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1 Tests of hypotheses including multiple comparisons in
the linear model

1.1 On distributions

~ 2
Y ~nX B 0" )
nx1 NXP px1 nxn

Theorem: § ~ n(y,Zg), ly=XPII* XB” ~X2_, and these two quantities are independent

1.1.1 Details
-~ 2
Let\y/ n(\/X/ B,o \I/)

nx 1 NXP px1 nxn
and assumeank(X) =r < p.
The interest will be in obtaining some joint confidence staat on a vecto = (Yy,...,Yq),
where each; = ¢/ is an estimable function. Writ = ({1, ..., §iy) for the least squares
estimates withf; = ¢ B whereB is any LS estimate and one can therefore also write ajy
for uniquea; € sp(X).
The above can be written more conciselywas: C[3 using obvious definitions. It follows
that A

{ = Ay = CB ~ n(CB,0%AA)

and the variance-covariance matrix of the estimates witldrsoted
VI[Q] =2y

which leads to the following theorem.

Theorem 1.1. { ~ n(Y,Zg), W%B”Z ~ X2_, and these two quantities are independgnt.

1.1.2 Handout

Proof: Let{&1,...,&n} be an orthonormal basis f&" such that{¢,...,&; } form a basis

for sp(X) and Ietzl, . ,Zn be the coordinates of in this basis, so tha&i =¢&-y. Also
dgfine{i = E[Zi]. Itis established thzft are independent, Gaussian with common variance
o-.

Write z = (21,...,2n)/, P=[&1,...,& and note thaP’ = [§;...&,]. It is then clear that
the rows ofP’ are independent @ is invertible (as isP). Clearly,PP =1 soP'P =1.
Further,z = Py and thereforgy = P'z.

As elsewhere, write the LS estimates of the estimable fanstin the form}; = aly where

a €V =sp{&1,...,&} so thatd; = a/P’z. It follows thataP' = {a@l ..... :afn } and of
these various inner productgé; = 0 if j > r (sincea; € V) from which it is seen that

aP'z=|4a&;:...:8&0.. 0} [Zl, Zr,2r+1,---72n},=afﬁlzl-l-----l-ai'ErZr



i.e. the estimable functions are all formed from the firsf thezi and are all of the form
r ~
Bi = ki 1)
1

for some constants, ..., k.

This important result is quite general and basically stitasanything that can be estimated
can be derived frong through the column vectors of the-matrix.

On the other hand it is also known théB is the projection o onto the space spanned by
&1,...,& and therefore the residugl— X is in the span o€, 1,...,&, and in fact

ly—XBlI2= Y & )

j=r+1
All the results in the theorem follow easily frofl (1) andl (2).

1.2 Confidence ellipsoids

P [(ll' - qJ>IB_1 -y < q52Fq,n—r,1—cx} =1-a

1.2.1 Details

Theorem 1.2. Under the above assumptions and definitions,

@-wB W@-w/q _
ly—XBl[2/(n—r) "

n—r

Noting that the denominator is the usual estimas®pf 62, it follows that the following
probability statement holds and can be used to obtain a endelellipsoid forp.

Ps [(fb — ) B~ ((URU) qSZFq,n—r,l—a} =1-a

These intervals are very general and lead to several impg@pecial cases.

1.2.2 Handout

It is of interest to derive confidence regiofgy) C R" such that
PBWeRy)]=1-a VBeRP.

Assume (without loss of generality) thank(C) = g and note that] < p.
Now, ) = CB € RY and the estimates can be writtgn= Ay for an appropriate choice &f
SOE( = g andV{ = 6B with B = AA’. Next note that

CB=Y=E{=AXB VP

so thatC = AX and hence =rank(C) =rank(AX) <rank(A) < gwhere the last inequality
follows from A being aq x n matrix. But this implies thatank(A) = g and it is a know
result from linear algebra thaank(B) = rank(A). SinceB is aq x g matrix, it follows that
B is nonsingular.



