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1 Tests of hypotheses including multiple comparisons in
the linear model

1.1 On distributions

y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

Theorem: ψ̂ ∼ n
Ä

ψ,Σψ̂
ä

, ||y−Xβ̂||2
σ2 ∼ χ2

n−r and these two quantities are independent.

1.1.1 Details

Let y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

and assumerank(X) = r ≤ p.
The interest will be in obtaining some joint confidence statement on a vector,ψ=(ψ1, . . . ,ψq),
where eachψi = c′iβ is an estimable function. Writêψ = (ψ̂1, . . . , ψ̂q) for the least squares
estimates withψ̂i = ci β̂ whereβ̂ is any LS estimate and one can therefore also writeψ̂i =aiy
for uniqueai ∈ sp(X).
The above can be written more concisely asψ = Cβ using obvious definitions. It follows
that

ψ̂ = Ay = Cβ̂ ∼ n(Cβ,σ2AA ′)

and the variance-covariance matrix of the estimates will bedenoted

V [ψ̂] = Σψ̂

which leads to the following theorem.

Theorem 1.1. ψ̂ ∼ n
Ä

ψ,Σψ̂
ä

, ||y−Xβ̂||2
σ2 ∼ χ2

n−r and these two quantities are independent.

1.1.2 Handout

Proof: Let {ξ1, . . . ,ξn} be an orthonormal basis forRn such that{ξ1, . . . ,ξr} form a basis
for sp(X) and letζ̂1, . . . , ζ̂n be the coordinates ofy in this basis, so that̂ζi = ξi · y. Also
defineζi = E[ζ̂i ]. It is established that̂ζi are independent, Gaussian with common variance
σ2.
Write z=

(

ζ̂1, . . . , ζ̂n

)′
, P= [ξ1, . . . ,ξn]

′ and note thatP′ = [ξ1 . . .ξn]. It is then clear that
the rows ofP′ are independent soP′ is invertible (as isP). Clearly,PP′ = I so P′P = I .
Further,z= Py and thereforey = P′z.
As elsewhere, write the LS estimates of the estimable functions in the formψ̂i = a′iy where

ai ∈ V = sp{ξ1, . . . ,ξr} so thatψ̂i = a′iP
′z. It follows thata′iP

′ =
ï

a′iξ1
... . . .

...a′iξn

ò

and of

these various inner products,a′iξ j = 0 if j > r (sinceai ∈V) from which it is seen that

a′iP
′z=

ï

a′iξ1
... . . .

...a′iξr
...0. . .0

ò[

ζ̂1, . . . , ζ̂r , ζ̂r+1, . . . , ζ̂n

]′
= a′iξ1ζ̂1+ . . .+a′iξr ζ̂r
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i.e. the estimable functions are all formed from the firstr of the ζ̂i and are all of the form

ψ̂i =
r∑

1

k j ζ̂ j (1)

for some constantsk1, . . . ,kr .
This important result is quite general and basically statesthat anything that can be estimated
can be derived fromy through the column vectors of theX-matrix.
On the other hand it is also known thatXβ̂ is the projection ofy onto the space spanned by
ξ1, . . . ,ξr and therefore the residual,y−Xβ̂ is in the span ofξr+1, . . . ,ξn and in fact

||y−Xβ̂||2 =
n∑

j=r+1

ζ̂2
j (2)

All the results in the theorem follow easily from (1) and (2).

1.2 Confidence ellipsoids

Pβ
î

(ψ̂−ψ)′B−1(ψ̂−ψ)≤ qs2Fq,n−r,1−α
ó

= 1−α

1.2.1 Details

Theorem 1.2. Under the above assumptions and definitions,

(ψ̂−ψ)′B−1(ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
∼ Fq,n−r

Noting that the denominator is the usual estimator,s2 of σ2, it follows that the following
probability statement holds and can be used to obtain a confidence ellipsoid forψ.

Pβ
î

(ψ̂−ψ)′B−1(ψ̂−ψ)≤ qs2Fq,n−r,1−α
ó

= 1−α

These intervals are very general and lead to several important special cases.

1.2.2 Handout

It is of interest to derive confidence regions,R(y)⊆ R
n such that

Pβ [ψ ∈ R(y)] = 1−α ∀β ∈ R
p.

