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1 Probability spa
es and random variables

1.1 Probability ba
kground

1.1.1 Handout

De�nition 1 A probability spa
e 
onsists of a set, Ω, the sample spa
e (or population)

with a 
olle
tion A of sets 
alled events A whi
h are subsets of Ω (i.e. A ⊆ Ω so A ⊆ P(Ω))
and a probability measure whi
h is a fun
tion

P : A → [0, 1]

satisfying the 
onditions 0 ≤ P [A] ≤ P [Ω] = 1 and

P

[ ∞
⋃

i=1

Ai

]

=
∞
∑

i=1

P [Ai]

for Ai ∈ A su
h that Ai ∩Aj = ∅ if i 6= j

Note how it is impli
itly assumed in this de�nition that A has the property h that the


ountable union,

A =
∞
⋃

i=1

Ai

is in
luded in A if the individual sets are members. A 
olle
tion of sets whi
h has the

property that it 
ontains Ω, 
ontains the 
omplement of ea
h member set and 
ontains


ountable unions of subset is 
all a σ− algebra.

The Borel-algebra is the smallest 
olle
tion of sets whi
h 
ontains the half-
losed inter-

vals, [a, b[, for a, b ∈ R, a < b (or appropriate subset of R) and is 
losed with respe
t to


ountable unions and 
omplements.

Note that the Borel-algebra does exist sin
e (1) an interse
tion of σ-algebras is also a σ-
algebra and (2) P(Ω) is a σ-algebra 
ontaining these intervals. It follows that the interse
tion
of all σ-algebras 
ontaining the intervals is what we need and this de�nes the Borel-algebra.

Along with the de�nition of random variables below, these formalities su�
e for this


ourse in mathemati
al statisti
s. Mu
h more detail 
an be obtained in a 
ourse on measure

theory or theoreti
al probability.

De�nition 2 If A and B are events with P [B] > 0, then the probability of A given B is

P [A|B] :=
P [A ∩B]

P [B]
.

That this is the only reasonably de�nition is best seen from a simple dis
rete example.

Example 1 Suppose we have a bag of marbles with two properties, 
olour and weight.

Ea
h marble either green or yellow and either light or heavy.

If we pull a marble out of the bag while blindfolded we 
an 
he
k wether it is light or

heavy.
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Denote the event of the marble being light B, so getting a heavy marble is Bc
. Simi-

larly, denote the event of it being green A.
A typi
al question would be "what is the probability of a green marble given that it

is light: P (A|B).
The �nd the only reasonably de�nition for this quantity, introdu
e the notation nC

for the number of marbles whi
h are in a set C. So nA are the green marbles, nA∩B are

the light-and-green marbles et
 and write n for the total in the bag.

This �ts ni
ely into a table and we �nd that if we know the marble is light (event A),
then we easily get

P (A|B) =
nA∩B
nB

=
nA∩B/n
nB/n

=
P (A ∩B)

P (B)

De�nition 3 If A and B are events then the A are independent B if

P [A ∩B] = P [A]P [B].

Note how this is equivalent to P (A|B) = P (A) when P [B] > 0, but this de�nition does

not require positive probability of P [B].

1.2 Random variables

1.2.1 Handout

De�nition 4 A random variable is a fun
tion

X : Ω → R

su
h that X−1(B) ∈ A if B ∈ B, where B is the Borel-algebra over R so we 
an de�ne

P [X ∈ B] = P [X−1(B)].

De�nition 5 The 
umulative distribution fun
tion (
df) is the fun
tion F de�ned by

F (x) := P [X ≤ x].

Commonly an original sample spa
e is not obvious but the possible out
omes of an experi-

ment are in R and we de�ne

X = idR

to obtain a random variable whi
h has the desired probability distribution on R.
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De�nition 6 A random variable X is dis
rete if P [X = x] > 0 for a �nite or 
ountably

in�nity 
olle
tion of x-values, and

∑

x∈R
P [X = x] = 1

(so all the mass is at these 
ountable points).

In this 
ase the probability mass fun
tion of X is the fun
tion

p(x) := P [X = x].

De�nition 7 X is a 
ontinuous random variable if there is a fun
tion f : R → R+ su
h

that

P [X ∈ A] =

∫

A
f(x)dx

for all events A.

It is understood that the integral is a regular Riemann integral and the non-negative

fun
tion f needs to be integrable.

The two de�nitions 
an be 
ombined into one using either the Riemann-Stieltjes integral

or Lebesque integration.

Example 2 Consider two tosses of an unbiased 
oin. In this 
ase the sample spa
e is a

dis
rete 
olle
tion whi
h we 
an denote

Ω = {kk, ks, sk, ss}

Where k indi
ate a result of heads, and s implies tails.

De�ne a random variable whi
h 
ounts the number of tails:

X(ω) =







0 ω = kk,
1 ω = ks or sk,
2 ω = ss.

