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1 Probability spaes and random variables

1.1 Probability bakground

1.1.1 Handout

De�nition 1 A probability spae onsists of a set, Ω, the sample spae (or population)

with a olletion A of sets alled events A whih are subsets of Ω (i.e. A ⊆ Ω so A ⊆ P(Ω))
and a probability measure whih is a funtion

P : A → [0, 1]

satisfying the onditions 0 ≤ P [A] ≤ P [Ω] = 1 and

P

[ ∞
⋃

i=1

Ai

]

=
∞
∑

i=1

P [Ai]

for Ai ∈ A suh that Ai ∩Aj = ∅ if i 6= j

Note how it is impliitly assumed in this de�nition that A has the property h that the

ountable union,

A =
∞
⋃

i=1

Ai

is inluded in A if the individual sets are members. A olletion of sets whih has the

property that it ontains Ω, ontains the omplement of eah member set and ontains

ountable unions of subset is all a σ− algebra.

The Borel-algebra is the smallest olletion of sets whih ontains the half-losed inter-

vals, [a, b[, for a, b ∈ R, a < b (or appropriate subset of R) and is losed with respet to

ountable unions and omplements.

Note that the Borel-algebra does exist sine (1) an intersetion of σ-algebras is also a σ-
algebra and (2) P(Ω) is a σ-algebra ontaining these intervals. It follows that the intersetion
of all σ-algebras ontaining the intervals is what we need and this de�nes the Borel-algebra.

Along with the de�nition of random variables below, these formalities su�e for this

ourse in mathematial statistis. Muh more detail an be obtained in a ourse on measure

theory or theoretial probability.

De�nition 2 If A and B are events with P [B] > 0, then the probability of A given B is

P [A|B] :=
P [A ∩B]

P [B]
.

That this is the only reasonably de�nition is best seen from a simple disrete example.

Example 1 Suppose we have a bag of marbles with two properties, olour and weight.

Eah marble either green or yellow and either light or heavy.

If we pull a marble out of the bag while blindfolded we an hek wether it is light or

heavy.
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Denote the event of the marble being light B, so getting a heavy marble is Bc
. Simi-

larly, denote the event of it being green A.
A typial question would be "what is the probability of a green marble given that it

is light: P (A|B).
The �nd the only reasonably de�nition for this quantity, introdue the notation nC

for the number of marbles whih are in a set C. So nA are the green marbles, nA∩B are

the light-and-green marbles et and write n for the total in the bag.

This �ts niely into a table and we �nd that if we know the marble is light (event A),
then we easily get

P (A|B) =
nA∩B
nB

=
nA∩B/n
nB/n

=
P (A ∩B)

P (B)

De�nition 3 If A and B are events then the A are independent B if

P [A ∩B] = P [A]P [B].

Note how this is equivalent to P (A|B) = P (A) when P [B] > 0, but this de�nition does

not require positive probability of P [B].

1.2 Random variables

1.2.1 Handout

De�nition 4 A random variable is a funtion

X : Ω → R

suh that X−1(B) ∈ A if B ∈ B, where B is the Borel-algebra over R so we an de�ne

P [X ∈ B] = P [X−1(B)].

De�nition 5 The umulative distribution funtion (df) is the funtion F de�ned by

F (x) := P [X ≤ x].

Commonly an original sample spae is not obvious but the possible outomes of an experi-

ment are in R and we de�ne

X = idR

to obtain a random variable whih has the desired probability distribution on R.
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De�nition 6 A random variable X is disrete if P [X = x] > 0 for a �nite or ountably

in�nity olletion of x-values, and

∑

x∈R
P [X = x] = 1

(so all the mass is at these ountable points).

In this ase the probability mass funtion of X is the funtion

p(x) := P [X = x].

De�nition 7 X is a ontinuous random variable if there is a funtion f : R → R+ suh

that

P [X ∈ A] =

∫

A
f(x)dx

for all events A.

It is understood that the integral is a regular Riemann integral and the non-negative

funtion f needs to be integrable.

The two de�nitions an be ombined into one using either the Riemann-Stieltjes integral

or Lebesque integration.

Example 2 Consider two tosses of an unbiased oin. In this ase the sample spae is a

disrete olletion whih we an denote

Ω = {kk, ks, sk, ss}

Where k indiate a result of heads, and s implies tails.

De�ne a random variable whih ounts the number of tails:

X(ω) =







0 ω = kk,
1 ω = ks or sk,
2 ω = ss.

