stats6251prob 625.1 - Probability background

Anonymous

August 24, 2023

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

1 Probability spaces and random variables 3
1.1 Probability background 3
1.1.1 Handout 3
1.2 Random variables 4
1.2.1 Handout 4
1.3 Expected values 7
1.3.1 Handout 7
2 Generating functions 8
2.1 Characteristic and moment generating functions 8
2.1.1 Handout 8
3 On multivariate transforms 12
3.1 Background to some multivariate transformations 12
3.1.1 Handout 12
4 The gamma, chi-square and t distributions 16
4.1 Gamma, chisquare and t 16
4.1.1 Handout 16
5 Linear combinations of random variables 21
5.1 General linear combinations 21
5.1.1 Handout 21
5.2 Linear combinations of Gaussian random variables 22
5.2.1 Handout 22

1 Probability spaces and random variables

1.1 Probability background

1.1.1 Handout

Definition 1 A probability space consists of a set, Ω, the sample space (or population) with a collection \mathcal{A} of sets called events A which are subsets of Ω (i.e. $A \subseteq \Omega$ so $\mathcal{A} \subseteq \mathcal{P}(\Omega)$) and a probability measure which is a function

$$
P: \mathcal{A} \rightarrow[0,1]
$$

satisfying the conditions $0 \leq P[A] \leq P[\Omega]=1$ and

$$
P\left[\bigcup_{i=1}^{\infty} A_{i}\right]=\sum_{i=1}^{\infty} P\left[A_{i}\right]
$$

for $A_{i} \in \mathcal{A}$ such that $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$

Note how it is implicitly assumed in this definition that \mathcal{A} has the property h that the countable union,

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

is included in \mathcal{A} if the individual sets are members. A collection of sets which has the property that it contains Ω, contains the complement of each member set and contains countable unions of subset is call a $\sigma-$ algebra.

The Borel-algebra is the smallest collection of sets which contains the half-closed intervals, $[a, b[$, for $a, b \in \mathbb{R}, a<b$ (or appropriate subset of \mathbb{R}) and is closed with respect to countable unions and complements.

Note that the Borel-algebra does exist since (1) an intersection of σ-algebras is also a σ algebra and (2) $\mathcal{P}(\Omega)$ is a σ-algebra containing these intervals. It follows that the intersection of all σ-algebras containing the intervals is what we need and this defines the Borel-algebra.

Along with the definition of random variables below, these formalities suffice for this course in mathematical statistics. Much more detail can be obtained in a course on measure theory or theoretical probability.

Definition 2 If A and B are events with $P[B]>0$, then the probability of A given B is

$$
P[A \mid B]:=\frac{P[A \cap B]}{P[B]}
$$

That this is the only reasonably definition is best seen from a simple discrete example.

Example 1 Suppose we have a bag of marbles with two properties, colour and weight. Each marble either green or yellow and either light or heavy.

If we pull a marble out of the bag while blindfolded we can check wether it is light or heavy.

Denote the event of the marble being light B, so getting a heavy marble is B^{c}. Similarly, denote the event of it being green A.

A typical question would be "what is the probability of a green marble given that it is light: $P(A \mid B)$.

The find the only reasonably definition for this quantity, introduce the notation n_{C} for the number of marbles which are in a set C. So n_{A} are the green marbles, $n_{A \cap B}$ are the light-and-green marbles etc and write n for the total in the bag.

This fits nicely into a table and we find that if we know the marble is light (event A), then we easily get

$$
P(A \mid B)=\frac{n_{A \cap B}}{n_{B}}=\frac{n_{A \cap B} / n}{n_{B} / n}=\frac{P(A \cap B)}{P(B)}
$$

Definition 3 If A and B are events then the A are independent B if

$$
P[A \cap B]=P[A] P[B] .
$$

Note how this is equivalent to $P(A \mid B)=P(A)$ when $P[B]>0$, but this definition does not require positive probability of $P[B]$.

1.2 Random variables

1.2.1 Handout

Definition 4 A random variable is a function

$$
X: \Omega \rightarrow \mathbb{R}
$$

such that $X^{-1}(B) \in \mathcal{A}$ if $B \in \mathcal{B}$, where \mathcal{B} is the Borel-algebra over \mathbb{R} so we can define

$$
P[X \in B]=P\left[X^{-1}(B)\right] .
$$

Definition 5 The cumulative distribution function (cdf) is the function F defined by

$$
F(x):=P[X \leq x] .
$$

Commonly an original sample space is not obvious but the possible outcomes of an experiment are in \mathbb{R} and we define

$$
X=i d_{\mathbb{R}}
$$

to obtain a random variable which has the desired probability distribution on \mathbb{R}.

Definition 6 A random variable X is discrete if $P[X=x]>0$ for a finite or countably infinity collection of x-values, and

$$
\sum_{x \in \mathbb{R}} P[X=x]=1
$$

(so all the mass is at these countable points).
In this case the probability mass function of X is the function

$$
p(x):=P[X=x] .
$$

Definition $7 X$ is a continuous random variable if there is a function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that

$$
P[X \in A]=\int_{A} f(x) d x
$$

for all events A.

It is understood that the integral is a regular Riemann integral and the non-negative function f needs to be integrable.

The two definitions can be combined into one using either the Riemann-Stieltjes integral or Lebesque integration.