Hence

{~n(y,0°B).
Now, for anyv-dimensional multivariate normal random vecfowith variance-covariance
matrix 2z and mean vectqu,, it will be considered known that

(Z—1p) 278 Z — ) ~ X5

This result easily follows from decompositig1 into LL" wherelL is a lower triangular
matrix and definind) = L (Z — ). Then the components &f will be i.i.d. n(0,1).
It is therefore seen that

(@—w) (a?B) " (@—w) ~ X2 3)

Q12
From above we know that this is independent O)EB” ~ X2,
from which we obtain the above theorem.

1.3 Confidence interval for a single estimable function

For a singlap = ¢Ba'y,
63 = das®

and
A confidence interval fog: can be based on

UR qJ)Z < a/"7152':1,n—r,1—o(

oron

P {QJ € [ll' _tnfr,lfa/Z\/aTa& ll'+tn*r,1*0‘/2\/£s}} =1-a

1.3.1 Details

Consider a singleg(= 1) confidence interval for a general estimable function. t8\pi =
¢ and note thatank(c) = 1 if ¢ # 0. Our estimator forp is ) = ¢’ and can be written
Y = a'y for an appropriate.
It follows that the variance ap is
63, = das’
and a confidence interval fgr can be based on
(G- qJ)Z < a/astl,n—r,l—O(
or on the following corresponding probability statement:
P [ljJ S [¢ - tnfr,lfO(/Z vaas, ¢ ‘i‘tnfr,lfa/Z a,aSH =1-a

1.3.2 Examples

When it comes to computing a confidence interval for a singlierable function, we have
seen that we can simply compute the values using an intefrtta¢ dorm

{$ _tnfr,lfa/z vaas, $+tnfr,1fa/2 a/as} .

There are a few tricks to this.



First of all, sincea’y = ¢, the variance can be obtained either fréfij)] = a'ac as is done
above, or by using the alternative formulation

VIB =25 =0%(X'X) "

which gives
V()] = o’ (X'X) e
and the corresponding confidence intervaljos:

CIB - tn—r71—c>(/2 V c (X/X)ilcsa C,B + tn—r,l—t::t/Z V c (X/X)il CS} :

In many cases it is trivial to computg (] since the estimates are classical and well known.
For example there is no need to complicate the issue wheimigak a contrast of the form

Y1 — 22 43,
in the one-way layout with equal sample size$or eachi. Here we see trivially that

the variance ofj is simply6?(4/J) and the confidence interval becomes correspondingly
trivial to compute.

1.4 Testing hypotheses for multiple estimable functions

Ho:Y1=yo=...=Ygq=0vVsHy: notHp
RejectHp if

':DIB_lll' > q52Fq,n—r,1—a

1.4.1 Details

As another example, consider testing the hypothesis thatrae(linearly independent)
estimable functions are zero, i.e. test

Ho:Y1=yo=...=Ygq=0vVsH;: notHp

The simplest method to test this hypothesis is to rdjiaf  is not in the confidence set,
i.e.: RejectHp if
q—'/Bil'l’ > qSZFq,n—r,l—a

1.5 Multiple comparisons
1.5.1 Details

The confidence ellipsoids are of course multiple compassothe sense that they provide
information about the entire vector of estimable functiander consideration. However it
is usually of greater interest to draw conclusions on the/iddal estimable functions, but
the inference should be simultaneous. To this end, the aand&lellipsoids are used as a
basis and the intervals are simply deduced from the ellgssas follows.

Theorem:

P [qJI - qu,n—l',l—GaLTJi < l-IJi < llli + qu,n—r,1—06¢Ji i = 1, .. ,q] > 1-a
Corollary: LetL:={¢=Y>ThiWi:hy,...,hg € R}. Then

P [lll — qu,n—l’,l—GaLTJ <Y < Qi+ qu,n—l',l—GaLD MRS L] =1-a
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1.5.2 Handout

Several interesting, useful and important methods can beedefrom these confidence
sets. These sets are attributed to Scheffe and are call&ddées or S-methods of obtaining
simultaneous confidence statements.