If the oin being used is fair then P (ω) = 1/4 for eah ω ∈ Ω. Thus we an ompute the

hanes of getting a ertain amount of heads from our two tosses. If x is the number of

heads then

x P [X = x]

0 1/4

1 1/2

2 1/4

Example 3 The double-or-nothing game:

Xn := 2nχ[0,2−n]

The reader should elaborate and show that this represents a fair double-or-nothing game:

5



� What is Ω?

� What is P?

� Is it true that P [Xn+1 = 2Xn|Xn > 0] = 1/2? Rewrite this in several ways.

Example 4

X1,X2, . . . : [0, 1] → {0, 1}

Split [0, 1[ into the intervals

[
k

2i
,
k + 1

2i
[

where k = 0, 1, . . . 2i − 1 and let

Xi(ω) :=

{

0 2j
2i

≤ ω < 2j+1
2i

1, otherwise.

Then Xi,Xj are independent pairs if i 6= j.

De�nition 8 Let X and Y be two disrete random variables. The Conditional mass

funtion of X given a value of the random variable Y is given by

PX|Y (x|y) = P [X = x|Y = y] =
P [X = x, Y = y]

P [Y = y]
=

PXY (x, y)

PY (y)
,

where the denominator is positive.

De�nition 9 Let X and Y be two ontinuous random variables. The onditional density

of X given a value of the random variable Y is

fX|Y (x|y) =
f(x, y)

fY (y)
, fY |X(y|x) = f(x, y)

fX(x)
wherethedenominatorispositive.

Example 5 Given that PXY (1, 1) = 0.5, PXY (2, 1) = 0.1, PXY (2, 2) =
0.3, PXY (1, 2) = 0.1, PY (1) = 0.6 alulate the probability of X=1 given that Y=1.

We use the de�nition of the onditional mass funtion:

PX|Y (1, 1) =
PXY (1, 1)

PY (1)
=

0.5

0.6
= 5/6
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1.3 Expeted values

1.3.1 Handout

De�nition 10 The expeted value of a random variable X is

E[X] :=

{ ∫

xf(x)dx
∑

xp(x)

if this exists or more spei�ally if E[|X|] < ∞, where f (p) is the density funtion

(mass funtion) of X.

De�nition 11 The variane of a random variable X,

V ar[X] or V [X], is
V ar[X] := E

[

(X − µ)2
]

when µ = E[X] and all the integrals exist (and are �nite).

Theorem 1.1 If E[X] = µ and V X = σ2
, and W := aX + b for numbers a, b, then

E[W] = aµ+ b and VW = b2

Theorem 1.2 If E[X] = µ and V X = σ2
, and W := X−µ

σ then E[W] = 0 and VW = 1
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2 Generating funtions

2.1 Charateristi and moment generating funtions

2.1.1 Handout

De�nition 12 The moment generating funtion (m.g.f.) of the random variable X is the

funtion

MX(T ) := E
[

etX
]

de�ned for those values of t where the expeted value exists.

De�nition 13 The harateristi funtion of (the distribution of) X is the funtion

φX(t) := E
[

eitX
]

Remark 2.1. φX always exists sine

E
[

|eitX |
]

= E[1] = 1

and hene both the real and imaginary parts of the integral exis so that E
[

eitX
]

exists for

t ∈ R.

We will use the following result:

If X1,X2, . . . is a sequene of random variables with umulative distribution funtions

Fn and harateristi funtions φn suh that φn(t) → φ(t) when |t| < ε and φ orresponds

to the umulative distribution funtion F whih is ontinuous at x, then Fn(x) → F (x). In
other words,

P [Xn ≤ x] → P [X ≤ x] if φn(t) → φ(t).

Example 6 If X ∼ G(α, β) i.e. X has density

f(x) =
1

Γ(α)βα
xα−1e−x/β, x > 0.

(the gamma density, disussed in detail later) then

MX(t) = E
[

etX
]

=

∫ ∞

0

etxxα−1e−x/β

Γ(α)βα
dx

=
Γ(α)( −1

t−1/β )
α

Γ(α)βα

∫ ∞

0

xα−1e
− x

−1/(t−1/β)

Γ(α)( −1
t−1/β )

α

=
1

βα( 1β − t)α
=

1

(1− βt)α
.
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Theorem 2.1 Let ε > 0 and X be a random variable with moment generating funtion

M(t) = E
[

etX
]

de�ned for |t| < ε. Then:

E[Xn] = M (n)(0) =
dn

dtn
M(t)

∣

∣

∣

∣

t=0

.

Proof. IfM(t) =
∫

etxf(x) dx and if it is permissible to di�erentiate under the integral, then

M (n)(t) =

∫

etxxnf(x) dx and thus M (n)(0) =

∫

xnf(x) dx = E[Xn] .