If the 
oin being used is fair then P (ω) = 1/4 for ea
h ω ∈ Ω. Thus we 
an 
ompute the


han
es of getting a 
ertain amount of heads from our two tosses. If x is the number of

heads then

x P [X = x]

0 1/4

1 1/2

2 1/4

Example 3 The double-or-nothing game:

Xn := 2nχ[0,2−n]

The reader should elaborate and show that this represents a fair double-or-nothing game:

5



� What is Ω?

� What is P?

� Is it true that P [Xn+1 = 2Xn|Xn > 0] = 1/2? Rewrite this in several ways.

Example 4

X1,X2, . . . : [0, 1] → {0, 1}

Split [0, 1[ into the intervals

[
k

2i
,
k + 1

2i
[

where k = 0, 1, . . . 2i − 1 and let

Xi(ω) :=

{

0 2j
2i

≤ ω < 2j+1
2i

1, otherwise.

Then Xi,Xj are independent pairs if i 6= j.

De�nition 8 Let X and Y be two dis
rete random variables. The Conditional mass

fun
tion of X given a value of the random variable Y is given by

PX|Y (x|y) = P [X = x|Y = y] =
P [X = x, Y = y]

P [Y = y]
=

PXY (x, y)

PY (y)
,

where the denominator is positive.

De�nition 9 Let X and Y be two 
ontinuous random variables. The 
onditional density

of X given a value of the random variable Y is

fX|Y (x|y) =
f(x, y)

fY (y)
, fY |X(y|x) = f(x, y)

fX(x)
wherethedenominatorispositive.

Example 5 Given that PXY (1, 1) = 0.5, PXY (2, 1) = 0.1, PXY (2, 2) =
0.3, PXY (1, 2) = 0.1, PY (1) = 0.6 
al
ulate the probability of X=1 given that Y=1.

We use the de�nition of the 
onditional mass fun
tion:

PX|Y (1, 1) =
PXY (1, 1)

PY (1)
=

0.5

0.6
= 5/6
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1.3 Expe
ted values

1.3.1 Handout

De�nition 10 The expe
ted value of a random variable X is

E[X] :=

{ ∫

xf(x)dx
∑

xp(x)

if this exists or more spe
i�
ally if E[|X|] < ∞, where f (p) is the density fun
tion

(mass fun
tion) of X.

De�nition 11 The varian
e of a random variable X,

V ar[X] or V [X], is
V ar[X] := E

[

(X − µ)2
]

when µ = E[X] and all the integrals exist (and are �nite).

Theorem 1.1 If E[X] = µ and V X = σ2
, and W := aX + b for numbers a, b, then

E[W] = aµ+ b and VW = b2

Theorem 1.2 If E[X] = µ and V X = σ2
, and W := X−µ

σ then E[W] = 0 and VW = 1
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2 Generating fun
tions

2.1 Chara
teristi
 and moment generating fun
tions

2.1.1 Handout

De�nition 12 The moment generating fun
tion (m.g.f.) of the random variable X is the

fun
tion

MX(T ) := E
[

etX
]

de�ned for those values of t where the expe
ted value exists.

De�nition 13 The 
hara
teristi
 fun
tion of (the distribution of) X is the fun
tion

φX(t) := E
[

eitX
]

Remark 2.1. φX always exists sin
e

E
[

|eitX |
]

= E[1] = 1

and hen
e both the real and imaginary parts of the integral exis so that E
[

eitX
]

exists for

t ∈ R.

We will use the following result:

If X1,X2, . . . is a sequen
e of random variables with 
umulative distribution fun
tions

Fn and 
hara
teristi
 fun
tions φn su
h that φn(t) → φ(t) when |t| < ε and φ 
orresponds

to the 
umulative distribution fun
tion F whi
h is 
ontinuous at x, then Fn(x) → F (x). In
other words,

P [Xn ≤ x] → P [X ≤ x] if φn(t) → φ(t).

Example 6 If X ∼ G(α, β) i.e. X has density

f(x) =
1

Γ(α)βα
xα−1e−x/β, x > 0.

(the gamma density, dis
ussed in detail later) then

MX(t) = E
[

etX
]

=

∫ ∞

0

etxxα−1e−x/β

Γ(α)βα
dx

=
Γ(α)( −1

t−1/β )
α

Γ(α)βα

∫ ∞

0

xα−1e
− x

−1/(t−1/β)

Γ(α)( −1
t−1/β )

α

=
1

βα( 1β − t)α
=

1

(1− βt)α
.
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Theorem 2.1 Let ε > 0 and X be a random variable with moment generating fun
tion

M(t) = E
[

etX
]

de�ned for |t| < ε. Then:

E[Xn] = M (n)(0) =
dn

dtn
M(t)

∣

∣

∣

∣

t=0

.

