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1 Linear hypotheses in multiple regression

1.1 Null hypotheses, matrices and geometry

The null hypothesis, Hi : β = 0 in simple linear regression is a question of whether we

can drop the variable x in E[yi] = α+βxi, i.e. whether we can drop a column simplify X

to

Z =






1
...

1




 .

or is the projection of y onto span(Z) is “too much” farther away from y than the proj-

ection onto span(X).
General null hypotheses are almost always concerned with how one can “reduce” or

simplify the model, in this case usually whether one can reduce the number of columns

in X or by some other means reduce the number of coefficients in the model.

1.1.1 Details

Tests of hypotheses in linear models can be considered geometrically. The hypothesis

Hi : β = 0 in simple linear regression is the question of whether the matrix

Z =






1
...

1






can be used in place of X, i.e. whether the projection of y onto span(Z) is too much farther

away from y than the projection onto span(X).

1.1.2 Examples

The null hypothesis, Hi : β = 0 in simple linear regression is a question of whether we can

use Z =






1
...

1




 instead of X.

In terms of testing, we want to see whether the projection of y onto span(Z) is “too much”

farther away from y than the projection onto span(X).

1.2 Null hypothesis as matrices

Have X
︸︷︷︸

n×p

and Z
︸︷︷︸

n×q

s.t. span(Z)⊆ span(X).

Can estimate models

y = Xβ+ e1

y = Zγ+ e2

Will derive test for

H0 : Xβ = Zγ
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1.2.1 Details

Assume that X
︸︷︷︸

n×p

and Z
︸︷︷︸

n×q

are matrices such that span(Z)⊆ span(X).

We can estimate coefficients in the model

y = Xβ+ e

and in the reduced model

y = Zγ+ e

We will derive tests for the general null hypothesis

H0 : Xβ = Zγ

which is typically some hypothesis stating that some of the coefficients in the β-vector are

zero or otherwise restricted.

1.2.2 Examples

Example 1.1. In simple linear regression, yi = α+βxi + ei, the most common test is for

β = 0.

1.3 Geometric comparisons of models

Testing linear hypotheses in linear

models corresponds to projecting onto subspaces.

1.3.1 Details

Relationships between sums of squares in two linear models is best viewed geometrically.

Starting with a base model as before, y = Xβ+e, there is a need to investigate whether this

model can be simplified in some manner. A simpler model can be denoted by y = Zγ+ e

where Z is a matrix, typically with fewer columns than X, and the column vectors of Z

span a subspace of that spanned by X.

1.3.2 Examples
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Example 1.2. A typical hypothesis test would start with a basic (full) model of the form

yi = α+βxi + ei, wanting to test the null hypothesis H0 : β = 0.

Define the matrix

X =













1 x1

1 x2

1 x3

· ·
· ·
· ·
1 xn













, (1)

so the model in matrix notation becomes y = Xβ+ e.

The null hypothesis can be written as y = Zγ+ e, where

Z =













1

1

1

·
·
·
1













. (2)

1.4 Bases for the span of X

Orthonormal basis, {u1, . . . ,un} for Rn:

Using Gram-Schmidt, first generate u1, . . . ,uq which span sp{Z}, the next vectors,

uq+1, . . . ,ur are chosen so that u1, . . . ,ur span sp{X}, with rank{X}= r, and the rest,

ur+1, . . . ,un are chosen so that the entire set, u1, . . . ,un spans Rn.

Zγ̂ = ζ̂1u1 + . . . ζ̂quq

Xβ̂ = ζ̂1u1 + . . . ζ̂quq + ζ̂q+1uq+1 + . . . ζ̂rur

y = ζ̂1u1 + . . . ζ̂quq + ζ̂q+1uq+1 + . . . ζ̂rur + ζ̂r+1ur+1 + . . . ζ̂nun

1.4.1 Details

The probability distributions can best be viewed by defining a new orthonormal basis,