Example 2 Consider two tosses of an unbiased coin. In this case the sample space is a discrete collection which we can denote

$$
\Omega=\{k k, k s, s k, s s\}
$$

Where k indicate a result of heads, and s implies tails.
Define a random variable which counts the number of tails:

$$
X(\omega)= \begin{cases}0 & \omega=k k, \\ 1 & \omega=k s \text { or } s k, \\ 2 & \omega=s s .\end{cases}
$$

If the coin being used is fair then $P(\omega)=1 / 4$ for each $\omega \in \Omega$. Thus we can compute the chances of getting a certain amount of heads from our two tosses. If x is the number of heads then

x	$P[X=x]$
0	$1 / 4$
1	$1 / 2$
2	$1 / 4$

Example 3 The double-or-nothing game:

$$
X_{n}:=2^{n} \chi_{\left[0,2^{-n}\right]}
$$

The reader should elaborate and show that this represents a fair double-or-nothing game:

- What is Ω ?
- What is P ?
- Is it true that $P\left[X_{n+1}=2 X_{n} \mid X_{n}>0\right]=1 / 2$? Rewrite this in several ways.

Example 4

$$
X_{1}, X_{2}, \ldots:[0,1] \rightarrow\{0,1\}
$$

Split [0,1 [into the intervals

$$
\left[\frac{k}{2^{i}}, \frac{k+1}{2^{i}}[\right.
$$

where $k=0,1, \ldots 2^{i}-1$ and let

$$
X_{i}(\omega):= \begin{cases}0 & \frac{2 j}{2^{i}} \leq \omega<\frac{2 j+1}{2^{i}} \\ 1, \text { otherwise. }\end{cases}
$$

Then X_{i}, X_{j} are independent pairs if $i \neq j$.

Definition 8 Let X and Y be two discrete random variables. The Conditional mass function of X given a value of the random variable Y is given by

$$
P_{X \mid Y}(x \mid y)=P[X=x \mid Y=y]=\frac{P[X=x, Y=y]}{P[Y=y]}=\frac{P_{X Y}(x, y)}{P_{Y}(y)},
$$

where the denominator is positive.

Definition 9 Let X and Y be two continuous random variables. The conditional density of X given a value of the random variable Y is

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}, \quad f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \text { wherethedenominatorispositive. }
$$

Example 5 Given that $P_{X Y}(1,1)=0.5, \quad P_{X Y}(2,1)=0.1, \quad P_{X Y}(2,2)=$ $0.3, \quad P_{X Y}(1,2)=0.1, \quad P_{Y}(1)=0.6$ calculate the probability of $\mathrm{X}=1$ given that $\mathrm{Y}=1$. We use the definition of the conditional mass function:

$$
P_{X \mid Y}(1,1)=\frac{P_{X Y}(1,1)}{P_{Y}(1)}=\frac{0.5}{0.6}=5 / 6
$$

1.3 Expected values

1.3.1 Handout

Definition 10 The expected value of a random variable X is

$$
\mathbb{E}[X]:=\left\{\begin{array}{l}
\int x f(x) d x \\
\sum x p(x)
\end{array}\right.
$$

if this exists or more specifically if $\mathbb{E}[\mid X]<\infty$, where $f(p)$ is the density function (mass function) of X.

Definition 11 The variance of a random variable X,
$\operatorname{Var}[X]$ or $V[X]$, is

$$
\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mu)^{2}\right]
$$

when $\mu=\mathbb{E}[X]$ and all the integrals exist (and are finite).

Theorem 1.1 If $\mathbb{E}[X]=\mu$ and $V X=\sigma^{2}$, and $W:=a X+b$ for numbers a, b, then $\mathbb{E}[W]=a \mu+b$ and $V W=b^{2}$

Theorem 1.2 If $\mathbb{E}[X]=\mu$ and $V X=\sigma^{2}$, and $W:=\frac{X-\mu}{\sigma}$ then $\mathbb{E}[W]=0$ and $V W=1$

Copyright 2023, Anonymous
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

2 Generating functions

2.1 Characteristic and moment generating functions

2.1.1 Handout

Definition 12 The moment generating function (m.g.f.) of the random variable X is the function

$$
M_{X}(T):=\mathbb{E}\left[e^{t X}\right]
$$

defined for those values of t where the expected value exists.

Definition 13 The characteristic function of (the distribution of) X is the function

$$
\phi_{X}(t):=\mathbb{E}\left[e^{i t X}\right]
$$

Remark 2.1. ϕ_{X} always exists since

$$
\mathbb{E}\left[\mid e^{i t X}\right]=\mathbb{E}[1]=1
$$

and hence both the real and imaginary parts of the integral exis so that $\mathbb{E}\left[e^{i t X}\right]$ exists for $t \in \mathbb{R}$.

We will use the following result:
If X_{1}, X_{2}, \ldots is a sequence of random variables with cumulative distribution functions F_{n} and characteristic functions ϕ_{n} such that $\phi_{n}(t) \rightarrow \phi(t)$ when $|t|<\varepsilon$ and ϕ corresponds to the cumulative distribution function F which is continuous at x, then $F_{n}(x) \rightarrow F(x)$. In other words,

$$
P\left[X_{n} \leq x\right] \rightarrow P[X \leq x] \text { if } \phi_{n}(t) \rightarrow \phi(t) .
$$