Proof. IfM(t) =
∫

etxf(x) dx and if it is permissible to di�erentiate under the integral, then

M (n)(t) =

∫

etxxnf(x) dx and thus M (n)(0) =

∫

xnf(x) dx = E[Xn] .

Note also that if it is permissible to take the summation outside the expe
ted value, then

E
[

etX
]

= E

[ ∞
∑

n=0

(tX)n

n!

]

?
=

∞
∑

n=0

E

[

tn

n!
Xn

]

=
∞
∑

n=0

tn

n!
E[Xn] ,

so if E[Xn] exists and is limited for all n, then this is a �well-behaved� fun
tion andM (n)(0) =
E[Xn].

Example 7 (a) The standard normal distribution. Let Z have the standard normal

distribution, i.e. Z ∼ n(0, 1) with density

f(ζ) =
1√
2π

e−ζ2/2, ζ ∈ R.

The 
umulative distribution fun
tion is

F (ζ) =
1√
2π

∫ ζ

−∞
e−t2/2 dt, ζ ∈ R,

and the moment generating fun
tion is

MZ(t) =

∫

etx
1√
2π

e−x2/2 dx

=
1√
2π

∫

e−
1
2
(x2−2tx) dx

= e
1
2
t2 · 1√

2π

∫

e−
1
2
(x−t)2 dx

= e
1
2
t2 , t ∈ R.

We thus obtain

M ′
Z(t) = te

1
2
t2

og M ′′
Z(t) = e

1
2
t2 + t2e

1
2
t2 ,

and from the previous theorem it follows that

E[Z] = M ′
Z(0) = 0 og E

[

Z2
]

= M ′′
Z(0) = 1.

Finally we have

Var[Z] = E
[

(Z− µ)2
]

= E
[

Z2 − 2Zµ+ µ2
]

= E
[

Z2
]

− (E[Z])2 = 1.
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(b) The general normal distribution. Let X := σZ + µ with Z ∼ n(0, 1). Then


learly E[X] = σE[Z] + µ = µ and

Var[X] = E
[

X2
]

− (E[X]2)

= E
[

(σZ + µ)2
]

− µ2

= E
[

σ2Z2 + 2σµZ + µ2
]

− µ2

= σ2
E
[

Z2
]

+ 2σµE[Z] + µ2 − µ2

= σ2.

The r.v. X is said to have a general normal distribution with expe
ted value µ
and varian
e σ2

, denoted X ∼ n(µ, σ2). The moment generating fun
tion is

MX(t) = E

[

et(σZ+µ)
]

= E
[

etσZ+tµ
]

= etµE
[

e(tσ)Z
]

= etµMZ(tσ), t ∈ R.

The 
.d.f of the random variable is given by

FX(x) = P(X ≤ x) = P(σZ + µ ≤ x) = P
(

Z ≤ x−µ
σ

)

= FZ(
x−µ
σ ), x ∈ R,

and its density is therefore

fX(x) = d
dxFX(x) = d

dxFZ(
x−µ
σ ) = 1

σfZ(
x−µ
σ ) = 1√

2πσ
e−

(x−µ)2

2σ2 , x ∈ R.

Theorem 2.2 Let ε > 0 and X1,X2, . . . be random variables with moment generating

fun
tions MX1 ,MX2,, . . . su
h that MXn(t) → M(t), n → ∞, fyrir |t| < ε. If M is the

moment generating fun
tion of the random variable X, then FXn(x) → FX(x) for all x
where FX is 
ontinuous.

Theorem 2.3 Let X1, . . . ,Xn be independent random variables with moment generating

fun
tions MX1 , . . . ,MXn and, as before X̄ := 1
n

∑n
i=1 Xi to obtain:

MX̄(t) =
n
∏

i=1

MXi(t/n) og M∑
Xi
(t) =

n
∏

i=1

MXi(t).

In parti
ular, if X1, . . . ,Xn all have the same moment generating fun
tion M :

MX̄(t) = (M(t/n))n og M∑
Xi
(t) = (M(t))n.

Example 8 Let X1, . . . ,Xn ∼ Gamma(α, β) be independent with α, β > 0 so ea
h Xi

has the density

fXi(x) =
xα−1e−x/β

Γ(α)βα
, x > 0,

and moment generating fun
tion

M(t) =
1

(1− βt)α
.
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From the above theorem we see that

MX̄(t) = (M(t/n))n =

(

1− β
t

n

)−nα

=
1

(

1− β
n t
)nα ,

whi
h implies that X ∼ Gamma(nα, β/n). In addition

M∑
Xi
(t) = (M(t))n =

(

1

(1− βt)α

)n

=
1

(1− βt)nα
,

whi
h shows that

∑n
i=1Xi ∼ Gamma(nα, β).
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3 On multivariate transforms

3.1 Ba
kground to some multivariate transformations

3.1.1 Handout

Before going further we need some results from 
al
ulus of several variables. First re
all

that if the fun
tion

g : Rm → R
n; g := (g1, . . . , gn)

′

is one-to-one and 
ontinuously di�erentiable then the Ja
obian determinant of the transfor-

mation is given by

J =

∣

∣

∣

∣

∂g

∂x

∣

∣

∣

∣

= |∇g1 · · · ∇gn| =

∣

∣

∣

∣

∣

∣

∣

∂g1
∂x1

· · · ∂gn
∂x1

.