Note also that if it is permissible to take the summation outside the expeted value, then

E
[

etX
]

= E

[ ∞
∑

n=0

(tX)n

n!

]

?
=

∞
∑

n=0

E

[

tn

n!
Xn

]

=
∞
∑

n=0

tn

n!
E[Xn] ,

so if E[Xn] exists and is limited for all n, then this is a �well-behaved� funtion andM (n)(0) =
E[Xn].

Example 7 (a) The standard normal distribution. Let Z have the standard normal

distribution, i.e. Z ∼ n(0, 1) with density

f(ζ) =
1√
2π

e−ζ2/2, ζ ∈ R.

The umulative distribution funtion is

F (ζ) =
1√
2π

∫ ζ

−∞
e−t2/2 dt, ζ ∈ R,

and the moment generating funtion is

MZ(t) =

∫

etx
1√
2π

e−x2/2 dx

=
1√
2π

∫

e−
1
2
(x2−2tx) dx

= e
1
2
t2 · 1√

2π

∫

e−
1
2
(x−t)2 dx

= e
1
2
t2 , t ∈ R.

We thus obtain

M ′
Z(t) = te

1
2
t2

og M ′′
Z(t) = e

1
2
t2 + t2e

1
2
t2 ,

and from the previous theorem it follows that

E[Z] = M ′
Z(0) = 0 og E

[

Z2
]

= M ′′
Z(0) = 1.

Finally we have

Var[Z] = E
[

(Z− µ)2
]

= E
[

Z2 − 2Zµ+ µ2
]

= E
[

Z2
]

− (E[Z])2 = 1.
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(b) The general normal distribution. Let X := σZ + µ with Z ∼ n(0, 1). Then

learly E[X] = σE[Z] + µ = µ and

Var[X] = E
[

X2
]

− (E[X]2)

= E
[

(σZ + µ)2
]

− µ2

= E
[

σ2Z2 + 2σµZ + µ2
]

− µ2

= σ2
E
[

Z2
]

+ 2σµE[Z] + µ2 − µ2

= σ2.

The r.v. X is said to have a general normal distribution with expeted value µ
and variane σ2

, denoted X ∼ n(µ, σ2). The moment generating funtion is

MX(t) = E

[

et(σZ+µ)
]

= E
[

etσZ+tµ
]

= etµE
[

e(tσ)Z
]

= etµMZ(tσ), t ∈ R.

The .d.f of the random variable is given by

FX(x) = P(X ≤ x) = P(σZ + µ ≤ x) = P
(

Z ≤ x−µ
σ

)

= FZ(
x−µ
σ ), x ∈ R,

and its density is therefore

fX(x) = d
dxFX(x) = d

dxFZ(
x−µ
σ ) = 1

σfZ(
x−µ
σ ) = 1√

2πσ
e−

(x−µ)2

2σ2 , x ∈ R.

Theorem 2.2 Let ε > 0 and X1,X2, . . . be random variables with moment generating

funtions MX1 ,MX2,, . . . suh that MXn(t) → M(t), n → ∞, fyrir |t| < ε. If M is the

moment generating funtion of the random variable X, then FXn(x) → FX(x) for all x
where FX is ontinuous.

Theorem 2.3 Let X1, . . . ,Xn be independent random variables with moment generating

funtions MX1 , . . . ,MXn and, as before X̄ := 1
n

∑n
i=1 Xi to obtain:

MX̄(t) =
n
∏

i=1

MXi(t/n) og M∑
Xi
(t) =

n
∏

i=1

MXi(t).

In partiular, if X1, . . . ,Xn all have the same moment generating funtion M :

MX̄(t) = (M(t/n))n og M∑
Xi
(t) = (M(t))n.

Example 8 Let X1, . . . ,Xn ∼ Gamma(α, β) be independent with α, β > 0 so eah Xi

has the density

fXi(x) =
xα−1e−x/β

Γ(α)βα
, x > 0,

and moment generating funtion

M(t) =
1

(1− βt)α
.
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From the above theorem we see that

MX̄(t) = (M(t/n))n =

(

1− β
t

n

)−nα

=
1

(

1− β
n t
)nα ,

whih implies that X ∼ Gamma(nα, β/n). In addition

M∑
Xi
(t) = (M(t))n =

(

1

(1− βt)α

)n

=
1

(1− βt)nα
,

whih shows that

∑n
i=1Xi ∼ Gamma(nα, β).
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3 On multivariate transforms

3.1 Bakground to some multivariate transformations

3.1.1 Handout

Before going further we need some results from alulus of several variables. First reall

that if the funtion

g : Rm → R
n; g := (g1, . . . , gn)

′

is one-to-one and ontinuously di�erentiable then the Jaobian determinant of the transfor-

mation is given by

J =

∣

∣

∣

∣

∂g

∂x

∣

∣

∣

∣

= |∇g1 · · · ∇gn| =

∣

∣

∣

∣

∣

∣

∣

∂g1
∂x1

· · · ∂gn
∂x1

.