Example 6 If $X \sim G(\alpha, \beta)$ i.e. X has density

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}, x>0 .
$$

(the gamma density, discussed in detail later) then

$$
\begin{aligned}
M_{X}(t) & =\mathbb{E}\left[e^{t X}\right]=\int_{0}^{\infty} \frac{e^{t x} x^{\alpha-1} e^{-x / \beta}}{\Gamma(\alpha) \beta^{\alpha}} d x \\
& =\frac{\Gamma(\alpha)\left(\frac{-1}{t-1 / \beta}\right)^{\alpha}}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} \frac{x^{\alpha-1} e^{-\frac{x}{-1 /(t-1 / \beta)}}}{\Gamma(\alpha)\left(\frac{-1}{t-1 / \beta}\right)^{\alpha}} \\
& =\frac{1}{\beta^{\alpha}\left(\frac{1}{\beta}-t\right)^{\alpha}}=\frac{1}{(1-\beta t)^{\alpha}} .
\end{aligned}
$$

Theorem 2.1 Let $\varepsilon>0$ and X be a random variable with moment generating function $M(t)=\mathbb{E}\left[e^{t X}\right]$ defined for $|t|<\varepsilon$. Then:

$$
\mathbb{E}\left[X^{n}\right]=M^{(n)}(0)=\left.\frac{\mathrm{d}^{n}}{d t^{n}} M(t)\right|_{t=0}
$$

Proof. If $M(t)=\int e^{t x} f(x) d x$ and if it is permissible to differentiate under the integral, then

$$
M^{(n)}(t)=\int e^{t x} x^{n} f(x) d x \quad \text { and thus } \quad M^{(n)}(0)=\int x^{n} f(x) d x=\mathbb{E}\left[X^{n}\right]
$$

Note also that if it is permissible to take the summation outside the expected value, then

$$
\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[\sum_{n=0}^{\infty} \frac{(t X)^{n}}{n!}\right] \stackrel{?}{=} \sum_{n=0}^{\infty} \mathbb{E}\left[\frac{t^{n}}{n!} X^{n}\right]=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \mathbb{E}\left[X^{n}\right]
$$

so if $\mathbb{E}\left[X^{n}\right]$ exists and is limited for all n, then this is a "well-behaved" function and $M^{(n)}(0)=$ $\mathbb{E}\left[X^{n}\right]$.

Example 7 (a) The standard normal distribution. Let Z have the standard normal distribution, i.e. $Z \sim n(0,1)$ with density

$$
f(\zeta)=\frac{1}{\sqrt{2 \pi}} e^{-\zeta^{2} / 2}, \quad \zeta \in \mathbb{R}
$$

The cumulative distribution function is

$$
F(\zeta)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\zeta} e^{-t^{2} / 2} d t, \quad \zeta \in \mathbb{R}
$$

and the moment generating function is

$$
\begin{aligned}
M_{Z}(t) & =\int e^{t x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int e^{-\frac{1}{2}\left(x^{2}-2 t x\right)} d x \\
& =e^{\frac{1}{2} t^{2}} \cdot \frac{1}{\sqrt{2 \pi}} \int e^{-\frac{1}{2}(x-t)^{2}} d x \\
& =e^{\frac{1}{2} t^{2}}, \quad t \in \mathbb{R}
\end{aligned}
$$

We thus obtain

$$
M_{Z}^{\prime}(t)=t e^{\frac{1}{2} t^{2}} \quad \text { og } \quad M_{Z}^{\prime \prime}(t)=e^{\frac{1}{2} t^{2}}+t^{2} e^{\frac{1}{2} t^{2}}
$$

and from the previous theorem it follows that

$$
\mathbb{E}[Z]=M_{Z}^{\prime}(0)=0 \quad \text { og } \quad \mathbb{E}\left[Z^{2}\right]=M_{Z}^{\prime \prime}(0)=1
$$

Finally we have
$\operatorname{Var}[\mathrm{Z}]=\mathbb{E}\left[(\mathrm{Z}-\mu)^{2}\right]=\mathbb{E}\left[\mathrm{Z}^{2}-2 \mathrm{Z} \mu+\mu^{2}\right]=\mathbb{E}\left[\mathrm{Z}^{2}\right]-(\mathbb{E}[\mathrm{Z}])^{2}=1$.
(b) The general normal distribution. Let $X:=\sigma Z+\mu$ with $Z \sim n(0,1)$. Then clearly $\mathbb{E}[X]=\sigma \mathbb{E}[Z]+\mu=\mu$ and

$$
\begin{aligned}
\operatorname{Var}[\mathrm{X}] & =\mathbb{E}\left[X^{2}\right]-\left(\mathbb{E}[X]^{2}\right) \\
& =\mathbb{E}\left[(\sigma Z+\mu)^{2}\right]-\mu^{2} \\
& =\mathbb{E}\left[\sigma^{2} Z^{2}+2 \sigma \mu Z+\mu^{2}\right]-\mu^{2} \\
& =\sigma^{2} \mathbb{E}\left[Z^{2}\right]+2 \sigma \mu \mathbb{E}[Z]+\mu^{2}-\mu^{2} \\
& =\sigma^{2} .
\end{aligned}
$$

The r.v. X is said to have a general normal distribution with expected value μ and variance σ^{2}, denoted $X \sim n\left(\mu, \sigma^{2}\right)$. The moment generating function is

$$
M_{X}(t)=\mathbb{E}\left[e^{t(\sigma Z+\mu)}\right]=\mathbb{E}\left[e^{t \sigma Z+t \mu}\right]=e^{t \mu} \mathbb{E}\left[e^{(t \sigma) Z}\right]=e^{t \mu} M_{Z}(t \sigma), \quad t \in \mathbb{R}
$$