.

.

.

.

.

.

.

.

∂g1
∂xm

· · · ∂gn
∂xm

∣

∣

∣

∣

∣

∣

∣

.

For �
onvenient� regions R ⊆ R
n
and a fun
tion f whi
h is 
ontinuous on g(R) we have

∫

g(R)
f(x)dx =

∫

R
f(g(u))|J |du.

We therefore see that if U is a random variable with X = g(U), then

fU(u) = fX(g(u))|J |.

Example 9 Let X and Y be 
ontinuous and independent random variables and de�ne

Z := X + Y . If W := X, and 
onsider the transformation

(

x
y

)

7→
(

w
ζ

)

:=

(

x
x+ y

)

where J = | 1 1
0 1 | = 1, and from the above we see that

fW,Z(w, ζ) = fX,Y (w, ζ − u)|J | = fX,Y (w, ζ − u) = fX(w)fY (ζ − u).

Hen
e we see that the marginal density fun
tion of Z is given by

fZ(ζ) =

∫ ∞

−∞
fW,Z(w, ζ) dw =

∫ ∞

−∞
fX(u)fY (ζ − u) du.

This 
an be derived in several di�erent ways, e.g.

FZ(ζ) = P(Z ≤ ζ)

= P(X + Y ≤ ζ)

=

∫ ∞

−∞

∫ ζ−x

−∞
f(x, y) dx dy

=

∫ ∞

−∞

∫ ζ−x

−∞
fX(x)fY (y) dx dy

=

∫ ∞

−∞
fX(x)FY (ζ − x) dx.
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Example 10 Let X ∼ Cauchy(0, 1) with density

fX(x) =
1

π

1

1 + x2
, x ∈ R.

For this random variable we see that

E[|X|] =
∫ ∞

−∞

|x|
π(1 + x2)

dx = 2

∫ ∞

0

x

π(1 + x2)
dx = ∞,

and hen
e the expe
ted value E[X] is not de�ned.

We say that X has a general Cau
hy-distribution with parameters µ and σ2
,

denoted X ∼ Cauchy(µ, σ2), if it has the density

fX(x) =
1

πσ

1

1 + (x−µ
σ )2

, x ∈ R.

Re
all that if X1 and X2 are independent random variables and Var[X1] = Var[X2] = σ2
,

then

Var

[

X1 +X2

2

]

=
Var[X1] + Var[X2]

4
=

σ2

2

and in general we have that if X1, . . . ,Xn are independent random variables and Var[Xi] =
σ2
, then

Var

[

X1 + · · ·+Xn

n

]

=
σ2

n
.

be
ause:

Var

[

X1 + · · ·+Xn

n

]

= Var

[

1

n

n
∑

i=1

Xi

]

=
12

n2
Var

[

n
∑

i=1

Xi

]

=
12

n2
nσ2 =

σ2

n

Example 11 On the other hand if X1,X2 ∼ Cauchy(0, 1) are independent, then

X1 +X2

2
∼ Cauchy(0, 1)

Let's derive the result:

Let X1,X2 ∼ Cau
hy(0,1) iid. and de�ne Z := X1+X2
2 . The pdf of a X ∼ Cau
hy(0,1)

is fX(x) = 1
π

1
1+x2 .

It is known that E[X] = ∞ so the mgf for the Cau
hy distribution doesn't exist.

However the 
hara
teristi
 fun
tion does exist, de�ned by φX(t) = E[eitX ], t ∈ R.

If we 
an show that φZ(t) = φX(t) then it follows that the variables have the same

distribution fun
tion, FZ(X) = FX(X), and thus follow the same distribution i.e. Z ∼
Cau
hy(0,1).

Let's begin with �nding φX(t):

φX(t) = E[eitX ] =

∫ +∞

−∞
eitXfX(x)dx =

∫ +∞

−∞
eitX

1

π

dx

1 + x2
(1)

We use 
ontour integration to 
al
ulate this integral. De�ne a 
losed path γ :=
<-R,R> ∗ βR where βR is a half 
ir
le from R to −R in the upper plane H+. Let

g(z) = eitz

1+z2
and integrate it along γ. So by the residue theory we get

πφX(t) =

∫

γ
g(z)dz =

∫

<−R,R>
g(z)dz +

∫

βR

g(z)dz = 2πi
∑

αj∈H+

Res(g, αj) (2)
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where αj are poles of g(z) in the upper half plane.