1.6 Data-snooping

Can use the S-method for data-snooping.
Normally use a large
Better than LSD: Know explicitly the error rate

1.6.1 Details

Suppose we are interestedsearching for significanceor data-snooping Normally this

is not permitted since usually the hypotheses to be tested toebe specified in advance.
However, the confidence sets discussed in this tutorial lusnaultaneous and can th-
erefore be searched in arbitrary detail.

Suppose¥ is a set of estimable functions, e.g. a set spanned bstimable functions:
W= {P=kiP1+...+kqg} Wherey; = c/Bandcs,...,c, are linearly independent. Then
from the earlier results we can assert

P[G—aF6y <Y< P+ /gFy YWweW =1-a

and we are therefore allowed$earchamong all estimable functions within the set to find
significant effects.

The “trick” here lies in the cutoff-pointgF* = gFyn—r,1—a, Which takes into account the
dimension of the space.

2 Special cases of Scheffes confidence sets: Applications
to simple linear regression

2.1 The setup
[

2.1.1 Handout

We will assume the model to lyg~ n(a + Bxi,a?), independent.
In this case the OLS estimatois, 3 are well known linear combinations of tlyevalues.

They can be written as
~ a a1y
g ~ = = A
P ( B ) ( agy ) Y

for an appropriate choice af,a, andA.

The variance-covariance matrix has been derived elsevase®A’ = 62 (X'X) i
Sinceo? can be estimated wits? = MSE, the variances and covarianceséoéndp can
easily be estimated.

-1

2.2 The intercept

(|



2.2.1 Handout

The intercept alone is a simple linear function of the fuligraeter vector, i.e.

w:a:(1,0)<g).

the corresponding estimate is

$=ﬁ=@®<g)=my

The variance of this particular estimable function is welbivn

&=

Since this is a single estimable function we hgve 1. If the x-values are not all the same
thenX has full rank sa = p = 2 and we obtain

the same CI as before.

2.3 The slope

(|

2.3.1 Handout

The slope alone is a simple linear function of the full parsmneector, i.e.

w=3=@b<g)-

the corresponding estimate is
b=p-01(§) -
The variance of this particular estimable function is welbtvn
&%= ...

Since this is a single estimable function we hgve 1. If the x-values are not all the same
thenX has full rank sa = p = 2 and we obtain

the same CI as before.

2.4 A simultaneous confidence set for the slope and intercept
2.4.1 Handout

Recall that the vectoy = (d,ﬁ)’ is estimable in simple linear regression if thewalues
are not all the same. A simultaneous confidence segfr based on the point estimate
Y = (a,B) and the corresponding covariance matrix and the earlieitres

G-wB W-w/g_
ly—XB|[2/(n—r) "

- 4)
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where in this cas8 = X'X.
EquatiorL4 provides a confidence set,

(@-wBrO-w/a__ }
{"" Iy XBlE/(n_r) — e

which describes an ellipse in tiie, 3)-plane.
This confidence set can be used to obtain simultaneous bautie @wo parameters.

()

2.5 Confidence band for the regression line
2.5.1 Handout

The simultaneous confidence set for the two parameters in&loRbe used to obtain a
confidence band for the regression line.

The confidence band for the regression line is a simultangtatsment on all points in the
set

C={a+px:xeR}

Now, the variance of the estimatést fﬂx is well known and it is also clear that the above
confidence set is a subset of

L={P=c1a+cB:c1,c € R}.

This is the set of all linear combinations of the two-dimensil parameter vectdo, 3)’,
which is an estimable function,

v )= (%)
Y= = .
( P2 B
The above set, consists of all linear combinations ¢ andy; and can be written as
2
L= {lszZhil]Ji Zhl,hzéR}.
h=1

This demonstrates thdtis spanned by two estimable functiogg,= a andy2 =3 and L,

as in the corollary earlier. It therefore has dimengjen2 and one can use a corresponding
F-cutoff to obtain simultaneous confidence bounds for theeerggression line.

To derive the actual formulae, note that a generic point enréigression line = Yy =

o + Bx (an element of’) is predicted with] = & + Bx, which has variance

ag =V [(1,x) ( % ) — (1) (X’X)1< )1( )

and as usual, this variance is estimated using

65 = (1) (x’x)1< )1( ) .