Assume (without loss of generality) thatrank(C) = q and note thatq≤ p.
Now, ψ = Cβ ∈R

q and the estimates can be writtenψ̂ = Ay for an appropriate choice ofA
soEψ̂ = ψ andVψ̂ = σ2B with B = AA ′. Next note that

Cβ = ψ = Eψ̂ = AXβ ∀β

so thatC=AX and henceq= rank(C)= rank(AX)≤ rank(A)≤qwhere the last inequality
follows from A being aq×n matrix. But this implies thatrank(A) = q and it is a know
result from linear algebra thatrank(B) = rank(A). SinceB is aq×q matrix, it follows that
B is nonsingular.
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Hence
ψ̂ ∼ n

Ä

ψ,σ2B
ä

.

Now, for anyν-dimensional multivariate normal random vectorZ with variance-covariance
matrixΣZ and mean vectorµZ , it will be considered known that

(Z−µZ)
′Σ−1

Z (Z−µZ)∼ χ2
ν.

This result easily follows from decomposingΣ−1
Z into LL ′ whereL is a lower triangular

matrix and definingU = L (Z−µZ). Then the components ofU will be i.i.d. n(0,1).
It is therefore seen that

(ψ̂−ψ)′
Ä

σ2B
ä−1

(ψ̂−ψ)∼ χ2
q. (3)

From above we know that this is independent of||y−Xβ̂||2
σ2 ∼ χ2

n−r
from which we obtain the above theorem.

1.3 Confidence interval for a single estimable function

For a singleψ = c′βa′y,
σ̂2

ψ̂ = a′as2

and
A confidence interval forψ: can be based on

(ψ̂−ψ)2 ≤ a′as2F1,n−r,1−α

or on

P
[

ψ ∈
[

ψ̂− tn−r,1−α/2

√
a′as, ψ̂+ tn−r,1−α/2

√
a′as

]]

= 1−α

1.3.1 Details

Consider a single (q= 1) confidence interval for a general estimable function. Write ψ =
c′β and note thatrank(c) = 1 if c 6= 0. Our estimator forψ is ψ̂ = c′β̂ and can be written
ψ = a′y for an appropriatea.
It follows that the variance of̂ψ is

σ̂2
ψ̂ = a′as2

and a confidence interval forψ can be based on

(ψ̂−ψ)2 ≤ a′as2F1,n−r,1−α

or on the following corresponding probability statement:

P
[

ψ ∈
[

ψ̂− tn−r,1−α/2

√
a′as, ψ̂+ tn−r,1−α/2

√
a′as

]]

= 1−α

1.3.2 Examples

When it comes to computing a confidence interval for a single estimable function, we have
seen that we can simply compute the values using an interval of the form

[

ψ̂− tn−r,1−α/2

√
a′as, ψ̂+ tn−r,1−α/2

√
a′as

]

.

There are a few tricks to this.
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First of all, sincea′y= c′β, the variance can be obtained either fromV[ψ̂] = a′aσ as is done
above, or by using the alternative formulation

V[β] = Σβ̂ = σ2
Ä

X′X
ä−1

which gives

V[ψ̂] = σ2c′
Ä

X′X
ä−1

c

and the corresponding confidence interval forψ =:
ï

c′β̂− tn−r,1−α/2

√

c′ (X′X)−1cs,c′β̂+ tn−r,1−α/2

√

c′ (X′X)−1cs
ò

.

In many cases it is trivial to computeV[ψ̂] since the estimates are classical and well known.
For example there is no need to complicate the issue when looking at a contrast of the form

ȳ1.−2ȳ2.+ ȳ3.

in the one-way layout with equal sample sizesJ for eachi. Here we see trivially that
the variance of̂ψ is simplyσ2(4/J) and the confidence interval becomes correspondingly
trivial to compute.

1.4 Testing hypotheses for multiple estimable functions

H0 : ψ1 = ψ2 = . . .= ψq = 0 vsHa : notH0

Reject H0 if
ψ̂′B−1ψ̂ > qs2Fq,n−r,1−α

1.4.1 Details

As another example, consider testing the hypothesis that several (linearly independent)
estimable functions are zero, i.e. test

H0 : ψ1 = ψ2 = . . .= ψq = 0 vsHa : not H0

The simplest method to test this hypothesis is to rejectH0 if ψ is not in the confidence set,
i.e.: Reject H0 if

ψ̂′B−1ψ̂ > qs2Fq,n−r,1−α

1.5 Multiple comparisons

1.5.1 Details

The confidence ellipsoids are of course multiple comparisons in the sense that they provide
information about the entire vector of estimable functionsunder consideration. However it
is usually of greater interest to draw conclusions on the individual estimable functions, but
the inference should be simultaneous. To this end, the confidence ellipsoids are used as a
basis and the intervals are simply deduced from the ellipsoids as follows.
Theorem:

P
î

ψ̂i −
»

qFq,n−r,1−ασ̂ψ̂i < ψi < ψ̂i +
»

qFq,n−r,1−ασ̂ψ̂i i = 1, . . . ,q
ó

≥ 1−α

Corollary: Let L := {ψ =
∑q

1hiψi : h1, . . . ,hq ∈ R}. Then

P
î

ψ̂−
»

qFq,n−r,1−ασ̂ψ̂ < ψi < ψ̂i +
»

qFq,n−r,1−ασ̂ψ̂ ∀ψ ∈ L
ó

= 1−α
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1.5.2 Handout

Several interesting, useful and important methods can be derived from these confidence
sets. These sets are attributed to Scheffe and are called theS-sets or S-methods of obtaining
simultaneous confidence statements.

1.6 Data-snooping

Can use the S-method for data-snooping.
Normally use a largeα
Better than LSD: Know explicitly the error rate

1.6.1 Details

Suppose we are interested insearching for significanceor data-snooping. Normally this
is not permitted since usually the hypotheses to be tested need to be specified in advance.
However, the confidence sets discussed in this tutorial are all simultaneous and can th-
erefore be searched in arbitrary detail.
SupposeΨ is a set of estimable functions, e.g. a set spanned byq estimable functions:
Ψ =

¶

ψ = k1ψ1+ . . .+kqψq
©

whereψi = c′iβ andc1, . . . ,cn are linearly independent. Then
from the earlier results we can assert

P
[

ψ̂−
»

qF∗σ̂ψ̂ ≤ ψ ≤ ψ̂+
»

qF∗σ̂ψ̂ ∀ψ ∈ Ψ
]

= 1−α

and we are therefore allowed tosearchamong all estimable functions within the set to find
significant effects.
The “trick” here lies in the cutoff-point,qF∗ = qFq,n−r,1−α, which takes into account the
dimension of the space.

2 Special cases of Scheffes confidence sets: Applications
to simple linear regression

2.1 The setup

2.1.1 Handout

We will assume the model to beyi ∼ n(α+βxi,σ2), independent.
In this case the OLS estimators,α̂, β̂ are well known linear combinations of they-values.
They can be written as

β̂ =

(

α̂
β̂

)

=

Ç

a1y
a2y

å

= Ay

for an appropriate choice ofa1,a2 andA.
The variance-covariance matrix has been derived elsewhereasσ2AA ′ = σ2(X′X)−1.
Sinceσ2 can be estimated withs2 = MSE, the variances and covariances ofα̂ and β̂ can
easily be estimated.

2.2 The intercept

8



2.2.1 Handout

The intercept alone is a simple linear function of the full parameter vector, i.e.

ψ = α = (1,0)
Ç

α
β

å

.

the corresponding estimate is

ψ̂ = α̂ = (1,0)

(

α̂
β̂

)

= a1y.

The variance of this particular estimable function is well known

σ̂2
ψ̂ = . . .

Since this is a single estimable function we haveq= 1. If thex-values are not all the same
thenX has full rank sor = p= 2 and we obtain
...
the same CI as before.

2.3 The slope

2.3.1 Handout

The slope alone is a simple linear function of the full parameter vector, i.e.

ψ = β = (0,1)
Ç

α
β

å

.

the corresponding estimate is

ψ̂ = β̂ = (0,1)

(

α̂
β̂

)

= a2y.

The variance of this particular estimable function is well known

σ̂2
ψ̂ = . . .

Since this is a single estimable function we haveq= 1. If thex-values are not all the same
thenX has full rank sor = p= 2 and we obtain
...
the same CI as before.

2.4 A simultaneous confidence set for the slope and intercept

2.4.1 Handout

Recall that the vectorψ = (α̂, β̂)′ is estimable in simple linear regression if thex-values
are not all the same. A simultaneous confidence set forψ is based on the point estimate
ψ = (α̂, β̂)′ and the corresponding covariance matrix and the earlier result

(ψ̂−ψ)′B−1 (ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
∼ Fq,n−r (4)

9



where in this caseB = X′X.
Equation 4 provides a confidence set,

{

ψ :
(ψ̂−ψ)′B−1(ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
≤ Fq,n−r,1−α

}

, (5)

which describes an ellipse in the(α,β)-plane.
This confidence set can be used to obtain simultaneous bound on the two parameters.