The c.d.f of the random variable is given by

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\mathbb{P}(\sigma Z+\mu \leq x)=\mathbb{P}\left(Z \leq \frac{x-\mu}{\sigma}\right)=F_{Z}\left(\frac{x-\mu}{\sigma}\right), \quad x \in \mathbb{R}
$$

and its density is therefore

$$
f_{X}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F_{X}(x)=\frac{\mathrm{d}}{d x} F_{Z}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sigma} f_{Z}\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

Theorem 2.2 Let $\varepsilon>0$ and X_{1}, X_{2}, \ldots be random variables with moment generating functions $M_{X_{1}}, M_{X_{2}}, \ldots$ such that $M_{X_{n}}(t) \rightarrow M(t), n \rightarrow \infty$, fyrir $|t|<\varepsilon$. If M is the moment generating function of the random variable X, then $F_{X_{n}}(x) \rightarrow F_{X}(x)$ for all x where F_{X} is continuous.

Theorem 2.3 Let X_{1}, \ldots, X_{n} be independent random variables with moment generating functions $M_{X_{1}}, \ldots, M_{X_{n}}$ and, as before $\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ to obtain:

$$
M_{\bar{X}}(t)=\prod_{i=1}^{n} M_{X_{i}}(t / n) \quad \text { og } \quad M_{\sum X_{i}}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

In particular, if X_{1}, \ldots, X_{n} all have the same moment generating function M :

$$
M_{\bar{X}}(t)=(M(t / n))^{n} \quad \text { og } \quad M_{\sum X_{i}}(t)=(M(t))^{n} .
$$

Example 8 Let $X_{1}, \ldots, X_{n} \sim \operatorname{Gamma}(\alpha, \beta)$ be independent with $\alpha, \beta>0$ so each X_{i} has the density

$$
f_{X_{i}}(x)=\frac{x^{\alpha-1} e^{-x / \beta}}{\Gamma(\alpha) \beta^{\alpha}}, \quad x>0
$$

and moment generating function

$$
M(t)=\frac{1}{(1-\beta t)^{\alpha}} .
$$

From the above theorem we see that

$$
M_{\bar{X}}(t)=(M(t / n))^{n}=\left(1-\beta \frac{t}{n}\right)^{-n \alpha}=\frac{1}{\left(1-\frac{\beta}{n} t\right)^{n \alpha}}
$$

which implies that $X \sim \operatorname{Gamma}(\mathrm{n} \alpha, \beta / \mathrm{n})$. In addition

$$
M_{\sum X_{i}}(t)=(M(t))^{n}=\left(\frac{1}{(1-\beta t)^{\alpha}}\right)^{n}=\frac{1}{(1-\beta t)^{n \alpha}}
$$

which shows that $\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(\mathrm{n} \alpha, \beta)$.

Copyright 2023, Anonymous

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

3 On multivariate transforms

3.1 Background to some multivariate transformations

3.1.1 Handout

Before going further we need some results from calculus of several variables. First recall that if the function

$$
\mathbf{g}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} ; \quad \mathbf{g}:=\left(g_{1}, \ldots, g_{n}\right)^{\prime}
$$

is one-to-one and continuously differentiable then the Jacobian determinant of the transformation is given by

$$
J=\left|\frac{\partial \mathbf{g}}{\partial \mathbf{x}}\right|=\left|\nabla g_{1} \cdots \nabla g_{n}\right|=\left|\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{1}}{\partial x_{m}} & \cdots & \frac{\partial g_{n}}{\partial x_{m}}
\end{array}\right| .
$$

For "convenient" regions $R \subseteq \mathbb{R}^{n}$ and a function \mathbf{f} which is continuous on $\mathbf{g}(R)$ we have

$$
\int_{\mathbf{g}(R)} \mathbf{f}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{R} \mathbf{f}(\mathbf{g}(\mathbf{u}))|J| \mathrm{d} \mathbf{u}
$$

We therefore see that if \mathbf{U} is a random variable with $\mathbf{X}=\mathbf{g}(\mathbf{U})$, then

$$
f_{\mathbf{U}}(\mathbf{u})=f_{\mathbf{X}}(\mathbf{g}(\mathbf{u}))|J| .
$$

Example 9 Let X and Y be continuous and independent random variables and define $Z:=X+Y$. If $W:=X$, and consider the transformation

$$
\binom{x}{y} \mapsto\binom{w}{\zeta}:=\binom{x}{x+y}
$$

where $J=\left|\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right|=1$, and from the above we see that

$$
f_{W, Z}(w, \zeta)=f_{X, Y}(w, \zeta-u)|J|=f_{X, Y}(w, \zeta-u)=f_{X}(w) f_{Y}(\zeta-u)
$$

Hence we see that the marginal density function of Z is given by

$$
f_{Z}(\zeta)=\int_{-\infty}^{\infty} f_{W, Z}(w, \zeta) d w=\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(\zeta-u) d u
$$

This can be derived in several different ways, e.g.

$$
\begin{aligned}
F_{Z}(\zeta) & =\mathbb{P}(Z \leq \zeta) \\
& =\mathbb{P}(X+Y \leq \zeta) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\zeta-x} f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\zeta-x} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} f_{X}(x) F_{Y}(\zeta-x) d x .
\end{aligned}
$$