{u1, . . . ,un} for Rn. This basis is defined by first generating a set of r vectors u1, . . . ,uq

which span the space defined by the null hypothesis, sp{Z}, where rank{Z}= q, subsequ-

ently the next vectors, uq+1, . . . ,ur are chosen so as to span the remainder of sp{X}, where

rank{X}= r, and therefore sp{X}= sp{u1, . . . ,ur}, and the rest, ur+1, . . . ,un are chosen

so that the entire set, u1, . . . ,un spans Rn. This is obviously always possible using the met-

hod of Gram-Schmidt.
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This gives the following sequence of spaces and spans:

sp{Z} = sp{u1, . . . ,uq}
sp{X} = sp{u1, . . . ,uq,uq+1, . . . ,ur}

Rn = sp{u1, . . . ,uq,uq+1, . . . ,ur,ur+1, . . .un}

One can then write each of Zγ̂, Xβ̂, y in terms of the new basis as follows:

Zγ̂ = ζ̂1u1 + . . . ζ̂quq

Xβ̂ = ζ̂1u1 + . . . ζ̂quq + ζ̂q+1uq+1 + . . . ζ̂rur

y = ζ̂1u1 + . . . ζ̂quq + ζ̂q+1uq+1 + . . . ζ̂rur + ζ̂r+1ur+1 + . . . ζ̂nun

where it is left to the reader to see that the ζ̂i-coefficients are indeed the same.

1.5 Expected values of coefficients

For i = r+1, . . . ,n we obtain

E
î

ζ̂i

ó

= 0

If H0 : Xβ = Zγ is true then for i = q+1, . . . ,r we obtain

E
î

ζ̂i

ó

= ui · (Zγ) = 0

1.5.1 Details

The expected values of the coefficients, ζ̂i depend on which space they correspond to.

Define

ζi = E
î

ζ̂i

ó

and by linearity we obtain

ζi = E [ui ·y] = ui · (Xβ) .

Now note that we have defined the basis vectors in three sets. The first is such that they

span the same space as the columns of Z. The second set complements the first to span the

X and the last set complements the set to span all of Rn. The basis vectors are of course all

orthogonal and each basis vector is orthogonal to all vectors in spaces spanned by preced-

ing vectors.

For i = r+1, . . . ,n we obtain

E
î

ζ̂i

ó

= ui · (Xβ) = 0

since Xβ is trivially in the space spanned by the column vectors of X and is therefore a

linear combination of u1, . . . ,ur and ui is orthogonal to all of these.

If the null hypothesis that E[Y] can be written as H0 : Xβ = Zγ is true then for i =
q+1, . . . ,r we obtain

E
î

ζ̂i

ó

= ui · (Zγ) = 0

but this only holds under the null hypothesis.
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1.6 Sums of squares and norms

SSE(F) = ||y−Xβ̂||2 =
n

∑
i=r+1

ζ̂2
i

SSE(F)−SSE(R) = ||Zγ̂−Xβ̂||2 =
r

∑
i=q+1

ζ̂2
i

SSE(R) = ||y−Zγ̂||2 =
n

∑
i=q+1

ζ̂2
i

1.6.1 Details

It is now quite easy to see how to form sums of squared deviations based on the new

orthonormal basis, since each set of deviations corresponds to a specific portion of the

space.

SSE(F) = ||y−Xβ̂||2 =
n

∑
i=r+1

ζ̂2
i

SSE(F)−SSE(R) = ||Zγ̂−Xβ̂||2 =
r

∑
i=q+1

ζ̂2
i

SSE(R) = ||y−Zγ̂||2 =
n

∑
i=q+1

ζ̂2
i

Since each ζ̂i is a coordinate in an orthonormal basis, this is formed as an inner product

with the corresponding basis vector, i.e. ζ̂i = y ·ui.

1.7 Some probability distributions

1.7.1 Details

Suppose we have two matrices, X and Z which satisfy rank(Z) = q < p = rank(X) and

sp(Z)⊆ sp(X) (usually Z is n×q and X is n× p ).

Then H0 : E[Y] = Zγ is a reduction from the model E[Y] = Xβ.

Write F = full model and R = for the reduced model.