.

.

.

.

.

.

.

.

∂g1
∂xm

· · · ∂gn
∂xm

∣

∣

∣

∣

∣

∣

∣

.

For �onvenient� regions R ⊆ R
n
and a funtion f whih is ontinuous on g(R) we have

∫

g(R)
f(x)dx =

∫

R
f(g(u))|J |du.

We therefore see that if U is a random variable with X = g(U), then

fU(u) = fX(g(u))|J |.

Example 9 Let X and Y be ontinuous and independent random variables and de�ne

Z := X + Y . If W := X, and onsider the transformation

(

x
y

)

7→
(

w
ζ

)

:=

(

x
x+ y

)

where J = | 1 1
0 1 | = 1, and from the above we see that

fW,Z(w, ζ) = fX,Y (w, ζ − u)|J | = fX,Y (w, ζ − u) = fX(w)fY (ζ − u).

Hene we see that the marginal density funtion of Z is given by

fZ(ζ) =

∫ ∞

−∞
fW,Z(w, ζ) dw =

∫ ∞

−∞
fX(u)fY (ζ − u) du.

This an be derived in several di�erent ways, e.g.

FZ(ζ) = P(Z ≤ ζ)

= P(X + Y ≤ ζ)

=

∫ ∞

−∞

∫ ζ−x

−∞
f(x, y) dx dy

=

∫ ∞

−∞

∫ ζ−x

−∞
fX(x)fY (y) dx dy

=

∫ ∞

−∞
fX(x)FY (ζ − x) dx.
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Example 10 Let X ∼ Cauchy(0, 1) with density

fX(x) =
1

π

1

1 + x2
, x ∈ R.

For this random variable we see that

E[|X|] =
∫ ∞

−∞

|x|
π(1 + x2)

dx = 2

∫ ∞

0

x

π(1 + x2)
dx = ∞,

and hene the expeted value E[X] is not de�ned.

We say that X has a general Cauhy-distribution with parameters µ and σ2
,

denoted X ∼ Cauchy(µ, σ2), if it has the density

fX(x) =
1

πσ

1

1 + (x−µ
σ )2

, x ∈ R.

Reall that if X1 and X2 are independent random variables and Var[X1] = Var[X2] = σ2
,

then

Var

[

X1 +X2

2

]

=
Var[X1] + Var[X2]

4
=

σ2

2

and in general we have that if X1, . . . ,Xn are independent random variables and Var[Xi] =
σ2
, then

Var

[

X1 + · · ·+Xn

n

]

=
σ2

n
.

beause:

Var

[

X1 + · · ·+Xn

n

]

= Var

[

1

n

n
∑

i=1

Xi

]

=
12

n2
Var

[

n
∑

i=1

Xi

]

=
12

n2
nσ2 =

σ2

n

Example 11 On the other hand if X1,X2 ∼ Cauchy(0, 1) are independent, then

X1 +X2

2
∼ Cauchy(0, 1)

Let's derive the result:

Let X1,X2 ∼ Cauhy(0,1) iid. and de�ne Z := X1+X2
2 . The pdf of a X ∼ Cauhy(0,1)

is fX(x) = 1
π

1
1+x2 .

It is known that E[X] = ∞ so the mgf for the Cauhy distribution doesn't exist.

However the harateristi funtion does exist, de�ned by φX(t) = E[eitX ], t ∈ R.

If we an show that φZ(t) = φX(t) then it follows that the variables have the same

distribution funtion, FZ(X) = FX(X), and thus follow the same distribution i.e. Z ∼
Cauhy(0,1).

Let's begin with �nding φX(t):

φX(t) = E[eitX ] =

∫ +∞

−∞
eitXfX(x)dx =

∫ +∞

−∞
eitX

1

π

dx

1 + x2
(1)

We use ontour integration to alulate this integral. De�ne a losed path γ :=
<-R,R> ∗ βR where βR is a half irle from R to −R in the upper plane H+. Let

g(z) = eitz

1+z2
and integrate it along γ. So by the residue theory we get

πφX(t) =

∫

γ
g(z)dz =

∫

<−R,R>
g(z)dz +

∫

βR

g(z)dz = 2πi
∑

αj∈H+

Res(g, αj) (2)

13



where αj are poles of g(z) in the upper half plane.

