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Introdu
tion

In the usual ANOVA models we have �xed e�e
ts

Interest is only in those �xed fa
tor levels

In the random e�e
ts models we have random e�e
ts

Interest is not only in those fa
tor levels in the study but in the

population of all possible fa
tor levels

In the mixed e�e
ts models we have both random and �xed e�e
ts

Interest is in those �xed fa
tor levels in the study and sometime in

the population of all possible fa
tor levels of the random e�e
t.
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Random or �xed e�e
ts

When to use random and when to use �xed e�e
ts?

We put a fa
tor as a random e�e
ts when we are not really inter-

ested in the spe
i�
 levels of that fa
tor and 
an assume the levels were

drawn at random from the population of all possible levels.

We put a fa
tor as a �xed e�e
t when we are only interested in

the levels of that fa
tor and not in any other possible levels.
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Varian
e 
omponents

In a random model with one fa
tor there are two varian
e 
omponents.

The varian
e σ2

a

of the random e�e
t a

i

and the varian
e σ2

of

the errors ǫ
ij

The varian
e σ2

y

of the observations are the sum of the two vari-

an
e 
omponents σ2

y

= σ2

a

+ σ2

.
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Correlation between observation belonging to the same group is 
alled

intra
lass 
orrelation

ρ = 
or(y
ij

, y
ik

) =
σ2
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ANOVA table

The ANOVA table for the random e�e
t model is the same as for the

regular ANOVA when the experiment is balan
ed.

Table: ANOVA table

Sour
e df SS MS F P-value

Random e�e
t g − 1 SST =
∑

n

i

(ȳ
i

.− ȳ

.

.)2 MST = SST/(g − 1) F MST MSE P F

df

1

df

2

F

Error N − g SSE =
∑

i

∑

j

(y
ij

− ȳ

i

.)2 MSE = SSE/(N − g)

Total N − 1 SSTOT =
∑

i

∑

j

(y
ij

− ȳ ..)2
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Estimation of varian
e 
omponents

σ̂2

a

=
MST −MSE

n

Approximate 1− α 
on�den
e interval for σ2

a

is as follows:

df × σ̂2

a

χ2

1−α/2,df

≤ σ2

a

≤
df × σ̂2

a

χ2

α/2,df

where

df =
(nσ̂2

a

)2

MST

2

g−1

+ MSE

2

r(n−1)

σ̂2 = MSE

1− α 
on�den
e interval for σ2

is 
al
ulated as follows:

g(n − 1)MSE

χ2

1−α/2,g(n−1)

≤ σ2 ≤
g(n − 1)MSE

χ2

α/2,g(n−1)
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Estimation of intra
lass 
orrelation

ρ̂ =
σ̂2

a

σ̂2

a

+ σ̂2

1− α 
on�den
e limit for ρ is

L

1+ L

≤ ρ ≤
U

1+ U

where

L =
1

n

(

MST

MSE

1

F

1−α/2,g−1,g(n−1)
− 1

)

U =
1

n

(

MST

MSE

1

Fα/2,g−1,g(n−1)
− 1

)
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Unequal sample sizes

The methods explained earlier only apply for balan
ed studies.

When sample sizes are unequal the 
al
ulation be
ome more 
om-

plex.

We use statisti
al software to do the 
al
ulation for us.

Maximum likelihood (ML) or restri
ted maximum likelihood (REML) are

used.
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Example - Ram breeding experiment

Breeding experiment at the Agri
ul-

tural university of I
eland

Car
ass weight measured of male

lambs

Want to know if varian
e in


ar
ass weight 
an be related to the

sire.

Unequal sample sizes.
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Example - Ram breeding experiment

Use the lme and interval fun
tion in

R to do the 
al
ulations.

REML used to estimate the varian
e


omponents.

Con�den
e intervals obtained

using normal approximation to the

distribution of the estimates.

We get σ̂2

a

= 0.010 and σ2 = 0.341
and the 95% 
on�den
e limits are:

0.0005 ≤ σ2

a

≤ 0.177

0.282 ≤ σ2 ≤ 0.411
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Random e�e
ts model with two fa
tors
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Varian
e 
omponents in the two way layout
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Intra
lass 
orrelation in the two way layout
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Hypothesis
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ANOVA table
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Estimation of varian
e 
omponents
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Estimation of intra
lass 
orrelation
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Example

Anonymous () Random and mixed e�e
ts models June 28, 2013 21 / 1



Mixed e�e
ts model

Anonymous () Random and mixed e�e
ts models June 28, 2013 22 / 1



Varian
e 
omponents in mixed e�e
ts model
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Intra
lass 
orrelation in mixed e�e
ts model
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Hypothesis
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ANOVA table for mixed e�e
ts model
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Estimation of �xed e�e
ts
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Estimation of varian
e 
omponents
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Estimation of intra
lass 
orrelation
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Multiple 
omparisons in mixed e�e
ts models
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