Then we have

1) y−Xβ̂ ⊥ Xβ̂−Zγ̂
2) ||y−Xβ̂||2 and ||Xβ̂−Zγ̂||2 are independent

3)
||y−Xβ̂||2

σ2 ∼ χ2
n−p if the model is correct

4)
||Xβ̂−Zγ̂||2

σ2 ∼ χ2
p−q if H0 is correct.

5) SSE(F) = ||y−Xβ̂||2
and

SSE(R)−SSE(F) = ||Xβ̂−Zγ̂||2
are independent.

6)
(SSE(R)−SSE(F))/(p−q)

SSE(F)/(n−p) ∼ Fp−q,n−p

Here Fν1,ν2
is the distribution of a ratio

F =
U/ν1

V/ν2
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of independent χ2-random variables, U ∼ χ2
ν1

, and V ∼ χ2
ν2

.

1.8 General F-tests in linear models

1.8.1 Details

In general one can compute the sum of squares from the full model, SSE(F) as above and

then compute the sum of squared deviations from the reduced model, SSE(R) = ||y−Zγ̂||2.

Denote the corresponding degrees of freedom by d f (F) and d f (R), and assume that both

matrices Z and X have full ranks, i.e. rank(X) = p and rank(Z) = r. Then d f (F) = n− p

and d f (R) = n− r.

The null hypothesis can then be tested by noting that

F =
(SSE(R)−SSE(F))/(p− r)

SSE(F)/(n− p)
(3)

is a realisation of a random variable from an F-distribution with p− r and n− p degrees of

freedom under H0.

References Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. 1996. App-

lied linear statistical models. McGraw-Hill, Boston. 1408pp. Copyright 2021, Gunnar

Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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2 Building a multiple regression model

2.1 Introduction

Have several independent variables

Want to select some into regression

Want to evaluate quality of resulting model

Want to improve into a final model

2.1.1 Details

Building multiple regression models includes several steps. It is, firstly, rarely pre-defined

what independent variables should be included in the model, so a method for selecting these

is needed. Having obtained an initial model one needs to evaluate not only the assumptions

of the model but also identify possible influential observations and possibly undertake other

diagnostics. Having obtained regression diagnostic, the model needs to be improved by

taking these into account.

2.2 Variable selection: Measuring quality

• R2

• AIC

• BIC

• SSE

• MSE

• P-values

2.2.1 Details

• R2

• AIC

• BIC

• SSE

• MSE

• P-values

2.2.2 Examples

Example 2.1. Use the ecosystem data set and select a single variable in a simple linear

regression to predict the growth of cod. Compare the various criteria.

10



2.3 Variable selection: Forward or backward

Model selection:

• All subset regression

• Forward stepwise regression

• Backwards stepwise regression

2.3.1 Details

Several methods exist to select a regression model.

All subset regression simply considers every possible combination of independent varia-

bles. Although this will indicate all possible “good” models and will certainly find the

“best” model (using any given criterion), this is often not feasible.

Backwards stepwise regression starts by taking all independent variables into a single

model and then dropping variables one at a time. The variable to be dropped is the one

giving the least increase in SSE. This approach is often preferred, but is not feasible if the

total number of variables are very large.

Forward stepwise regression selects a sequence of variables, at each stage deciding what

variable to add next. The addition is based on including the variable giving the largest

amount of (marginal) explained variation.

Forward stepwise regression is often augmented by allowing a variable to be dropped after

a variable has been added. Thus a sequence of insertions may make an earlier variable

redundant and thus dropped. Either version of forward regression is quite feasible but may

lead to an incorrect or bad model since important combinations of variables may not be

found.

Each approach thus has good and bad points.

2.3.2 Examples

Example 2.2. Use the ecosystem data set and conduct a forward stepwise regression to

predict the growth of cod. Compare the various criteria for model selection.

R commands: add1 repeatedly - followed by anova(fm.final,fm.full)

Example 2.3. Use the ecosystem data set and conduct a backwards stepwise regression

to predict the growth of cod. Compare the various criteria for model selection.

R commands: drop1 or summary - followed by anova(fm.final,fm.full)

11



2.4 Deleted residuals

Deleted residuals are based on the quantity

ti =
yi − ŷi(i)

syi−ŷi(i)

2.4.1 Handout

some formulas...

