

ζ̂2
i

4.9 Degrees of freedom

SSE(F)hasn− r degrees of freedom.

4.9.1 Details

SSE(F) hasn− r degrees of freedom.
ReferencesNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W.1996. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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5 Linear hypotheses in multiple regression

5.1 Null hypotheses and geometry

5.1.1 Details

Tests of hypotheses in linear models can be considered geometrically. The hypothesis
Hi : β = 0 in simple linear regression is the question of whether the matrix

Z =







1
...
1







can be used in place ofX, i.e. whether the projection ofy ontospan(Z) is too much farther
away fromy than the projection ontospan(X).

5.2 Null hypotheses and matrices

5.2.1 Details

Null hypotheses are almost always concerned with how one can“reduce” or simplify the
model, in this case usually whether one can reduce the numberof columns inX or by some
other means reduce the number of coefficients in the model.

5.3 Null hypothesis as matrices

Have X
︸︷︷︸

n×p

and Z
︸︷︷︸

n×q

s.t.span(Z)⊆ span(X).

Can estimate models
y = Xβ+e1

y = Zγ+e2

Will derive test for
H0 : Xβ = Zγ

5.3.1 Details

Assume thatX
︸︷︷︸

n×p

and Z
︸︷︷︸

n×q

are matrices such thatspan(Z)⊆ span(X).

We can estimate coefficients in the model

y = Xβ+e

and in the reduced model
y = Zγ+e

We will derive tests for the general null hypothesis

H0 : Xβ = Zγ

which is typically some hypothesis stating that some of the coefficients in theβ-vector are
zero or otherwise restricted.
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5.3.2 Examples

Example 5.1. In simple linear regression,yi = α+βxi +ei , the most common test is for
β = 0.

5.4 Geometric comparisons of models

Testing linear hypotheses in linear
models corresponds to projecting onto subspaces.

5.4.1 Details

Relationships between sums of squares in two linear models is best viewed geometrically.

Starting with a base model as before,y = Xβ+e, there is a need to investigate whether this
model can be simplified in some manner. A simpler model can be denoted byy = Zγ+e
whereZ is a matrix, typically with fewer columns thanX, and the column vectors ofZ
span a subspace of that spanned byX.

5.4.2 Examples

Example 5.2. A typical hypothesis test would start with a basic (full) model of the form
yi = α+βxi +ei , wanting to test the null hypothesisH0 : β = 0.

Define the matrix

X =
















1 x1

1 x2

1 x3

· ·
· ·
· ·
1 xn
















, (1)

so the model in matrix notation becomesy = Xβ+e.

The null hypothesis can be written asy = Zγ+e, where
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Z =
















1
1
1
·
·
·
1
















. (2)

5.5 Bases for the span of X

Orthonormal basis,{u1, . . . ,un} for Rn:

Using Gram-Schmidt, first generateu1, . . . ,ur which spansp{Z}, the next vectors,
uq+1, . . . ,ur are chosen so thatu1, . . . ,ur spansp{X}, with rank{X}= r, and the rest,
ur+1, . . . ,un are chosen so that the entire set,u1, . . . ,un spansRn.

Zγ̂ = ζ̂1u1+ . . . ζ̂quq

Xβ̂ = ζ̂1u1+ . . . ζ̂quq+ ζ̂q+1uq+1+ . . . ζ̂rur

y = ζ̂1u1+ . . . ζ̂quq+ ζ̂q+1uq+1+ . . . ζ̂rur

+ζ̂r+1ur+1+ . . . ζ̂nun

5.5.1 Details

The probability distributions can best be viewed by defininga new orthonormal basis,
{u1, . . . ,un} for Rn. This basis is defined by first generating a set ofr vectorsu1, . . . ,uq

which span the space defined by the null hypothesis,sp{Z}, whererank{Z}= q, subsequ-
ently the next vectors,uq+1, . . . ,ur are chosen so as to span the remainder ofsp{X}, where
rank{X}= r, and thereforesp{X}= sp{u1, . . . ,ur}, and the rest,ur+1, . . . ,un are chosen
so that the entire set,u1, . . . ,un spansRn. This is obviously always possible using the met-
hod of Gram-Schmidt.