Example 10 Let $X \sim \operatorname{Cauchy}(0,1)$ with density

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad x \in \mathbb{R} .
$$

For this random variable we see that

$$
\mathbb{E}\left[|X|=\int_{-\infty}^{\infty} \frac{|x|}{\pi\left(1+x^{2}\right)} d x=2 \int_{0}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)} d x=\infty,\right.
$$

and hence the expected value $\mathbb{E}[X]$ is not defined.
We say that X has a general Cauchy-distribution with parameters μ and σ^{2}, denoted $X \sim \operatorname{Cauchy}\left(\mu, \sigma^{2}\right)$, if it has the density

$$
f_{X}(x)=\frac{1}{\pi \sigma} \frac{1}{1+\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad x \in \mathbb{R} .
$$

Recall that if X_{1} and X_{2} are independent random variables and $\operatorname{Var}\left[\mathrm{X}_{1}\right]=\operatorname{Var}\left[\mathrm{X}_{2}\right]=\sigma^{2}$, then

$$
\operatorname{Var}\left[\frac{X_{1}+X_{2}}{2}\right]=\frac{\operatorname{Var}\left[\mathrm{X}_{1}\right]+\operatorname{Var}\left[\mathrm{X}_{2}\right]}{4}=\frac{\sigma^{2}}{2}
$$

and in general we have that if X_{1}, \ldots, X_{n} are independent random variables and $\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]=$ σ^{2}, then

$$
\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n} .
$$

because:

$$
\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1^{2}}{n^{2}} \operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\frac{1^{2}}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n}
$$

Example 11 On the other hand if $X_{1}, X_{2} \sim \operatorname{Cauchy}(0,1)$ are independent, then

$$
\frac{X_{1}+X_{2}}{2} \sim \operatorname{Cauchy}(0,1)
$$

Let's derive the result:
Let $X_{1}, X_{2} \sim \operatorname{Cauchy}(0,1)$ iid. and define $Z:=\frac{X_{1}+X_{2}}{2}$. The pdf of a $X \sim \operatorname{Cauchy}(0,1)$ is $f_{X}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.

It is known that $E[X]=\infty$ so the mgf for the Cauchy distribution doesn't exist. However the characteristic function does exist, defined by $\phi_{X}(t)=E\left[e^{i t X}\right], t \in \mathbb{R}$.

If we can show that $\phi_{Z}(t)=\phi_{X}(t)$ then it follows that the variables have the same distribution function, $F_{Z}(X)=F_{X}(X)$, and thus follow the same distribution i.e. $Z \sim$ Cauchy (0,1).

Let's begin with finding $\phi_{X}(t)$:

$$
\begin{equation*}
\phi_{X}(t)=E\left[e^{i t X}\right]=\int_{-\infty}^{+\infty} e^{i t X} f_{X}(x) d x=\int_{-\infty}^{+\infty} e^{i t X} \frac{1}{\pi} \frac{d x}{1+x^{2}} \tag{1}
\end{equation*}
$$

We use contour integration to calculate this integral. Define a closed path $\gamma:=$ $<-R, R>* \beta_{R}$ where β_{R} is a half circle from R to $-R$ in the upper plane H_{+}. Let $g(z)=\frac{e^{i t z}}{1+z^{2}}$ and integrate it along γ. So by the residue theory we get

$$
\begin{equation*}
\pi \phi_{X}(t)=\int_{\gamma} g(z) d z=\int_{<-R, R>} g(z) d z+\int_{\beta_{R}} g(z) d z=2 \pi i \sum_{\alpha_{j} \in H_{+}} \operatorname{Res}\left(g, \alpha_{j}\right) \tag{2}
\end{equation*}
$$

where α_{j} are poles of $g(z)$ in the upper half plane.
Let's show that $\int_{\beta_{R}} g(z) d z \rightarrow 0$ as $R \rightarrow \infty$:

$$
\begin{aligned}
\left|\int_{\beta_{R}} g(z) d z\right| & \leq \int_{\beta_{R}}|g(z)||d z| \\
& =\int_{\beta_{R}} \frac{\left|e^{i t z}\right|}{\left|1+z^{2}\right|} \\
& \leq \int_{\beta_{R}} \frac{|d z|}{\left|1+z^{2}\right|} \\
& \leq \sup _{|z|=R} \frac{1}{\left|1+z^{2}\right|} \int_{\beta_{R}}|d z| \\
& \leq \frac{\pi R}{R^{2}-1} \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Since $g(z)$ has poles of order 1 at $\alpha_{1}=i \in H_{+}$and $\alpha_{2}=-i \in H_{-}$. The residue at α_{1} is

$$
\begin{equation*}
\operatorname{Res}(g, i)=\lim _{z \rightarrow i}(z-i) g(z)=\lim _{z \rightarrow i}(z-i) \frac{e^{i t z}}{(z-i)(z+i)}=\frac{e^{-|t|}}{2 i} \tag{3}
\end{equation*}
$$

Note the $|t|$ since $t \in \mathbb{R}$.
Take the limit of (2) as $R \rightarrow \infty$ and get

$$
\pi \phi_{X}(t)=2 \pi i \frac{e^{-|t|}}{2 \pi}=\pi e^{-|t|}
$$

and so

$$
\begin{equation*}
\phi_{X}(t)=e^{-|t|} \tag{4}
\end{equation*}
$$

Let's find the characteristic function of Z :

$$
\begin{aligned}
\phi_{Z}(t) & =\phi_{\frac{X_{1}+X_{2}}{2}}(t) \\
& =E\left[e^{\frac{i t\left(X_{1}+X_{2}\right)}{2}}\right]=E\left[e^{\frac{i t X_{1}}{2}} e^{\frac{i t X_{2}}{2}}\right] \\
& =E\left[e^{\frac{i t X_{1}}{2}}\right] E\left[e^{\frac{i t X_{2}}{2}}\right]=\phi_{X_{1}}\left(\frac{t}{2}\right) \phi_{X_{2}}\left(\frac{t}{2}\right) \\
& =e^{-\left|\frac{t}{2}\right|} e^{-\left|\frac{t}{2}\right|}=\left(e^{-\left|\frac{t}{2}\right|}\right)^{2}=e^{-|t|}
\end{aligned}
$$

Thus we have shown that $\phi_{X_{1}}(t)=\phi_{X_{2}}(t)=\phi_{Z}(t)$ and thereby it follows that $F_{X_{1}}=$ $F_{X_{2}}=F_{Z}$ and so $Z \sim \operatorname{Cauchy}(0,1)$.