σ2
yi−ŷi(i)

=V
[
yi − ŷi(i)

]

ŷi(i) = xiβ̂(i)

β̂(i) =
Ä

X′
(i)X(i)

ä−1
X′
(i)y(i)

Ti =
yi − ŷi(i)

σ̂yi−ŷi(i)

y− ŷ(i) = y−Xβ̂(i)

β̂(i) =
Ä

X′
(i)X(i)

ä−1
X′
(i)y(i)

y− ŷ = y−Xβ̂ =
Ä

I−X
(
X′X

)−1
X′äy

||y(i)−X(i)β̂(i)||2/σ2 ∼ χ2
n−p−1

ei

(σ
√

1−hii)
∼ n(0,1)

References Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. 1996. Applied

linear statistical models. McGraw-Hill, Boston. 1408pp.

Belsey, D. A., Kuh, E. and Welsh, R. E. 1980. Regression diagnostics: Identifying in-

fluential data and sources of collinearity. John. Wiley and Sons, New York. 292pp.

Copyright 2021, Gunnar Stefansson
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3 Prediction in the linear model

3.1 Prediction and prediction uncertainty

A new observation: xh

The prediction: ŷh = ˆE [yh] = xhβ̂

The variance: σ2x′h (X
′X)−1

xh

Prediction uncertainty: V [yh − ŷh]

3.1.1 Details

A new observation: xh

The prediction: ŷh = ˆE [yh] = xhβ̂

The variance: σ2x′h (X
′X)−1

xh

Prediction uncertainty: V [yh − ŷh]

3.1.2 Examples

Example 3.1. Age and live weight of lambs. Project: Predict the weight (with

uncertainty) at a given day.

days weight

135 39

125 35

120 33

126 38

125 37

137 38

133 36

140 41

130 38

129 36

123 34

132 40

129 38

121 34

126 35

137 44

121 34

137 41

130 39

137 43

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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4 Estimable functions

4.1 Estimable functions: The problem

If X is not of full rank, then the LS problem does not have a unique solution for β̂.

In general not all combinations of the form c′β̂ may have unique solutions.

A linear combination c′β is an estimable function if there is a vector of numbers, a,

such that

E
[
a′y

]
= c′β

for all β.

NB: Viewed as a function of the unknown parameter vector, β.

NB: The E-operator depends on β, could define g(β) := c′β and h(β) := Eβ[a
′y] and

require g(β) = h(β) ∀β for some a.

4.1.1 Details

If X is not of full rank, then the LS problem does not have a unique solution for β̂. In

general not all combinations of the form c′β̂ may have unique solutions.

A linear combination c′β is an estimable function if there is a vector of numbers, a, such

that

E
[
a′y

]
= c′β

for all β.

The terminology is not accidental as the linear combination of parameters is viewed as a

function of the unknown parameter vector, β. In words the requirement is simply that it is

possible to obtain a linear unbiased estimator.

4.1.2 Examples

Example 4.1. The one-way layout is the simplest example giving X-matrices which are

not of full rank when writing the model in the form

yi j = µ+αi + εi j.

Example 4.2. A common issue in regression is whether the same line can be fit to two

data sets or e.g. whether different slopes should be used. This can be modelled by writing

yi j = α+βxi j + εi j (4)

for the simple model with the same slopes and

yi j = α+βixi j + εi j (5)

14



for a model with different slopes in the the groups.

Alternatively one may be interested in how the slopes in the groups differ and/or in a

simple evaluation of whether a single slope can be used. In this case it is reasonable to

rewrite the complex model as

yi j = α+βxi j +βixi j + εi j (6)

and the test of whether the reduced model is enough is a test of whether the βi-values are

all zero (and can be dropped).

Naturally, equation 6 is not completely determined. On the other hand, the model can

easily be fit to data - most statistical packages will simply select an arbitrary LS estimate

of the parameter set unless told explicitly to select a specific representation. All such

solutions will lead to the same tests. The tests are really just based on comparing whether

SSE(R) is too much smaller than SSE(F) and these sums are based on the LS projections

onto subspaces. The projections are uniquely defined since they are based on the span,

V , of the column vectors in the X-matrix. This space V does not change when columns

are added, as long as these columns are linear combinations of existing ones - or when

such columns are dropped.