Let's show that

∫

βR
g(z)dz → 0 as R → ∞:

∣

∣

∣

∣

∫

βR

g(z)dz

∣

∣

∣

∣

≤
∫

βR

|g(z)||dz|

=

∫

βR

|eitz|
|1 + z2|

≤
∫

βR

|dz|
|1 + z2|

≤ sup
|z|=R

1

|1 + z2|

∫

βR

|dz|

≤ πR

R2 − 1
→ 0 as R → ∞

Sin
e g(z) has poles of order 1 at α1 = i ∈ H+ and α2 = −i ∈ H−. The residue at α1

is

Res(g, i) = lim
z→i

(z − i)g(z) = lim
z→i

(z − i)
eitz

(z − i)(z + i)
=

e−|t|

2i
(3)

Note the |t| sin
e t ∈ R.

Take the limit of (2) as R → ∞ and get

πφX(t) = 2πi
e−|t|

2π
= πe−|t|

and so

φX(t) = e−|t|
(4)

Let's �nd the 
hara
teristi
 fun
tion of Z:

φZ(t) = φX1+X2
2

(t)

= E
[

e
it(X1+X2)

2

]

= E
[

e
itX1

2 e
itX2

2

]

= E
[

e
itX1

2

]

E
[

e
itX2

2

]

= φX1

(

t

2

)

φX2

(

t

2

)

= e−| t2 |e−| t2 | =
(

e−| t2 |
)2

= e−|t|

Thus we have shown that φX1(t) = φX2(t) = φZ(t) and thereby it follows that FX1 =
FX2 = FZ and so Z ∼ Cau
hy(0,1).

More generally if X1, . . . ,Xn ∼ Cauchy(0, 1) then

X1 + . . . +Xn

n
∼ Cauchy(0, 1).

Theorem 3.1 (Property of mean and varian
e of normals) Let X1, . . . ,Xn ∼
n(µ, σ2) be independent random variables and de�ne

X̄ :=
1

n

n
∑

i=1

Xi og S2 :=
1

n− 1

n
∑

i=1

(Xi − X̄)2.

then:

14



(i) X̄ and S2
are independent random variables.

(ii) X̄ ∼ n(µ, σ2/n).

(iii)

(n−1)S2

σ2 =
∑n

i=1(Xi−X̄)2

σ2 ∼ χ2
n−1.

Proof. to be done...

Copyright 2023, Anonymous

This work is li
ensed under the Creative Commons Attribution-ShareAlike Li
ense. To

view a 
opy of this li
ense, visit http://
reative
ommons.org/li
enses/by-sa/1.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

15



4 The gamma, 
hi-square and t distributions

4.1 Gamma, 
hisquare and t

4.1.1 Handout

Example 12 Let α, β > 0 and x > 0. Then xα−1e
−

x
β

Γ(α)βα is a probability density fun
tion:

1

Γ(α)βα

∫ ∞

0
xα−1e

− x
β dx =

βα

Γ(α)βα

∫ ∞

0
yα−1e−ydy

=
βα

Γ(α)βα
· Γ(α) = 1

where we substitute y = x
β to get the �rst equality, and the se
ond equality follows from

the de�nition of the gamma fun
tion.

De�nition 14 The density of the gamma distribution is given by

xα−1e−x/β

Γ(α)βα
, x > 0

and moment generating fun
tion

M(t) = (1− βt)−α, t <
1

β
.

In the 
ase of α = ν/2, β = 2 this is 
alled a χ2
- distribution with ν degrees of freedom

and density

xν/2−1e−x/2

Γ(ν2 )2
ν/2

, x > 0.

Example 13 The mean of the gamma distribution is given by

E(X) =

∫ ∞

0
xf(x)dx

∫ ∞

0
x
xα−1e−x/β

Γ(α)βα
dx

∫ ∞

0

xαe−x/β

Γ(α)βα
dx

1

Γ(α)βα

∫ ∞

0
xαe−x/βdx

Substitute x = uβ, dx = βdu to get

1

Γ(α)βα

∫ ∞

0
uαβαe−uβdu

1

Γ(α)βα

∫ ∞

0
uαβα+1e−udu

16



βα+1

Γ(α)βα

∫ ∞

0
uαe−udu

This then simpli�es and due to the fa
t

∫ ∞

0
uαe−udu = Γ(α+ 1)

We get

βΓ(α+ 1)

Γ(α)

Due to Γ(α+ 1) = αΓ(α) We get E(X) = αβ as the mean of the gamma distribution.