More generally if $X_{1}, \ldots, X_{n} \sim \operatorname{Cauchy}(0,1)$ then

$$
\frac{X_{1}+\ldots+X_{n}}{n} \sim \operatorname{Cauchy}(0,1)
$$

Theorem 3.1 (Property of mean and variance of normals) Let $X_{1}, \ldots, X_{n} \sim$ $n\left(\mu, \sigma^{2}\right)$ be independent random variables and define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { og } \quad S^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

then:
(i) \bar{X} and S^{2} are independent random variables.
(ii) $\bar{X} \sim n\left(\mu, \sigma^{2} / n\right)$.
(iii) $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$.

Proof. to be done...
Copyright 2023, Anonymous
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

4 The gamma, chi-square and tistributions

4.1 Gamma, chisquare and t

4.1.1 Handout

Example 12 Let $\alpha, \beta>0$ and $x>0$. Then $\frac{x^{\alpha-1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha) \beta^{\alpha}}$ is a probability density function:

$$
\begin{aligned}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-\frac{x}{\beta}} d x & =\frac{\beta^{\alpha}}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha) \beta^{\alpha}} \cdot \Gamma(\alpha)=1
\end{aligned}
$$

where we substitute $y=\frac{x}{\beta}$ to get the first equality, and the second equality follows from the definition of the gamma function.

Definition 14 The density of the gamma distribution is given by

$$
\frac{x^{\alpha-1} e^{-x / \beta}}{\Gamma(\alpha) \beta^{\alpha}}, x>0
$$

and moment generating function

$$
M(t)=(1-\beta t)^{-\alpha}, t<\frac{1}{\beta}
$$

In the case of $\alpha=\nu / 2, \beta=2$ this is called a χ^{2} - distribution with ν degrees of freedom and density

$$
\frac{x^{\nu / 2-1} e^{-x / 2}}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu / 2}}, x>0
$$

Example 13 The mean of the gamma distribution is given by

$$
\begin{gathered}
E(X)=\int_{0}^{\infty} x f(x) d x \\
\int_{0}^{\infty} x \frac{x^{\alpha-1} e^{-x / \beta}}{\Gamma(\alpha) \beta^{\alpha}} d x \\
\int_{0}^{\infty} \frac{x^{\alpha} e^{-x / \beta}}{\Gamma(\alpha) \beta^{\alpha}} d x \\
\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} x^{\alpha} e^{-x / \beta} d x
\end{gathered}
$$

Substitute $x=u \beta, d x=\beta d u$ to get

$$
\begin{aligned}
& \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} u^{\alpha} \beta^{\alpha} e^{-u} \beta d u \\
& \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} u^{\alpha} \beta^{\alpha+1} e^{-u} d u
\end{aligned}
$$

$$
\frac{\beta^{\alpha+1}}{\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} u^{\alpha} e^{-u} d u
$$

This then simplifies and due to the fact

$$
\int_{0}^{\infty} u^{\alpha} e^{-u} d u=\Gamma(\alpha+1)
$$

We get

$$
\frac{\beta \Gamma(\alpha+1)}{\Gamma(\alpha)}
$$

Due to $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$ We get $E(X)=\alpha \beta$ as the mean of the gamma distribution.

Example 14 For $Z^{2} \sim n(0,1)$ it is easy to that $Z^{2} \sim \chi_{1}^{2}$
Find the distribution of $X=Z^{2}$, where

$$
f(z)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)}{2 \sigma^{2}}}
$$

Lets begin with the cdf of X

$$
F_{X}(x)=P(X \leq x)=P\left(Z^{2} \leq x\right)=P(-\sqrt{x} \leq Z \leq \sqrt{x})
$$

From this we get

$$
F_{X}(x)=F_{Z}(-\sqrt{x})-F_{Z}(\sqrt{x})
$$

And finally we have:

$$
f_{X}(x)=\frac{1}{2} x^{\frac{-1}{2}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-x}{2}}+\frac{1}{2} x^{\frac{-1}{2}} \frac{1}{\sqrt{2 \pi}} e^{\frac{-x}{2}}=\frac{1}{2^{\frac{1}{2}} \sqrt{2 \pi}} x^{\frac{-1}{2}} e^{\frac{-x}{2}}
$$

This is the pdf of $\Gamma\left(\frac{1}{2}, 2\right)$ and is called the chi-square distribution with 1 degree of freedom, that is $Z^{2} \sim \chi_{1}^{2}$

- Using the moment generating function we see that the sum of independent gamma random variables (with the same β) is a gamma-distributed random variable.
- We therefore also see that if $z_{1}, \ldots, z_{n} \sim n(0,1)$ iid then

$$
z_{1}^{2}+\ldots+z_{n}^{2} \sim \chi_{n}^{2}
$$

Example 15 If $X \sim \chi_{\nu}^{2}$, then $\mathbb{E}[[X]=\nu$. The probability density function of X is

$$
f_{X}(x)= \begin{cases}c x^{\left(\frac{\nu}{2}-1\right)} e^{-\frac{1}{2} x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

where $c=2^{\frac{n}{2}} \Gamma\left(\frac{\nu}{2}\right)$ and $\Gamma()$ is the gamma function.