Packages such as R will easily compare 6 and 4 with the drop1-command since 4 cor-

responds to deleting a term from 6. The better-determined model 5 can be compared to

4 using an anova-command in R since 4 is indeed a reduced model from 5 through a

restriction of the form β1 = . . .= βI .

4.1.3 Handout

Some further clarifications to the above definitions may be useful.

It must be emphasized that the E-operator depends on the vectors of unknown parameters,

β, since the underlying model is

E [y] = Xβ.

One could therefore define

f (β) := Eβ [y]

and

g(β) := c′β

so the criterion of estimability would be that these two functions are uniformly the same:

f (β) = g(β) ∀β ∈ Rp.

This formal approach has the merit that the meaning is clear, but the notation becomes quite

cumbersome.

Estimable functions are commonly denoted by the symbol ψ, e.g. ψ = β1 −β2 etc.

Note 4.1. Recall that if X
︸︷︷︸

n×p

with n > p is of full rank if rank(X) = dim(sp(X)) = p and

also rank(X) = rank(X′X) so X is of full rank iff X′X has an inverse. Hence, if X is of full

rank we can write β̂ = (X′X)−1
X′y which satisfies E

î

β̂
ó

= β.
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From this we also see that

c′β = c′E
î

β̂
ó

= E
î

c′
(
X′X

)−1
X′y
ó

= E
[
a′y

]

where a′ = c′ (X′X)−1
X′. Hence any linear combination c′β is estimable is X is of full rank.

Conversely, if X is not of full rank then we can find vectors β and γ with β 6= γ such that

X(β− γ) = 0 and therefore E [y] i = Xβ = Xγ can be expressed in more than one way.

Existence of non-estimable functions are therefore an expression of the matrix not being of

full rank.

4.2 Classification of estimable functions

Theorem: A parametric function ψ = c′β is estimable if and only if c′ = a′X for some

a ∈ Rn.

4.2.1 Details

Theorem 4.1. A parametric function ψ = c′β is estimable if and only if c′ = a′X for

some a ∈ Rn.

4.2.2 Examples

Example 4.3. In the linear model Yi j = µ+αi+εi j, the coefficients are not all estimable.

4.2.3 Handout

Proof of theorem: By definition, ψ= c′β is estimable if and only if there is a vector a∈ Rn

such that E [a′y] = c′β for all β. This is equivalent to requiring

a′Xβ = c′β

for all β which is equivalent to

c′ = a′X.

Example 4.4. The reader should take the simple example yi j = µ+αi + εi j, 1 ≤ j ≤
Ji 1 ≤ i ≤ I, set up the X-matrix and consider the form of the vectors a′X for the case

I = 2, J1 = n, J2 = m.

Writing a′X = (u,v,u− v), it is seen that the resulting estimable functions are precisely

µ+α1, µ+α2 and α1 −α2.
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4.3 Gauss-Markov theorem

Theorem: (Gauss-Markov theorem): Let EY = Xβ, VY = σ2I. Then every estimable

function c′β has a unique unbiased linear estimate which has minimum variance in the

class of all unbiased linear estimates. This estimate can be written the form c′β̂ where β̂
is any LS estimator.

4.3.1 Details

A fundamental result in the theory of linear models is that estimable functions have unique

unbiased linear estimates.

Lemma: If ψ = c′β is estimable and V = sp(X) then there is a unique linear unbiased

estimator of c′β of the form a′y with a ∈V . If a0y is unbiased for c′β then a is the projecti-

on of a0 onto V .

Theorem 4.2 (Gauss-Markov theorem). Let E [y] = Xβ, V [y] = σ2I. Then every

estimable function c′β has a unique unbiased linear estimate which has minimum vari-

ance in the class of all unbiased linear estimates. This estimate can be written the form

c′β̂ where β̂ is any LS estimator.

Note 4.2. For estimable functions this is defined as the LS estimator.

4.3.2 Examples

Example 4.5. In the model yik = µ+αi +eik, it is clear that parameters are not estimable

but it is easy to see that αi −α j are estimable.