Example 14 For Z2 ∼ n (0, 1) it is easy to that Z2 ∼ χ2
1

Find the distribution of X = Z2
, where

f(z) =
1

σ
√
2π

e
−(x−µ)

2σ2

Lets begin with the 
df of X

FX(x) = P (X ≤ x) = P (Z2 ≤ x) = P (−√
x ≤ Z ≤ √

x)

From this we get

FX(x) = FZ(−
√
x)− FZ(

√
x)

And �nally we have:

fX(x) =
1

2
x

−1
2

1√
2π

e
−x
2 +

1

2
x

−1
2

1√
2π

e
−x
2 =

1

2
1
2

√
2π

x
−1
2 e

−x
2

This is the pdf of Γ(12 , 2) and is 
alled the 
hi-square distribution with 1 degree of freedom,
that is Z2 ∼ χ2

1

� Using the moment generating fun
tion we see that the sum of independent gamma

random variables (with the same β) is a gamma-distributed random variable.

� We therefore also see that if z1, ..., zn ∼ n(0, 1) iid then

z21 + ...+ z2n ∼ χ2
n.

Example 15 If X ∼ χ2
ν , then E[[X]] = ν. The probability density fun
tion of X is

fX(x) =

{

cx(
ν
2
−1)e−

1
2
x, if x ≥ 0.

0, otherwise

where c = 2
n
2 Γ

(

ν
2

)

and Γ() is the gamma fun
tion.

17



By de�nition: E [X] =
∫∞
0 xfX(x)dx

From that we get:

E [X] =

∫ ∞

0
xcx(

ν
2
−1)e−

1
2
xdx

E [X] = c

∫ ∞

0
x(

ν
2
−1+1)e−

1
2
xdx

E [X] = c([−x(
ν
2 )2e−

1
2
x]∞x=0 +

∫ ∞

0

ν

2
x(

ν
2
−1)2e−

1
2
xdx)

E [X] = c((0− 0) + ν

∫ ∞

0
x(

ν
2
−1)e−

1
2
xdx)

E [X] = ν

∫ ∞

0
cx(

ν
2
−1)e−

1
2
xdx

E [X] = ν

∫ ∞

0
xfX(x)dx

By de�nition:

∫∞
0 fX(x)dx = 1 be
ause fX(x) is a pdf. From that we get:

E [X] = ν

Example 16 If V ∼ χv then V ar[V ] = 2v

Let X ∼ χn The probability density fun
tion of X is

fX(x) =

{

cx(
n
2
−1)e−

1
2
x, if x ≥ 0.

0, otherwise

where c = 2
n
2 Γ

(

n
2

)

and Γ() is the gamma fun
tion.

We know that V ar[X] = E
[

X2
]

− (E[X])2. Now:

E
[

X2
]

=

∫ ∞

0
x2fX(x)dx

=

∫ ∞

0
x2cxn/2−1e−x/2dx

= c

∫ ∞

0
xn/2+1e−x/2dx

integration by parts:

= c
[

−xn/2+12e−x/2
]∞

x=0
+

∫ ∞

0

(n

2
+ 1

)

xn/22e−x/2dx

= c(n + 2)

∫ ∞

0
xn/2e−x/2dx

integration by parts:

= c(n + 2)
[

−xn/22e−x/2
]∞

x=0
+

∫ ∞

0

n

2
xn/2−12e−x/2dx

18



= c(n + 2)

(

n

∫ ∞

0
xn/2−1e−x/2dx

)

= (n+ 2)n

∫ ∞

0
cxn/2−1e−x/2dx

= (n+ 2)n

∫ ∞

0
fX(x)dx

integral of the pdf over the support [0,∞) equals 1:

= (n+ 2)n

= n2 + 2n

E [X]2 = n2

Now it's 
lear to see that V ar[X] = n2 + 2n− n2 = 2n

De�nition 15 If Z ∼ n(0, 1) and V ∼ χ2
ν , then the distribution of the random variable

Z/
√

V/ν is termed the t-distribution with ν degrees of freedom, denoted T ∼ tν .

We 
an �nd the density of T by 
onsidering the fun
tion (U, V ) 7→ (T,W ) with W := V ,
thus obtaining the joint density of T and W and then integrating out W .

De�nition 16 If U ∼ χ2
ν1 and V ∼ χ2

ν2 then the distribution of the random variable

U/ν1
V/ν2

is termed the F-distribution with ν1 and ν2 degrees of freedom. denoted F ∼ Fν1,ν2 .

We have a general interest in drawing 
on
lusions about µ when X1, ...,Xn ∼ n(µ, σ2)
are independent but µ, σ2

are all unknown numbers. Su
h 
on
lusions always build on the

fa
t that

X̄ :=
1

n

n
∑

i=1

Xi ∼ n

(

µ,
σ2

n

)

so that

X̄ − µ

σ/
√
n

∼ n(0, 1)

and if

S :=

n
∑

i=1
(Xi − X̄)2

n− 1

then

(n− 1)S2

σ2
∼ χ2

n−1

19



whi
h are independent of X̄, and hen
e

X̄ − µ

S/
√
n

=

X̄−µ
σ/n

√

n∑

i=1
(Xi−X̄)2/σ2

n−1

∼ tn−1.