Let's show that

∫

βR
g(z)dz → 0 as R → ∞:

∣

∣

∣

∣

∫

βR

g(z)dz

∣

∣

∣

∣

≤
∫

βR

|g(z)||dz|

=

∫

βR

|eitz|
|1 + z2|

≤
∫

βR

|dz|
|1 + z2|

≤ sup
|z|=R

1

|1 + z2|

∫

βR

|dz|

≤ πR

R2 − 1
→ 0 as R → ∞

Sine g(z) has poles of order 1 at α1 = i ∈ H+ and α2 = −i ∈ H−. The residue at α1

is

Res(g, i) = lim
z→i

(z − i)g(z) = lim
z→i

(z − i)
eitz

(z − i)(z + i)
=

e−|t|

2i
(3)

Note the |t| sine t ∈ R.

Take the limit of (2) as R → ∞ and get

πφX(t) = 2πi
e−|t|

2π
= πe−|t|

and so

φX(t) = e−|t|
(4)

Let's �nd the harateristi funtion of Z:

φZ(t) = φX1+X2
2

(t)

= E
[

e
it(X1+X2)

2

]

= E
[

e
itX1

2 e
itX2

2

]

= E
[

e
itX1

2

]

E
[

e
itX2

2

]

= φX1

(

t

2

)

φX2

(

t

2

)

= e−| t2 |e−| t2 | =
(

e−| t2 |
)2

= e−|t|

Thus we have shown that φX1(t) = φX2(t) = φZ(t) and thereby it follows that FX1 =
FX2 = FZ and so Z ∼ Cauhy(0,1).

More generally if X1, . . . ,Xn ∼ Cauchy(0, 1) then

X1 + . . . +Xn

n
∼ Cauchy(0, 1).

Theorem 3.1 (Property of mean and variane of normals) Let X1, . . . ,Xn ∼
n(µ, σ2) be independent random variables and de�ne

X̄ :=
1

n

n
∑

i=1

Xi og S2 :=
1

n− 1

n
∑

i=1

(Xi − X̄)2.

then:

14



(i) X̄ and S2
are independent random variables.

(ii) X̄ ∼ n(µ, σ2/n).

(iii)

(n−1)S2

σ2 =
∑n

i=1(Xi−X̄)2

σ2 ∼ χ2
n−1.

Proof. to be done...
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4 The gamma, hi-square and t distributions

4.1 Gamma, hisquare and t

4.1.1 Handout

Example 12 Let α, β > 0 and x > 0. Then xα−1e
−

x
β

Γ(α)βα is a probability density funtion:

1

Γ(α)βα

∫ ∞

0
xα−1e

− x
β dx =

βα

Γ(α)βα

∫ ∞

0
yα−1e−ydy

=
βα

Γ(α)βα
· Γ(α) = 1

where we substitute y = x
β to get the �rst equality, and the seond equality follows from

the de�nition of the gamma funtion.

De�nition 14 The density of the gamma distribution is given by

xα−1e−x/β

Γ(α)βα
, x > 0

and moment generating funtion

M(t) = (1− βt)−α, t <
1

β
.

In the ase of α = ν/2, β = 2 this is alled a χ2
- distribution with ν degrees of freedom

and density

xν/2−1e−x/2

Γ(ν2 )2
ν/2

, x > 0.

Example 13 The mean of the gamma distribution is given by

E(X) =

∫ ∞

0
xf(x)dx

∫ ∞

0
x
xα−1e−x/β

Γ(α)βα
dx

∫ ∞

0

xαe−x/β

Γ(α)βα
dx

1

Γ(α)βα

∫ ∞

0
xαe−x/βdx

Substitute x = uβ, dx = βdu to get

1

Γ(α)βα

∫ ∞

0
uαβαe−uβdu

1

Γ(α)βα

∫ ∞

0
uαβα+1e−udu

16



βα+1

Γ(α)βα

∫ ∞

0
uαe−udu

This then simpli�es and due to the fat

∫ ∞

0
uαe−udu = Γ(α+ 1)

We get

βΓ(α+ 1)

Γ(α)

Due to Γ(α+ 1) = αΓ(α) We get E(X) = αβ as the mean of the gamma distribution.

Example 14 For Z2 ∼ n (0, 1) it is easy to that Z2 ∼ χ2
1

Find the distribution of X = Z2
, where

f(z) =
1

σ
√
2π

e
−(x−µ)

2σ2

Lets begin with the df of X

FX(x) = P (X ≤ x) = P (Z2 ≤ x) = P (−√
x ≤ Z ≤ √

x)

From this we get

FX(x) = FZ(−
√
x)− FZ(

√
x)

And �nally we have:

fX(x) =
1

2
x

−1
2

1√
2π

e
−x
2 +

1

2
x

−1
2

1√
2π

e
−x
2 =

1

2
1
2

√
2π

x
−1
2 e

−x
2

This is the pdf of Γ(12 , 2) and is alled the hi-square distribution with 1 degree of freedom,
that is Z2 ∼ χ2

1

� Using the moment generating funtion we see that the sum of independent gamma

random variables (with the same β) is a gamma-distributed random variable.