This gives the following sequence of spaces and spans:

sp{Z} = sp{u1, . . . ,uq}
sp{X} = sp{u1, . . . ,uq,uq+1, . . . ,ur}

Rn = sp{u1, . . . ,uq,uq+1, . . . ,ur ,ur+1, . . .un}

One can then write each ofZγ̂, Xβ̂, y in terms of the new basis as follows:

Zγ̂ = ζ̂1u1+ . . . ζ̂quq

Xβ̂ = ζ̂1u1+ . . . ζ̂quq+ ζ̂q+1uq+1+ . . . ζ̂rur

y = ζ̂1u1+ . . . ζ̂quq+ ζ̂q+1uq+1+ . . . ζ̂rur + ζ̂r+1ur+1+ . . . ζ̂nun

where it is left to the reader to see that theζ̂i-coefficients are indeed the same.
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5.6 Expected values of coefficients

For i = r +1, . . . ,n we obtain
E
[

ζ̂i

]

= 0

If H0 : Xβ = Zγ is true then fori = q+1, . . . , r we obtain

E
[

ζ̂i

]

= ui · (Zγ) = 0

5.6.1 Details

The expected values of the coefficients,ζ̂i depend on which space they correspond to.

Define
ζi = E

[

ζ̂i

]

and by linearity we obtain
ζi = E [ui ·y] = ui · (Xβ) .

Now note that we have defined the basis vectors in three sets. The first is such that they
span the same space as the columns ofZ. The second set complements the first to span the
X and the last set complements the set to span all ofRn. The basis vectors are of course all
orthogonal and each basis vector is orthogonal to all vectors in spaces spanned by preced-
ing vectors.

For i = r +1, . . . ,n we obtain
E
[

ζ̂i

]

= ui · (Xβ) = 0

sinceXβ is trivially in the space spanned by the column vectors ofX and is therefore a
linear combination ofu1, . . . ,ur andui is orthogonal to all of these.

If the null hypothesis that E[Y] can be written asH0 : Xβ = Zγ is true then for i =
q+1, . . . , r we obtain

E
[

ζ̂i

]

= ui · (Zγ) = 0

but this only holds under the null hypothesis.

5.7 Sums of squares and norms

SSE(F) = ||y−Xβ̂||2 =
n∑

i=r+1

ζ̂2
i

SSE(F)−SSE(R) = ||Zγ̂−Xβ̂||2 =
r∑

i=q+1

ζ̂2
i

SSE(R) = ||y−Zγ̂||2 =
n∑

i=q+1

ζ̂2
i

5.7.1 Details

It is now quite easy to see how to form sums of squared deviations based on the new
orthonormal basis, since each set of deviations corresponds to a specific portion of the
space.
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SSE(F) = ||y−Xβ̂||2 =
n∑

i=r+1

ζ̂2
i

SSE(F)−SSE(R) = ||Zγ̂−Xβ̂||2 =
r∑

i=q+1

ζ̂2
i

SSE(R) = ||y−Zγ̂||2 =
n∑

i=q+1

ζ̂2
i

Since eacĥζi is a coordinate in an orthonormal basis, this is formed as an inner product
with the corresponding basis vector, i.e.ζ̂i = y ·ui .

5.8 Some probability distributions

5.8.1 Details

Suppose we have two matrices,X andZ which satisfyrank(Z) = q < p = rank(X) and
sp(Z)⊆ sp(X) (usuallyZ is n×q andX is n× p ).
ThenH0 : E[Y] = Zγ is a reduction from the modelE[Y] = Xβ.
Write F = full model andR = for the reduced model.
Then we have
1) y−Xβ̂ ⊥ Xβ̂−Zγ̂
2) ||y−Xβ̂||2 and||Xβ̂−Zγ̂||2 are independent

3)||y−Xβ̂||2
σ2 ∼ χ2

n−p if the model is correct

4) ||Xβ̂−Zγ̂||2
σ2 ∼ χ2

p−q if H0 is correct.