The confidence band for the entire regression line thus besom

&+ Bx+ s\/ZFz,nZla(l,x) (X’X)_1< 1 )

X

Note the several "tricks"here, where we know the appropwatiances and can use them
directly.
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3 The Bonferroni approach to multipe comparisons

3.1 The multiplicity issue

Consider testingg independent hypotheses, each at level
Then, since
P[conclusion i is incorre¢t= a

we obtain
P[conclusioniis corre¢t=1—aq,

and therefore

Plan error occufis= 1—P[all correct = 1—TK_;P[conclusion i is corregt=1—(1—a)X

3.2 LSD

Consider just doing a whole bunch of t-tests

This amounts to saying "There is something significant gaingf there is anything
significant seen"

This is the method off east Significant Differenceand has a very large potential err
rate

3.3 Bonferroni confidence intervals

Bonferroni intervals:
Simple

Always work
Conservative

3.3.1 Details

In general, consider two event&,and B having the same probabiliti2[A] = P[B] = o’.

or

In the current situatiom is the event “confidence interval 1 is wrong” aBds the event

“confidence interval 2 is wrong”.
The probability of both confidence intervals being corrsct i

P[A°NBC] P[(AUB)“|

— 1-P[AUB]

= 1—(P[A]+P[B]—P[ANB])
1-P[A] —P[B]

= 1-2d

v

It follows that if two confidence statements are made, each @iror ratea’ = o /2, or
confidence 10 — a/2)%, then the overall confidence is at least (D0 a)%, i.e. the

probability of any error is reduced to
ReferencedSBN: 0412982811
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4 Tukeys confidence intervals

4.1 Pairwise multiple comparisons

‘ Tukey’s method for pairwise comparisons works!

4.1.1 Detalils

When all pairwise comparisons are of equal importance, ritexest is in being able to
make statements of the form

P[|X — X;| < djj foralli,j] >1—a

Usually,d;; is taken proportional to the common standard devias@md written either as

gs/+/norws/,/1/n+1/m; in the case of unequal sample sizes.
The function TukeyHSD in R and the procedure “proc gim” in S@&h the Tukey option)

can be used for general, and valid, pairwise multiple compas.

4.2 Tukeys confidence intervals

(.

4.2.1 Details

Tukeys confidence intervals

5 Simultaneous confidence intervals for all contrasts
5.1 Scheffes method

]

6 Comparing confidence sets

6.1 Scheffe, Tukey and Bonferroni

]

7 Applications

7.1 Background

‘ This lecture is a placeholder for a collection of exampled @pplications of the theor*

7.2 One regression line or two?

are two regression lines really the same?
two level factor...

the question generates 4 models

what comparisons can be made?

12



7.3 the lack of fit test

taken from Neter et al
the approach reverses the usual logic (do | need a line) ®liie enough”

7.4 Smoothers

consider the cubic spline...

can be a linear model

can be used to test whether a line is appropriate

if the knots are chosen based on data then we have a GAM, nostia linear model
other splines are normally used, but this is a simple intctidn

13



	Tests of hypotheses including multiple comparisons in the linear model
	On distributions
	Details
	Handout

	Confidence ellipsoids
	Details
	Handout

	Confidence interval for a single estimable function
	Details
	Examples

	Testing hypotheses for multiple estimable functions
	Details

	Multiple comparisons
	Details
	Handout

	Data-snooping
	Details


	Special cases of Scheffes confidence sets: Applications to simple linear regression
	The setup
	Handout

	The intercept
	Handout

	The slope
	Handout

	A simultaneous confidence set for the slope and intercept
	Handout

	Confidence band for the regression line
	Handout


	The Bonferroni approach to multipe comparisons
	The multiplicity issue
	LSD
	Bonferroni confidence intervals
	Details


	Tukeys confidence intervals
	Pairwise multiple comparisons
	Details

	Tukeys confidence intervals
	Details


	Simultaneous confidence intervals for all contrasts
	Scheffes method

	Comparing confidence sets
	Scheffe, Tukey and Bonferroni

	Applications
	Background
	One regression line or two?
	the lack of fit test
	Smoothers