A 
onsequen
e of this is that if µ = µ0 then the number t := x̄−µ
s/

√
n
will in 95% of all

experiments be between 2, 5% and 97, 5% probability limits in the t-distribution.
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5 Linear 
ombinations of random variables

5.1 General linear 
ombinations

5.1.1 Handout

Re
all that if X and Y are random variables with expe
ted value

µX = E[X] and µY = E[Y ] ,

then the 
ovarian
e of X and Y is de�ned by

Cov(X,Y ) := E[(X − µX)(Y − µY )] .

Spe
ial 
ase: X = Y ⇒ Cov(X,Y ) = Var[X] = σ2
X - if this expe
ted value exists. Also

re
all that if X and Y are independent, then Cov(X,Y ) = 0 sin
e it is easy to see that

fX,Y (x, y) = fX(x)fY (y) ⇒ Cov(X,Y ) =

∫ ∫

(x− µX)(y − µY )fX(x)fY (y)dxdy = 0.

Theorem 5.1 IfX1, ...,Xn are random variables and Y1, ..., Ym are random variables with

Cov(Xi, Yj) = σij and a1, ..., an, b1, ..., bm are real numbers, then

Cov(a′X,b′Y) =

n
∑

i=1

m
∑

j=1

aibjσij.

Proof. We now have

Cov

(

a′X,b′Y
)

= E

[(

∑

aiXi − E
∑

aiXi

)(

∑

bjYj − E
∑

bjYj

)]

= E

[(

∑

aiXi −
∑

aiEXi

)(

∑

bjYj −
∑

bjEYj

)]

= E



{
n
∑

i=1

ai (Xi − EXi)}{
m
∑

j=1

bj (Yj − EYj)}





=

n
∑

i=1

m
∑

j=1

E[ai (Xi − EXi) bj (Yj − EYj)]

=

n
∑

i=1

m
∑

j=1

aibjσij.

as required.

De�nition 17 The varian
e-
ovarian
e matrix of the random variables (or random ve
-

tor) (X1, ...,Xn) is the matrix

Σ = (σij) = (Cov(Xi,Xj)).
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Corrollary 5.1 If X1, ...Xn are s.t. Cov(Xi,Xj) = 0 if i 6= j and a,b ∈ R
n, then

Cov(a′X,b′X) =
n
∑

i=1
aibiσ

2
i [= (a′b)σ2

if σ2
i = σ2 ∀i].

Corrollary 5.2 If X1, ...,Xn are su
h that σij = δijσ
2
and a,b ∈ R are su
h that a⊥b,

then Cov(a′X,b′X) = 0.

Corrollary 5.3 If (X1, ...,Xn)
′
is a ve
tor r.v. with E[X] = µ,Var[X] = Cov(X) = Σ

and a ∈ R
n, then Ea′X = a′µ and V a′X = a′Σa.

Corrollary 5.4 Cov(a′X,b′X) = a′Σb.

Corrollary 5.5 X ve
tor r.v., EX = µ, VX = Σ. A is an n×nmatrix, then E[AX] = Aµ
og Var[AX] = AΣAT.

5.2 Linear 
ombinations of Gaussian random variables

5.2.1 Handout

Theorem 5.2 Let X1, ...,Xn ∼ n(0, 1) be independent, let X = (X1, ...,Xn)
′
and let

Y be the r.v. Y := PX + µ where P is a matrix with rank(P ) = n and µ ∈ Rn.
Then the distribution of Y is a multivariate normal distribution, or multivariate Gaussian

distribution, given with the multivariate density

f(y) =
1

(2π)n/2|Σ|1/2 e
−1/2(y−µ)′Σ−1(y−µ)

where Σ = PP ′. This is denoted Y ∼ n(µ,Σ) (or Y ∼ MVN(µ,Σ)).

Proof. Sin
e X1, ...,Xn ∼ n(0, 1) iid, the joint density is given as the produ
t

fX(x) =

n
∏

i=1

fXi
(xi) =

n
∏

i=1

1√
2π

e−x2
i /2 =

1

(2π)n/2
e−

∑
x2
i /2.

The inverse of the fun
tion x → y = Px+ µ is y → x = P−1(y − µ) = g(y) with Ja
obian

determinant J = | δgδy | = |P−1| so the density of Y is

f(y) = fX(g(y))|J | = fX(P−1(y − µ))|P−1|.
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Sin
e Σ = |PP ′| = |P |2 > 0 we see that

f(y) =
1

(2π)n/2|P |e
−[P−1(y−µ)]′[P−1(y−µ)]

⇒ f(y) =
1

(2π)n/2|Σ|1/2 e
−(y−µ)′Σ−1(y−µ)

(sin
e (P−1)′P−1 = (P ′)−1P−1 = (PP ′)−1 = Σ−1) - and in parti
ular, this is in fa
t a

density).