� We therefore also see that if z1, ..., zn ∼ n(0, 1) iid then

z21 + ...+ z2n ∼ χ2
n.

Example 15 If X ∼ χ2
ν , then E[[X]] = ν. The probability density funtion of X is

fX(x) =

{

cx(
ν
2
−1)e−

1
2
x, if x ≥ 0.

0, otherwise

where c = 2
n
2 Γ

(

ν
2

)

and Γ() is the gamma funtion.

17



By de�nition: E [X] =
∫∞
0 xfX(x)dx

From that we get:

E [X] =

∫ ∞

0
xcx(

ν
2
−1)e−

1
2
xdx

E [X] = c

∫ ∞

0
x(

ν
2
−1+1)e−

1
2
xdx

E [X] = c([−x(
ν
2 )2e−

1
2
x]∞x=0 +

∫ ∞

0

ν

2
x(

ν
2
−1)2e−

1
2
xdx)

E [X] = c((0− 0) + ν

∫ ∞

0
x(

ν
2
−1)e−

1
2
xdx)

E [X] = ν

∫ ∞

0
cx(

ν
2
−1)e−

1
2
xdx

E [X] = ν

∫ ∞

0
xfX(x)dx

By de�nition:

∫∞
0 fX(x)dx = 1 beause fX(x) is a pdf. From that we get:

E [X] = ν

Example 16 If V ∼ χv then V ar[V ] = 2v

Let X ∼ χn The probability density funtion of X is

fX(x) =

{

cx(
n
2
−1)e−

1
2
x, if x ≥ 0.

0, otherwise

where c = 2
n
2 Γ

(

n
2

)

and Γ() is the gamma funtion.

We know that V ar[X] = E
[

X2
]

− (E[X])2. Now:

E
[

X2
]

=

∫ ∞

0
x2fX(x)dx

=

∫ ∞

0
x2cxn/2−1e−x/2dx

= c

∫ ∞

0
xn/2+1e−x/2dx

integration by parts:

= c
[

−xn/2+12e−x/2
]∞

x=0
+

∫ ∞

0

(n

2
+ 1

)

xn/22e−x/2dx

= c(n + 2)

∫ ∞

0
xn/2e−x/2dx

integration by parts:

= c(n + 2)
[

−xn/22e−x/2
]∞

x=0
+

∫ ∞

0

n

2
xn/2−12e−x/2dx

18



= c(n + 2)

(

n

∫ ∞

0
xn/2−1e−x/2dx

)

= (n+ 2)n

∫ ∞

0
cxn/2−1e−x/2dx

= (n+ 2)n

∫ ∞

0
fX(x)dx

integral of the pdf over the support [0,∞) equals 1:

= (n+ 2)n

= n2 + 2n

E [X]2 = n2

Now it's lear to see that V ar[X] = n2 + 2n− n2 = 2n

De�nition 15 If Z ∼ n(0, 1) and V ∼ χ2
ν , then the distribution of the random variable

Z/
√

V/ν is termed the t-distribution with ν degrees of freedom, denoted T ∼ tν .

We an �nd the density of T by onsidering the funtion (U, V ) 7→ (T,W ) with W := V ,
thus obtaining the joint density of T and W and then integrating out W .

De�nition 16 If U ∼ χ2
ν1 and V ∼ χ2

ν2 then the distribution of the random variable

U/ν1
V/ν2

is termed the F-distribution with ν1 and ν2 degrees of freedom. denoted F ∼ Fν1,ν2 .

We have a general interest in drawing onlusions about µ when X1, ...,Xn ∼ n(µ, σ2)
are independent but µ, σ2

are all unknown numbers. Suh onlusions always build on the

fat that

X̄ :=
1

n

n
∑

i=1

Xi ∼ n

(

µ,
σ2

n

)

so that

X̄ − µ

σ/
√
n

∼ n(0, 1)

and if

S :=

n
∑

i=1
(Xi − X̄)2

n− 1

then

(n− 1)S2

σ2
∼ χ2

n−1

19



whih are independent of X̄, and hene

X̄ − µ

S/
√
n

=

X̄−µ
σ/n

√

n∑

i=1
(Xi−X̄)2/σ2

n−1

∼ tn−1.