5) SSE(F) = ||y−Xβ̂||2
and
SSE(R)−SSE(F) = ||Xβ̂−Zγ̂||2
are independent.
6) (SSE(R)−SSE(F))/(p−q)

SSE(F)/(n−p) ∼ Fp−q,n−p

HereFν1,ν2 is the distribution of a ratio

F =
U/ν1

V/ν2

of independentχ2-random variables,U ∼ χ2
ν1

, andV ∼ χ2
ν2

.

5.9 General F-tests in linear models

5.9.1 Details

In general one can compute the sum of squares from the full model, SSE(F) as above and
then compute the sum of squared deviations from the reduced model,SSE(R) = ||y−Zγ̂||2.
Denote the corresponding degrees of freedom byd f(F) andd f(R), and assume that both
matricesZ andX have full ranks, i.e.rank(X) = p andrank(Z) = r. Thend f(F) = n− p
andd f(R) = n− r.

The null hypothesis can then be tested by noting that

F =
(SSE(R)−SSE(F))/(p− r)

SSE(F)/(n− p)
(3)
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is a realisation of a random variable from an F-distributionwith p− r andn− p degrees of
freedom underH0.
ReferencesNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W.1996. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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6 Building a multiple regression model

6.1 Introduction

Have several independent variables
Want to select some into regression
Want to evaluate quality of resulting model
Want to improve into a final model

6.1.1 Details

Building multiple regression models includes several steps. It is, firstly, rarely pre-defined
what independent variables should be included in the model,so a method for selecting these
is needed. Having obtained an initial model one needs to evaluate not only the assumptions
of the model but also identify possible influential observations and possibly undertake other
diagnostics. Having obtained regression diagnostic, the model needs to be improved by
taking these into account.

6.2 Variable selection: Measuring quality

• R2

• AIC

• BIC

• SSE

• MSE

• P-values

6.2.1 Details

• R2

• AIC

• BIC

• SSE

• MSE

• P-values

6.2.2 Examples

Example 6.1. Use the ecosystem data set and select a single variable in a simple linear
regression to predict the growth of cod. Compare the variouscriteria.
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6.3 Variable selection: Forward or backward

Model selection:

• All subset regression

• Forward stepwise regression

• Backwards stepwise regression

6.3.1 Details

Several methods exist to select a regression model.

All subset regression simply considers every possible combination of independent varia-
bles. Although this will indicate all possible “good” models and will certainly find the
“best” model (using any given criterion), this is often not feasible.

Backwards stepwise regression starts by taking all independent variables into a single
model and then dropping variables one at a time. The variableto be dropped is the one
giving the least increase in SSE. This approach is often preferred, but is not feasible if the
total number of variables are very large.

Forward stepwise regression selects a sequence of variables, at each stage deciding what
variable to add next. The addition is based on including the variable giving the largest
amount of (marginal) explained variation.

Forward stepwise regression is often augmented by allowinga variable to be dropped after
a variable has been added. Thus a sequence of insertions may make an earlier variable
redundant and thus dropped. Either version of forward regression is quite feasible but may
lead to an incorrect or bad model since important combinations of variables may not be
found.

Each approach thus has good and bad points.