By definition: $E[X]=\int_{0}^{\infty} x f_{X}(x) d x$
From that we get:

$$
\begin{gathered}
E[X]=\int_{0}^{\infty} x c x^{\left(\frac{\nu}{2}-1\right)} e^{-\frac{1}{2} x} d x \\
E[X]=c \int_{0}^{\infty} x^{\left(\frac{\nu}{2}-1+1\right)} e^{-\frac{1}{2} x} d x \\
E[X]=c\left(\left[-x^{\left(\frac{\nu}{2}\right)} 2 e^{-\frac{1}{2} x}\right]_{x=0}^{\infty}+\int_{0}^{\infty} \frac{\nu}{2} x^{\left(\frac{\nu}{2}-1\right)} 2 e^{-\frac{1}{2} x} d x\right) \\
E[X]=c\left((0-0)+\nu \int_{0}^{\infty} x^{\left(\frac{\nu}{2}-1\right)} e^{-\frac{1}{2} x} d x\right) \\
E[X]=\nu \int_{0}^{\infty} c x^{\left(\frac{\nu}{2}-1\right)} e^{-\frac{1}{2} x} d x \\
E[X]=\nu \int_{0}^{\infty} x f_{X}(x) d x
\end{gathered}
$$

By definition: $\int_{0}^{\infty} f_{X}(x) d x=1$ because $f_{X}(x)$ is a pdf. From that we get:

$$
E[X]=\nu
$$

Example 16 If $V \sim \chi_{v}$ then $\operatorname{Var}[V]=2 v$
Let $X \sim \chi_{n}$ The probability density function of X is

$$
f_{X}(x)= \begin{cases}c x^{\left(\frac{n}{2}-1\right)} e^{-\frac{1}{2} x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

where $c=2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)$ and $\Gamma()$ is the gamma function.
We know that $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}$. Now:

$$
\begin{aligned}
& E\left[X^{2}\right]=\int_{0}^{\infty} x^{2} f_{X}(x) d x \\
& =\int_{0}^{\infty} x^{2} c x^{n / 2-1} e^{-x / 2} d x \\
& =c \int_{0}^{\infty} x^{n / 2+1} e^{-x / 2} d x
\end{aligned}
$$

integration by parts:

$$
\begin{gathered}
=c\left[-x^{n / 2+1} 2 e^{-x / 2}\right]_{x=0}^{\infty}+\int_{0}^{\infty}\left(\frac{n}{2}+1\right) x^{n / 2} 2 e^{-x / 2} d x \\
=c(n+2) \int_{0}^{\infty} x^{n / 2} e^{-x / 2} d x
\end{gathered}
$$

integration by parts:

$$
=c(n+2)\left[-x^{n / 2} 2 e^{-x / 2}\right]_{x=0}^{\infty}+\int_{0}^{\infty} \frac{n}{2} x^{n / 2-1} 2 e^{-x / 2} d x
$$

$$
\begin{gathered}
=c(n+2)\left(n \int_{0}^{\infty} x^{n / 2-1} e^{-x / 2} d x\right) \\
=(n+2) n \int_{0}^{\infty} c x^{n / 2-1} e^{-x / 2} d x \\
=(n+2) n \int_{0}^{\infty} f_{X}(x) d x
\end{gathered}
$$

integral of the pdf over the support $[0, \infty)$ equals 1 :

$$
\begin{aligned}
& =(n+2) n \\
& =n^{2}+2 n
\end{aligned}
$$

$$
E[X]^{2}=n^{2}
$$

Now it's clear to see that $\operatorname{Var}[X]=n^{2}+2 n-n^{2}=2 n$

Definition 15 If $Z \sim n(0,1)$ and $V \sim \chi_{\nu}^{2}$, then the distribution of the random variable $Z / \sqrt{V / \nu}$ is termed the t-distribution with ν degrees of freedom, denoted $T \sim t_{\nu}$.

We can find the density of T by considering the function $(U, V) \mapsto(T, W)$ with $W:=V$, thus obtaining the joint density of T and W and then integrating out W.

Definition 16 If $U \sim \chi_{\nu_{1}}^{2}$ and $V \sim \chi_{\nu_{2}}^{2}$ then the distribution of the random variable

$$
\frac{U / \nu_{1}}{V / \nu_{2}}
$$

is termed the F-distribution with ν_{1} and ν_{2} degrees of freedom. denoted $F \sim F_{\nu_{1}, \nu_{2}}$.

We have a general interest in drawing conclusions about μ when $X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$ are independent but μ, σ^{2} are all unknown numbers. Such conclusions always build on the fact that

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim n\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

so that

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim n(0,1)
$$

and if

$$
S:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

then

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

which are independent of \bar{X}, and hence

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}}=\frac{\frac{\bar{X}-\mu}{\sigma / n}}{\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} / \sigma^{2}}{n-1}}} \sim t_{n-1} .
$$

A consequence of this is that if $\mu=\mu_{0}$ then the number $t:=\frac{\bar{x}-\mu}{s / \sqrt{n}}$ will in 95% of all experiments be between $2,5 \%$ and $97,5 \%$ probability limits in the t -distribution.