A onsequene of this is that if µ = µ0 then the number t := x̄−µ
s/

√
n
will in 95% of all

experiments be between 2, 5% and 97, 5% probability limits in the t-distribution.
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5 Linear ombinations of random variables

5.1 General linear ombinations

5.1.1 Handout

Reall that if X and Y are random variables with expeted value

µX = E[X] and µY = E[Y ] ,

then the ovariane of X and Y is de�ned by

Cov(X,Y ) := E[(X − µX)(Y − µY )] .

Speial ase: X = Y ⇒ Cov(X,Y ) = Var[X] = σ2
X - if this expeted value exists. Also

reall that if X and Y are independent, then Cov(X,Y ) = 0 sine it is easy to see that

fX,Y (x, y) = fX(x)fY (y) ⇒ Cov(X,Y ) =

∫ ∫

(x− µX)(y − µY )fX(x)fY (y)dxdy = 0.

Theorem 5.1 IfX1, ...,Xn are random variables and Y1, ..., Ym are random variables with

Cov(Xi, Yj) = σij and a1, ..., an, b1, ..., bm are real numbers, then

Cov(a′X,b′Y) =

n
∑

i=1

m
∑

j=1

aibjσij.

Proof. We now have

Cov

(

a′X,b′Y
)

= E

[(

∑

aiXi − E
∑

aiXi

)(

∑

bjYj − E
∑

bjYj

)]

= E

[(

∑

aiXi −
∑

aiEXi

)(

∑

bjYj −
∑

bjEYj

)]

= E



{
n
∑

i=1

ai (Xi − EXi)}{
m
∑

j=1

bj (Yj − EYj)}





=

n
∑

i=1

m
∑

j=1

E[ai (Xi − EXi) bj (Yj − EYj)]

=

n
∑

i=1

m
∑

j=1

aibjσij.

as required.

De�nition 17 The variane-ovariane matrix of the random variables (or random ve-

tor) (X1, ...,Xn) is the matrix

Σ = (σij) = (Cov(Xi,Xj)).
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Corrollary 5.1 If X1, ...Xn are s.t. Cov(Xi,Xj) = 0 if i 6= j and a,b ∈ R
n, then

Cov(a′X,b′X) =
n
∑

i=1
aibiσ

2
i [= (a′b)σ2

if σ2
i = σ2 ∀i].

Corrollary 5.2 If X1, ...,Xn are suh that σij = δijσ
2
and a,b ∈ R are suh that a⊥b,

then Cov(a′X,b′X) = 0.

Corrollary 5.3 If (X1, ...,Xn)
′
is a vetor r.v. with E[X] = µ,Var[X] = Cov(X) = Σ

and a ∈ R
n, then Ea′X = a′µ and V a′X = a′Σa.

Corrollary 5.4 Cov(a′X,b′X) = a′Σb.

Corrollary 5.5 X vetor r.v., EX = µ, VX = Σ. A is an n×nmatrix, then E[AX] = Aµ
og Var[AX] = AΣAT.

5.2 Linear ombinations of Gaussian random variables

5.2.1 Handout

Theorem 5.2 Let X1, ...,Xn ∼ n(0, 1) be independent, let X = (X1, ...,Xn)
′
and let

Y be the r.v. Y := PX + µ where P is a matrix with rank(P ) = n and µ ∈ Rn.
Then the distribution of Y is a multivariate normal distribution, or multivariate Gaussian

distribution, given with the multivariate density

f(y) =
1

(2π)n/2|Σ|1/2 e
−1/2(y−µ)′Σ−1(y−µ)

where Σ = PP ′. This is denoted Y ∼ n(µ,Σ) (or Y ∼ MVN(µ,Σ)).

Proof. Sine X1, ...,Xn ∼ n(0, 1) iid, the joint density is given as the produt

fX(x) =

n
∏

i=1

fXi
(xi) =

n
∏

i=1

1√
2π

e−x2
i /2 =

1

(2π)n/2
e−

∑
x2
i /2.

The inverse of the funtion x → y = Px+ µ is y → x = P−1(y − µ) = g(y) with Jaobian

determinant J = | δgδy | = |P−1| so the density of Y is

f(y) = fX(g(y))|J | = fX(P−1(y − µ))|P−1|.
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Sine Σ = |PP ′| = |P |2 > 0 we see that

f(y) =
1

(2π)n/2|P |e
−[P−1(y−µ)]′[P−1(y−µ)]

⇒ f(y) =
1

(2π)n/2|Σ|1/2 e
−(y−µ)′Σ−1(y−µ)

(sine (P−1)′P−1 = (P ′)−1P−1 = (PP ′)−1 = Σ−1) - and in partiular, this is in fat a

density).