6.3.2 Examples

Example 6.2. Use the ecosystem data set and conduct a forward stepwise regression to
predict the growth of cod. Compare the various criteria for model selection.
R commands: add1 repeatedly - followed by anova(fm.final,fm.full)

Example 6.3. Use the ecosystem data set and conduct a backwards stepwise regression
to predict the growth of cod. Compare the various criteria for model selection.
R commands: drop1 or summary - followed by anova(fm.final,fm.full)

ReferencesNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W.1996. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
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Belsey, D. A., Kuh, E. and Welsh, R. E. 1980. Regression diagnostics: Identifying influ-
ential data and sources of collinearity. John. Wiley and Sons, New York. 292pp.
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7 Prediction in the linear model

7.1 Prediction and prediction uncertainty

A new observation:xh

The prediction: ˆyh = ˆE [yh] = xhβ̂
The variance:σ2x′h(X

′X)−1xh

Prediction uncertainty:V [yh− ŷh]

7.1.1 Details

A new observation:xh

The prediction: ˆyh = ˆE [yh] = xhβ̂
The variance:σ2x′h(X

′X)−1xh

Prediction uncertainty:V [yh− ŷh]

7.1.2 Examples

Example 7.1. Age and live weight of lambs. Project: Predict the weight (with
uncertainty) at a given day.

days weight

135 39

125 35

120 33

126 38

125 37

137 38

133 36

140 41

130 38

129 36

123 34

132 40

129 38

121 34

126 35

137 44

121 34

137 41

130 39

137 43

33



8 Estimable functions

8.1 Estimable functions: The problem

If X is not of full rank, then the LS problem does not have a unique solution for β̂.

In general not all combinations of the formc′β̂ may have unique solutions.

A linear combinationc′β is anestimable function if there is a vector of numbers,a,
such that

E [ay] = c′β

for all β.

NB: Viewed as a function of the unknown parameter vector,β.
NB: The E-operator depends onβ, could write g(β) = c′β and requireg(β) =
Eβ[ay] ∀β for somea.

8.1.1 Details

If X is not of full rank, then the LS problem does not have a unique solution for β̂. In
general not all combinations of the formc′β̂ may have unique solutions.

A linear combinationc′β is anestimable function if there is a vector of numbers,a, such
that

E
î

a′y
ó

= c′β

for all β.

The terminology is not accidental as the linear combinationof parameters is viewed as a
function of the unknown parameter vector,β. In words the requirement is simply that it is
possible to obtain a linear unbiased estimator.

8.1.2 Examples

Example 8.1. The one-way layout is the simplest example givingX-matrices which are
not of full rank when writing the model in the form

yi j = µ+αi + εi j .

Example 8.2. A common issue in regression is whether the same line can be fitto two
data sets or e.g. whether different slopes should be used. This can be modelled by writing

yi j = α+βxi j + εi j (4)

for the simple model with the same slopes and

yi j = α+βixi j + εi j (5)
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for a model with different slopes in the the groups.

Alternatively one may be interested in how the slopes in the groups differ and/or in a
simple evaluation of whether a single slope can be used. In this case it is reasonable to
rewrite the complex model as

yi j = α+βxi j +βixi j + εi j (6)

and the test of whether the reduced model is enough is a test ofwhether theβi-values are
all zero (and can be dropped).

Naturally, equation 6 is not completely determined. On the other hand, the model can
easily be fit to data - most statistical packages will simply select an arbitrary LS estimate
of the parameter set unless told explicitly to select a specific representation. All such
solutions will lead to the same tests. The tests are really just based on comparing whether
SSE(R) is too much smaller than SSE(F) and these sums are based on the LS projections
onto subspaces. The projections are uniquely defined since they are based on the span,
V, of the column vectors in the X-matrix. This spaceV does not change when columns
are added, as long as these columns are linear combinations of existing ones - or when
such columns are dropped.

Packages such as R will easily compare 6 and 4 with the drop1-command since 4 cor-
responds to deleting a term from 6. The better-determined model 5 can be compared to
4 using an anova-command in R since 4 is indeed a reduced modelfrom 5 through a
restriction of the formβ1 = . . .= βI .

8.1.3 Handout

Some further clarifications to the above definitions may be useful.