4.3.3 Handout

Proof of lemma: Suppose ψ = c′β is estimable so we can find a ∈ Rn such that E[a′y] =
ψ.Now write a = a∗+b∗ with a∗ ∈ V and b∗ ⊥V , i.e. we define a∗ as the projection of a

onto V . Then it is easy to see that Eb∗′y = 0 since b∗ is perpendicular to the columns of X,

all of which are in V . Hence ψ=Ea′y=Ea∗′y and hence a∗′y is unbiased for ψ and a∗ ∈V .

For uniqueness of a∗, suppose Eα′y = ψ for some α ∈ V . Then 0 = Ea∗′y − Eα′y =
(a∗ − α)′Xβ. This holds for all β ∈ Rp and hence (a∗ − α)′X = 0. Since (a∗ −α) is

perpendicular to all columns of the X-matrix, it follows that (a∗ −α) ∈ V⊥. But both

vectors were in V to begin with, so

(a∗−α) ∈V ∩V⊥ = {0}

i.e. a∗ = α so a∗ is unique. Since a∗ was taken as the projection of a onto V , the proof is

complete.
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Proof of Gauss-Markov theorem: Use the lemma to find a unique a∗ ∈V with Ea∗′y= c′β
and let a′y be any unbiased linear estimate of ψ. Then a∗ = pro jV (a) and ||a||2 = ||a∗||2+
||a−a∗||2 so

Va′y = a′Σya = σ2||a||2

= σ2||a∗||2 +σ2||a−a∗||2 =V a∗y+σ2||a−a∗||2 ≥Va∗y

and equality holds iff a = a∗ so a∗y is best.

Now let β̂ be any least squares estimate.

Note 4.3. Note that a∗ ∈ V and y−Xβ̂ ∈ V⊥ so that a∗(y−Xβ̂) = 0 and therefore a∗y =

a∗Xβ̂.

Further, since ψ = c′β is estimable and a∗′y is the unbiased linear estimate,

c′β = Ea∗′y = a∗′Xβ

and this holds for any β ∈ Rp so c′ = a∗′X. Combining this with the previous paragraph,

a∗′y = a∗′Xβ̂ = c′β̂

which concludes the proof.

4.4 Testing hypotheses in the linear model

Theorem: If y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

) and ψ̂ is a vector of estimable functions, then

ψ̂ ∼ n
(
ψ,Σψ̂

)
,
||y−Xβ̂||2

σ2 ∼ χ2
n−r and these two quantities are independent.

4.4.1 Details

Let y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

and assume rank(X) = r ≤ p.

The interest will be in obtaining some joint confidence statement on a vector, ψ=(ψ1, . . . ,ψq)
′,

where each ψi = c′iβ is an estimable function. Write ψ̂ = (ψ̂1, . . . , ψ̂q)
′ for the least squares

estimates with ψ̂i = ciβ̂ where β̂ is any LS estimate and one can therefore also write ψ̂i = aiy

for unique ai ∈ sp(X).

The above can be written more concisely as ψ = Cβ using obvious definitions. It follows

that

ψ̂ = Ay = Cβ̂ ∼ n(Cβ,σ2AA′)

and the variance-covariance matrix of the estimates will be denoted

V [ψ̂] = Σψ̂

which leads to the following theorem.
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Theorem 4.3. If y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

) and ψ̂ is a vector of estimable functions,

then ψ̂ ∼ n
(
ψ,Σψ̂

)
,
||y−Xβ̂||2

σ2 ∼ χ2
n−r and these two quantities are independent.

It follows that hypothesis tests can be constructed in an obvious manner for individual

estimable functions.

4.4.2 Handout

Proof: Let {u1, . . . ,un} be an orthonormal basis for Rn such that {u1, . . . ,ur} form a basis

for sp(X) and let ζ̂1, . . . , ζ̂n be the coordinates of y in this basis, so that ζ̂i = ui · y. Also

define ζi = E[ζ̂i]. It is established that ζ̂i are independent, Gaussian with common variance

σ2.

Write z =
Ä

ζ̂1, . . . , ζ̂n

ä′
, Q =

ï

u1
... . . .