Remark 5.1. Some omments

� The univariate normal is a speial ase

� If Σ is diagonal (i.e. Cov(Yi, Yj) = 0 if i 6= j), then the random variables are indepen-

dent.

Theorem 5.3 If X ∼ n(µ,Σ), then Xi,Xj are independent if and only if Cov(Xi,Xj) =
0.

Theorem 5.4 If (X1, X2, . . . Xn, Y1, Y2, . . . , Ym)′ is a Gaussian r.v., then X =
(X1, X2, . . . Xn)

′
and Y = (Y1, Y2, . . . , Ym)′ are independent i� Cov(Xi, Yj) = 0 ∀i, j.

Theorem 5.5 Let Xi ∼ n(µ, σ2) be independent, i = 1, ..., n, and Yi := ξ′
i
X where

ξ1, ..., ξn form an orthonormal basis for R
n. Then Y1, ..., Yn are independent Gaussian

random variables with

Yi ∼ n(ξi
′µ, σ2).

Proof. All of this follows from the de�nition of a multivariate normal distribution.

Remark 5.2. The properties of the ommon t-test now follow from a olletion of results

based on the above. First let

ξ1 :=
1√
n
1, V := Span{ξ1}

and expand this (using e.g. a Gram-Shmidt proess) to obtain ξ2, ..., ξn whih form an

orthonormal basis for V ⊥
. Thus ξ1, ..., ξn form an orthonormal basis for R

n
. Write X =

n
∑

i=1
ζ̂i · ξi - the oordinates of X in the basis (ξi) are ζ̂1, ..., ζ̂n where ζ̂i = X · ξi so that

1. ζ̂1 = X · ξ1 = 1√
n

∑

i
Xi =

√
nX̄ and

2.

n
∑

i=2
ζ̂iξi = X− ζ̂1ξ1 = X−√

n · X̄ 1√
n
1 = X− X̄1.

3. Cov(ζ̂i, ζ̂j) = 0 if i 6= j and they are Gaussian so they are independent.
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4. (ζ̂1, ..., ζ̂n)
′ = PX ∼ n(Pµ, σ2PP ′) with P = [ξ′1...ξ

′
n]

′
and PP ′ = I.

5. Eζ̂i = E[X · ξi] = (µ1) · ξi = 0 if i ≥ 2

6.

n
∑

i=1
(Xi − X̄)2 =‖ X− X̄1) ‖2=‖ ∑n

i=2 ζ̂i · ξi ‖2=
∑n

i=2 ζ̂
2
i

7. For i ≥ 2 we see that ζ̂i ∼ n(0, σ2) and these are independent so

ζ̂i
σ ∼ n(0, 1) are also

independent

8.

n∑

i=2
ζ̂2i

σ2 ∼ χ2
n−1 and independent of ζ̂1 ∼ n(

√
nµ, σ2) and we obtain

∑
(Xi−X̄)2

σ2 ∼ χ2
n−1

X̄−µ
σ/

√
n
∼ n(0, 1)

}

independent

thus

X̄−µ
σ/

√
n

√

n∑

i=1
(Xi−X̄)2/σ2

n−1

∼ tn−1

Remark 5.3. Note that if X1, . . . ,Xn ∼ n(µ, σ2) iid, then EX̄ = µ and ES2 = σ2
, where

X̄ = 1
n

∑n
i=1 Xi, S

2 = 1
n−1

∑n
i=1 Xi − X̄)2. But we also see that e.g.

EX̄ = E

[

1

n

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

EXi =
1

n
nµ = µ,

whih holds independently of any assumptions of normality - and the r.v.s do not have to

be independent, i.e.: If X1, . . . ,Xn are random variables with EXi = µ, then EX̄ = µ.

Remark 5.4. Next note that if X1, . . . ,Xn are independent random variables with expeted

value µ variane σ2
, then

1

:

E

[

n
∑

i=1

(xi − X̄)2

]

= E

[

n
∑

i=1

X2
i − nX̄2

]

=
n
∑

i=1

E[X2
i ]− nE[X̄2]

=

n
∑

i=1

(σ2 + µ2)− n(σ2
X̄ + µ2

X̄)

= nσ2 + nµ2 − n
σ2

n
− nµ2

= (n− 1)σ2.

We have shown: If X1, . . . ,Xn are independent with EXi = µ,VXi = σ2
, then EX̄ = µ

and ES2 = σ2
.
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Where we use σ2
X̄ = σ2/n if the Xi are independent and a general formula: σ2 = E[X2]−µ2

, inverted to

give the very useful version, E[X2] = σ2 + µ2
for a random variable with this expeted value and variane.
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