It must be emphasized that theE-operator depends on the vectors of unknown parameters,
β, since the underlying model isE [y] = Xβ. One could therefore writef (β) := Eβ [y] and
g(β) := c′β so the criterion of estimability would be thatf (β) = g(β) ∀β ∈ Rn. This
formal approach has the merit that the meaning is clear, but the notation becomes quite
cumbersome.

Estimable functions are commonly denoted by the symbolψ, e.g.ψ = β1−β2 etc.

Note 8.1.Recall that if X
︸︷︷︸

n×p

with n > p is of full rank if rank(X) = dim(sp(X)) = p and

also rank(X) = rank(X′X) soX is of full rank iff X′X has an inverse. Hence, ifX is of full
rank we can writêβ = (X′X)−1X′y which satisfiesE

[

β̂
]

= β.

From this we also see that

c′β = c′E
[

β̂
]

= E
ï

c′
Ä

X′X
ä−1

X′y
ò

= E
î

a′y
ó
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wherea′ = c′ (X′X)−1X′. Hence any linear combinationc′β is estimable isX is of full rank.

Conversely, ifX is not of full rank then we can find vectorsβ andγ with β 6= γ such that
X (β− γ) = 0 and thereforeE [y] i = Xβ = Xγ can be expressed in more than one way.

Existence of non-estimable functions are therefore an expression of the matrix not being of
full rank.

8.2 Classification of estimable functions

Theorem: A parametric functionψ = c′β is estimable if and only ifc′ = a′X for some
a∈ Rn.

8.2.1 Details

Theorem 8.1. A parametric functionψ = c′β is estimable if and only ifc′ = a′X for
somea∈ Rn.

8.2.2 Examples

Example 8.3. In the linear modelYi j = µ+αi +εi j , the coefficients are not all estimable.

8.2.3 Handout

Proof of theorem: By definition,ψ= c′β is estimable if and only if there is a vectora∈ Rn

such thatE [a′y] = c′β for all β. This is equivalent to requiring

a′Xβ = c′β

for all β which is equivalent to
c′ = a′X.

Example 8.4. The reader should take the simple exampleyi j = µ+αi + εi j , 1 ≤ j ≤
Ji 1≤ i ≤ I , set up theX-matrix and consider the form of the vectorsa′X for the case
I = 2, J1 = n, J2 = m.

Writing a′X = (u,v,u−v), it is seen that the resulting estimable functions are precisely
µ+α1, µ+α2 andα1−α2.

8.3 Gauss-Markov theorem

Theorem: (Gauss-Markov theorem): LetEY = Xβ, VY = σ2I . Then every estimable
functionc′β has a unique unbiased linear estimate which has minimum variance in the
class of all unbiased linear estimates. This estimate can bewritten the formc′β̂ whereβ̂
is any LS estimator.
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8.3.1 Details

A fundamental result in the theory of linear models is that estimable functions have unique
unbiased linear estimates.

Lemma: If ψ = c′β is estimable andV = sp(X) then there is a unique linear unbiased
estimator ofc′β of the forma′y with a∈V. If a0y is unbiased forc′β thena is the projecti-
on ofa0 ontoV.

Theorem 8.2 (Gauss-Markov theorem).Let E [y] = Xβ, V [y] = σ2I . Then every
estimable functionc′β has a unique unbiased linear estimate which has minimum vari-
ance in the class of all unbiased linear estimates. This estimate can be written the form
c′β̂ whereβ̂ is any LS estimator.

Note 8.2.For estimable functions this is defined as the LS estimator.

8.3.2 Examples

Example 8.5. In the modelyik = µ+αi +eik, it is clear that parameters are not estimable
but it is easy to see thatαi −α j are estimable.

8.3.3 Handout

Proof of lemma: Supposeψ = c′β is estimable so we can finda∈ Rn such thatE[a′y] =
ψ.Now writea= a∗+b∗ with a∗ ∈V andb∗ ⊥V, i.e. we definea∗ as the projection ofa
ontoV. Then it is easy to see thatEb∗′y = 0 sinceb∗ is perpendicular to the columns ofX,
all of which are inV. Henceψ=Ea′y=Ea∗′y and hencea∗′y is unbiased forψ anda∗ ∈V.