...un

ò

and note that Q′ has the u′
i as row vectors.

Since ζ̂i = u′
iy we have

z = Q′y.

Since the ui form a basis and form the columns of Q, those same columns are independent

so Q is invertible (as is Q′).
Due to the nature of an orthonormal basis, Q′Q = I so the two are inverses of each other

and QQ′ = I. Further, z = Q′y and therefore y = Qz.

As elsewhere, write the LS estimates of the estimable functions in the form ψ̂i = a′iy where

ai ∈ V = sp{u1, . . . ,ur} so that ψ̂i = a′iQz. It follows that a′iQ =

ï

a′iu1
... . . .

...a′iun

ò

and of

these various inner products, a′iu j = 0 if j > r (since ai ∈V ) from which it is seen that

a′iQz =

ï

a′iu1
... . . .

...a′iur
...0 . . .0

ò

î

ζ̂1, . . . , ζ̂r, ζ̂r+1, . . . , ζ̂n

ó′
= a′iu1ζ̂1 + . . .+a′iurζ̂r

i.e. the estimable functions are all formed from the first r of the ζ̂i and are all of the form

ψ̂i =
r

∑
1

k jζ̂ j (7)

for some constants k1, . . . ,kr.

This important result is quite general and basically states that anything that can be estima-

ted can be derived from y through the column vectors of the X-matrix.

On the other hand it is also known that Xβ̂ is the projection of y onto the space spanned by

u1, . . . ,ur and therefore the residual, y−Xβ̂ is in the span of ur+1, . . . ,un and in fact

||y−Xβ̂||2 =
n

∑
j=r+1

ζ̂2
j (8)

All the results in the theorem follow easily from (7) and (8).
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5 Ranks, constraints and correlations in multivariate regressi-

on

5.1 Problem statement

When rank(X)< p, the estimate β̂ is not unique.

5.1.1 Details

When r = rank(X)
︸ ︷︷ ︸

n×p

< p, the estimate β̂ is not unique. Similarly, β in E[Y] = Xβ is not

unique. 1

But if the function ψ = c′β is estimable, then the number c′β is unique, i.e. the same for all

β in the set {b : EY = Xb}, since Xβ is unique and c′β = a′Xβ for some a.

5.2 Constraints

To specify β uniquely we can add constraints...

5.2.1 Details

In order to specify the vector β and β̂ one could simply drop some of these until the X-

matrix becomes of full rank. More generally it is possible to add constraints of the form

H
︸︷︷︸

t×p

β = 0

This can be formulated in the following manner: Suppose we have β and we want unique

β̃ through Xβ = Xβ̃ and Hβ̃ = 0.

Theorem 5.1. β̃ is unique if rank
Ä(

X
H

)ä

= p and β̃ are then estimable. 2

The reader is referred to Scheffe (1959) for the proof of the theorem.

5.2.2 Examples

Example 5.1. If Yik ∼ n(µ+αi,σ2), independent, with 1 ≤ k ≤ ni and 1 ≤ i ≤ I, then

one can use the constraints ∑αi = 0.

It is a useful exercise to write the X-matrix and H-matrix for this problem.

1This is easy to see since if ξ1, . . . ,ξp are the columns of the X-matrix then E[Y] = Xβ is a linear comb-

ination of ξ1, . . . ,ξp which only span a r-dimensional space and a subset of ξ1, . . . ,ξp can be used to span this

space. The vector E[Y] can be written as a linear combination of vectors in any such subset.
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5.2.3 Handout

Write G =
(

X
H

)
for the joint data and constraint matrices.

Note that we obtain

Gβ̃ =

Ç

Xβ

0

å

and thus

G′Gβ̃ = X′Xβ

where G′G is invertible and we can write

β̃ =
(
X′X+H′H

)−1
X′Xβ (9)

and we have
ˆ̃β =

(
X′X+H′H

)−1
X′y

an unbiased estimate.

Note 5.1. The vector β̃ defined in Eq. (9) is a vector of elements, each of which is a linear

function of β and each of these functions is estimable since each is of the form a′Xβ.
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