Remark 5.1. Some 
omments

� The univariate normal is a spe
ial 
ase

� If Σ is diagonal (i.e. Cov(Yi, Yj) = 0 if i 6= j), then the random variables are indepen-

dent.

Theorem 5.3 If X ∼ n(µ,Σ), then Xi,Xj are independent if and only if Cov(Xi,Xj) =
0.

Theorem 5.4 If (X1, X2, . . . Xn, Y1, Y2, . . . , Ym)′ is a Gaussian r.v., then X =
(X1, X2, . . . Xn)

′
and Y = (Y1, Y2, . . . , Ym)′ are independent i� Cov(Xi, Yj) = 0 ∀i, j.

Theorem 5.5 Let Xi ∼ n(µ, σ2) be independent, i = 1, ..., n, and Yi := ξ′
i
X where

ξ1, ..., ξn form an orthonormal basis for R
n. Then Y1, ..., Yn are independent Gaussian

random variables with

Yi ∼ n(ξi
′µ, σ2).

Proof. All of this follows from the de�nition of a multivariate normal distribution.

Remark 5.2. The properties of the 
ommon t-test now follow from a 
olle
tion of results

based on the above. First let

ξ1 :=
1√
n
1, V := Span{ξ1}

and expand this (using e.g. a Gram-S
hmidt pro
ess) to obtain ξ2, ..., ξn whi
h form an

orthonormal basis for V ⊥
. Thus ξ1, ..., ξn form an orthonormal basis for R

n
. Write X =

n
∑

i=1
ζ̂i · ξi - the 
oordinates of X in the basis (ξi) are ζ̂1, ..., ζ̂n where ζ̂i = X · ξi so that

1. ζ̂1 = X · ξ1 = 1√
n

∑

i
Xi =

√
nX̄ and

2.

n
∑

i=2
ζ̂iξi = X− ζ̂1ξ1 = X−√

n · X̄ 1√
n
1 = X− X̄1.

3. Cov(ζ̂i, ζ̂j) = 0 if i 6= j and they are Gaussian so they are independent.
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4. (ζ̂1, ..., ζ̂n)
′ = PX ∼ n(Pµ, σ2PP ′) with P = [ξ′1...ξ

′
n]

′
and PP ′ = I.

5. Eζ̂i = E[X · ξi] = (µ1) · ξi = 0 if i ≥ 2

6.

n
∑

i=1
(Xi − X̄)2 =‖ X− X̄1) ‖2=‖ ∑n

i=2 ζ̂i · ξi ‖2=
∑n

i=2 ζ̂
2
i

7. For i ≥ 2 we see that ζ̂i ∼ n(0, σ2) and these are independent so

ζ̂i
σ ∼ n(0, 1) are also

independent

8.

n∑

i=2
ζ̂2i

σ2 ∼ χ2
n−1 and independent of ζ̂1 ∼ n(

√
nµ, σ2) and we obtain

∑
(Xi−X̄)2

σ2 ∼ χ2
n−1

X̄−µ
σ/

√
n
∼ n(0, 1)

}

independent

thus

X̄−µ
σ/

√
n

√

n∑

i=1
(Xi−X̄)2/σ2

n−1

∼ tn−1

Remark 5.3. Note that if X1, . . . ,Xn ∼ n(µ, σ2) iid, then EX̄ = µ and ES2 = σ2
, where

X̄ = 1
n

∑n
i=1 Xi, S

2 = 1
n−1

∑n
i=1 Xi − X̄)2. But we also see that e.g.

EX̄ = E

[

1

n

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

EXi =
1

n
nµ = µ,

whi
h holds independently of any assumptions of normality - and the r.v.s do not have to

be independent, i.e.: If X1, . . . ,Xn are random variables with EXi = µ, then EX̄ = µ.

Remark 5.4. Next note that if X1, . . . ,Xn are independent random variables with expe
ted

value µ varian
e σ2
, then

1

:

E

[

n
∑

i=1

(xi − X̄)2

]

= E

[

n
∑

i=1

X2
i − nX̄2

]

=
n
∑

i=1

E[X2
i ]− nE[X̄2]

=

n
∑

i=1

(σ2 + µ2)− n(σ2
X̄ + µ2

X̄)

= nσ2 + nµ2 − n
σ2

n
− nµ2

= (n− 1)σ2.

We have shown: If X1, . . . ,Xn are independent with EXi = µ,VXi = σ2
, then EX̄ = µ

and ES2 = σ2
.
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1

Where we use σ2
X̄ = σ2/n if the Xi are independent and a general formula: σ2 = E[X2]−µ2

, inverted to

give the very useful version, E[X2] = σ2 + µ2
for a random variable with this expe
ted value and varian
e.
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