For uniqueness ofa∗, supposeEα′y = ψ for someα ∈ V. Then 0= Ea∗′y−Eα′y =
(a∗ − α)′Xβ. This holds for allβ ∈ Rp and hence(a∗ − α)′X = 0. Since(a∗ −α) is
perpendicular to all columns of theX-matrix, it follows that(a∗ −α) ∈ V⊥. But both
vectors were inV to begin with, so

(a∗−α) ∈V ∩V⊥ = {0}

i.e. a∗ = α soa∗ is unique. Sincea∗ was taken as the projection ofa ontoV, the proof is
complete.

Proof of Gauss-Markov theorem:Use the lemma to find a uniquea∗ ∈V with Ea∗′y= c′β
and leta′y be any unbiased linear estimate ofψ. Thena∗ = pro jV(a) and||a||2 = ||a∗||2+
||a−a∗||2 so

Va′y = a′Σya= σ2||a||2

= σ2||a∗||2+σ2||a−a∗||2 =Va∗y+σ2||a−a∗||2 ≥Va∗y

and equality holds iffa= a∗ soa∗y is best.

Now let β̂ be any least squares estimate.
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Note 8.3.Note thata∗ ∈V andy−Xβ̂ ∈ V⊥ so thata∗(y−Xβ̂) = 0 and thereforea∗y =

a∗Xβ̂.

Further, sinceψ = c′β is estimable anda∗′y is the unbiased linear estimate,c′β = Ea∗y =
a∗Xβ and this holds for anyβ ∈ Rp soc′ = a∗′X. Combining this with the previous para-
graph,a∗y = a∗Xβ̂ = c′β̂ which concludes the proof.

8.4 Testing hypotheses in the linear model

y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

Theorem: ψ̂ ∼ n
Ä

ψ,Σψ̂
ä

, ||y−Xβ̂||2
σ2 ∼ χ2

n−r and these two quantities are independent.

8.4.1 Details

Let y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

and assumerank(X) = r ≤ p.

The interest will be in obtaining some joint confidence statement on a vector,ψ=(ψ1, . . . ,ψq),
where eachψi = c′iβ is an estimable function. Writêψ = (ψ̂1, . . . , ψ̂q) for the least squares
estimates withψ̂i = ci β̂ whereβ̂ is any LS estimate and one can therefore also writeψ̂i =aiy
for uniqueai ∈ sp(X).

The above can be written more concisely asψ = Cβ using obvious definitions. It follows
that

ψ̂ = Ay = Cβ̂ ∼ n(Cβ,σ2AA ′)

and the variance-covariance matrix of the estimates will bedenoted

V [ψ̂] = Σψ̂

which leads to the following theorem.

Theorem 8.3. ψ̂ ∼ n
Ä

ψ,Σψ̂
ä

, ||y−Xβ̂||2
σ2 ∼ χ2

n−r and these two quantities are independent.

It follows that hypothesis tests can be constructed in an obvious manner for individual
estimable functions.

8.4.2 Handout

Proof: Let {ξ1, . . . ,ξn} be an orthonormal basis forRn such that{ξ1, . . . ,ξr} form a basis
for sp(X) and letζ̂1, . . . , ζ̂n be the coordinates ofy in this basis, so that̂ζi = ξi · y. Also
defineζi = E[ζ̂i ]. It is established that̂ζi are independent, Gaussian with common variance
σ2.
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Write z=
(

ζ̂1, . . . , ζ̂n

)′
, P= [ξ1, . . . ,ξn]

′ and note thatP′ = [ξ1 . . .ξn]. It is then clear that
the rows ofP′ are independent soP′ is invertible (as isP). Clearly,PP′ = I so P′P = I .
Further,z= Py and thereforey = P′z.