2.5 Confidence band for the regression line

2.5.1 Handout

The simultaneous confidence set for the two parameters in SLRcan be used to obtain a
confidence band for the regression line.
The confidence band for the regression line is a simultaneousstatement on all points in the
set

C = {α+βx : x∈ R}
Now, the variance of the estimatesα̂+ β̂x is well known and it is also clear that the above
confidence set is a subset of

L = {ψ = c1α+c2β : c1,c2 ∈ R} .

This is the set of all linear combinations of the two-dimensional parameter vector(α,β)′,
which is an estimable function,

Ψ =

Ç

ψ1

ψ2

å

=

Ç

α
β

å

.

The above set,L , consists of all linear combinations ofψ1 andψ2 and can be written as

L =






ψ =

2∑

h=1

hiψi : h1,h2 ∈ R






.

This demonstrates thatL is spanned by two estimable functions,ψ1 =α andψ2 = β andL ,
as in the corollary earlier. It therefore has dimensionq= 2 and one can use a corresponding
F-cutoff to obtain simultaneous confidence bounds for the entire regression line.
To derive the actual formulae, note that a generic point on the regression line,ψ = ψx =
α+βx (an element ofL) is predicted withψ̂ = α̂+ β̂x, which has variance

σ2
ψ̂ =V

[

(1,x)

(

α̂
β̂

)]

= σ2(1,x)
Ä

X′X
ä−1
Ç

1
x

å

and as usual, this variance is estimated using

σ̂2
ψ̂ = s2(1,x)

Ä

X′X
ä−1
Ç

1
x

å

.

The confidence band for the entire regression line thus becomes

α̂+ β̂x±s

Ã

2F2,n−2,1−α(1,x)(X′X)−1
Ç

1
x

å

.

Note the several "tricks"here, where we know the appropriate variances and can use them
directly.
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3 The Bonferroni approach to multipe comparisons

3.1 The multiplicity issue

Consider testingk independent hypotheses, each at levelα.
Then, since

P[conclusion i is incorrect] = α

we obtain
P[conclusion i is correct] = 1−α,

and therefore

P[an error occurs] =1−P[all correct] =1−Πk
i=1P[conclusion i is correct] =1−(1−α)k

3.2 LSD

Consider just doing a whole bunch of t-tests
This amounts to saying "There is something significant goingon if there is anything
significant seen"
This is the method ofLeast Significant Differenceand has a very large potential error
rate

3.3 Bonferroni confidence intervals

Bonferroni intervals:
Simple
Always work
Conservative

3.3.1 Details

In general, consider two events,A andB having the same probability,P[A] = P[B] = α′.
In the current situation,A is the event “confidence interval 1 is wrong” andB is the event
“confidence interval 2 is wrong”.
The probability of both confidence intervals being correct is

P[Ac∩Bc] = P[(A∪B)c]

= 1−P[A∪B]

= 1− (P[A]+P[B]−P[A∩B])

≥ 1−P[A]−P[B]

= 1−2α′

It follows that if two confidence statements are made, each with error rateα′ = α/2, or
confidence 100(1−α/2)%, then the overall confidence is at least 100(1−α)%, i.e. the
probability of any error is reduced toα.
ReferencesISBN: 0412982811
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4 Tukeys confidence intervals

4.1 Pairwise multiple comparisons

Tukey’s method for pairwise comparisons works!

4.1.1 Details

When all pairwise comparisons are of equal importance, the interest is in being able to
make statements of the form

P[|X̄i − X̄j | ≤ di j for all i, j]≥ 1−α

Usually,di j is taken proportional to the common standard deviation,sand written either as
qs/

√
n or ws/

»

1/ni +1/mj in the case of unequal sample sizes.
The function TukeyHSD in R and the procedure “proc glm” in SAS(with the Tukey option)
can be used for general, and valid, pairwise multiple comparisons.

4.2 Tukeys confidence intervals

4.2.1 Details

Tukeys confidence intervals

5 Simultaneous confidence intervals for all contrasts

5.1 Scheffes method

6 Comparing confidence sets

6.1 Scheffe, Tukey and Bonferroni

7 Applications

7.1 Background

This lecture is a placeholder for a collection of examples and applications of the theory

7.2 One regression line or two?

are two regression lines really the same?
two level factor...
the question generates 4 models
what comparisons can be made?

12



7.3 the lack of fit test

taken from Neter et al
the approach reverses the usual logic (do I need a line) to "isa line enough"

7.4 Smoothers

consider the cubic spline...
can be a linear model
can be used to test whether a line is appropriate
if the knots are chosen based on data then we have a GAM, not theusual linear model
other splines are normally used, but this is a simple introduction

13
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