As elsewhere, write the LS estimates of the estimable functions in the formψ̂i = a′iy where

ai ∈ V = sp{ξ1, . . . ,ξr} so thatψ̂i = a′iP
′z. It follows thata′iP

′ =
ï

a′iξ1
... . . .

...a′iξn

ò

and of

these various inner products,a′iξ j = 0 if j > r (sinceai ∈V) from which it is seen that

a′iP
′z=

ï

a′iξ1
... . . .

...a′iξr
...0. . .0

ò[

ζ̂1, . . . , ζ̂r , ζ̂r+1, . . . , ζ̂n

]′
= a′iξ1ζ̂1+ . . .+a′iξr ζ̂r

i.e. the estimable functions are all formed from the firstr of the ζ̂i and are all of the form

ψ̂i =
r∑

1
k j ζ̂ j (7)

for some constantsk1, . . . ,kr . This important result is quite general and basically states that
anything that can be estimated can be derived fromy through the column vectors of the
X-matrix.

On the other hand it is also known thatXβ̂ is the projection ofy onto the space spanned by
ξ1, . . . ,ξr and therefore the residual,y−Xβ̂ is in the span ofξr+1, . . . ,ξn and in fact

||y−Xβ̂||2 =
n∑

j=r+1

ζ̂2
j (8)

All the results in the theorem follow easily from (7) and (8).
ReferencesNeter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W.1996. Applied
linear statistical models. McGraw-Hill, Boston. 1408pp.
Scheffe, H. 1959. The analysis of variance. John Wiley and Sons, Inc, New York. 477pp.
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9 Ranks, constraints and correlations in multivariate regressi-
on

9.1 Problem statement

9.1.1 Details

When r = rank(X)
︸ ︷︷ ︸

n×p

< k, the estimatêβ is not unique. Similarly,β in E[Y] = Xβ is not

unique.1 But if the functionψ = c′β is estimable, then the numberc′β is unique, i.e. the
same for allβ in the set{b : EY = Xb}, sinceXβ is unique andc′β = a′Xβ for somea.

9.2 Constraints

To specifyβ uniquely we can add constraints...

9.2.1 Details

In order to specify the vectorβ and β̂ one could simply drop some of these until theX-
matrix becomes of full rank. More generally it is possible toadd constraints of the form
H
︸︷︷︸

t×p

β = 0

This can be formulated in the following manner: Suppose we have β and we want unique
β̃ throughXβ = Xβ̃ andHβ̃ = 0.

Theorem 9.1. β̃ is unique ifrank
ÄÄX

H

ää

= p andβ̃ are then estimable.2

The reader is referred to Scheffe (1959) for the proof of the theorem.

9.2.2 Examples

Example 9.1. If Yik ∼ n(µ+αi ,σ2), independent, with 1≤ k ≤ ni and 1≤ i ≤ I , then
one can use the constraints

∑αi = 0.

It is a useful exercise to write theX-matrix andH-matrix for this problem.

9.2.3 Handout

Write G =
ÄX

H

ä

for the joint data and constraint matrices.

1This is easy to see since ifx1, . . . ,xp are the columns of theX-matrix thenE[Y] = Xβ is a linear comb-
ination ofx1, . . . ,xp which only span ar-dimensional space and a subset ofx1, . . . ,xp can be used to span this
space. The vectorE[Y] can be written as a linear combination of vectors in any such subset.

40



Note that we obtain

Gβ̃ =

(

Xβ
0

)

and thus
G′Gβ̃ = X′Xβ

whereG′G is invertible and we can write

β̃ =
Ä

X′X +H′H
ä−1

X′Xβ (9)

and we have
ˆ̃β =
Ä

X′X +H′H
ä−1

X′y

an unbiased estimate.

Note 9.1.The vectorβ̃ defined in Eq. (9) is a vector of elements, each of which is a linear
function ofβ and each of these functions is estimable since each is of the form a′Xβ.

ReferencesISBN: 0256117365
ISBN: 0471758345
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