Copyright 2023, Anonymous
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

5 Linear combinations of random variables

5.1 General linear combinations

5.1.1 Handout

Recall that if X and Y are random variables with expected value

$$
\mu_{X}=\mathbb{E}[X] \quad \text { and } \quad \mu_{Y}=\mathbb{E}[Y]
$$

then the covariance of X and Y is defined by

$$
\operatorname{Cov}(X, Y):=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] .
$$

Special case: $X=Y \Rightarrow \operatorname{Cov}(X, Y)=\operatorname{Var}[\mathrm{X}]=\sigma_{\mathrm{X}}^{2}$ - if this expected value exists. Also recall that if X and Y are independent, then $\operatorname{Cov}(X, Y)=0$ since it is easy to see that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \Rightarrow \operatorname{Cov}(X, Y)=\iint\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f_{X}(x) f_{Y}(y) d x d y=0
$$

Theorem 5.1 If X_{1}, \ldots, X_{n} are random variables and Y_{1}, \ldots, Y_{m} are random variables with $\operatorname{Cov}\left(X_{i}, Y_{j}\right)=\sigma_{i j}$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ are real numbers, then

$$
\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}, \mathbf{b}^{\prime} \mathbf{Y}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \sigma_{i j}
$$

Proof. We now have

$$
\begin{aligned}
\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}, \mathbf{b}^{\prime} \mathbf{Y}\right) & =\mathbb{E}\left[\left(\sum a_{i} X_{i}-E \sum a_{i} X_{i}\right)\left(\sum b_{j} Y_{j}-E \sum b_{j} Y_{j}\right)\right] \\
& =\mathbb{E}\left[\left(\sum a_{i} X_{i}-\sum a_{i} E X_{i}\right)\left(\sum b_{j} Y_{j}-\sum b_{j} E Y_{j}\right)\right] \\
& =\mathbb{E}\left[\left\{\sum_{i=1}^{n} a_{i}\left(X_{i}-E X_{i}\right)\right\}\left\{\sum_{j=1}^{m} b_{j}\left(Y_{j}-E Y_{j}\right)\right\}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E}\left[a_{i}\left(X_{i}-E X_{i}\right) b_{j}\left(Y_{j}-E Y_{j}\right)\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \sigma_{i j} .
\end{aligned}
$$

as required.

Definition 17 The variance-covariance matrix of the random variables (or random vector) $\left(X_{1}, \ldots, X_{n}\right)$ is the matrix

$$
\boldsymbol{\Sigma}=\left(\sigma_{i j}\right)=\left(\operatorname{Cov}\left(X_{i}, X_{j}\right)\right)
$$

Corrollary 5.1 If $X_{1}, \ldots X_{n}$ are s.t. $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ if $i \neq j$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then $\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}, \mathbf{b}^{\prime} \mathbf{X}\right)=\sum_{i=1}^{n} a_{i} b_{i} \sigma_{i}^{2}\left[=\left(\mathbf{a}^{\prime} b\right) \sigma^{2}\right.$ if $\left.\sigma_{i}^{2}=\sigma^{2} \forall i\right]$.

Corrollary 5.2 If X_{1}, \ldots, X_{n} are such that $\sigma_{i j}=\delta_{i j} \sigma^{2}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ are such that $\mathbf{a} \perp \mathbf{b}$, then $\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}, \mathbf{b}^{\prime} \mathbf{X}\right)=0$.

Corrollary 5.3 If $\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ is a vector r.v. with $\mathbb{E}[\mathbf{X}]=\mu, \operatorname{Var}[\mathbf{X}]=\operatorname{Cov}(\mathbf{X})=\boldsymbol{\Sigma}$ and $\mathbf{a} \in \mathbb{R}^{n}$, then $E \mathbf{a}^{\prime} \mathbf{X}=\mathbf{a}^{\prime} \mu$ and $V \mathbf{a}^{\prime} \mathbf{X}=\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}$.

Corrollary 5.4 $\operatorname{Cov}\left(\mathbf{a}^{\prime} \mathbf{X}, \mathbf{b}^{\prime} \mathbf{X}\right)=\mathbf{a}^{\prime} \mathbf{\Sigma} \mathbf{b}$.

Corrollary $5.5 X$ vector r.v., $E \mathbf{X}=\mu, V \mathbf{X}=\boldsymbol{\Sigma} . A$ is an $n \times n$ matrix, then $\mathbb{E}[A X]=A \mu$ $o g \operatorname{Var}[A X]=A \boldsymbol{\Sigma} A^{T}$.

5.2 Linear combinations of Gaussian random variables

5.2.1 Handout

Theorem 5.2 Let $X_{1}, \ldots, X_{n} \sim n(0,1)$ be independent, let $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ and let Y be the r.v. $\mathbf{Y}:=P \mathbf{X}+\mu$ where P is a matrix with $\operatorname{rank}(P)=n$ and $\mu \in \mathbf{R}^{n}$. Then the distribution of Y is a multivariate normal distribution, or multivariate Gaussian distribution, given with the multivariate density

$$
f(\mathbf{y})=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-1 / 2(\mathbf{y}-\mu)^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\mu)}
$$

where $\boldsymbol{\Sigma}=P P^{\prime}$. This is denoted $Y \sim n(\mu, \boldsymbol{\Sigma})($ or $Y \sim M V N(\mu, \boldsymbol{\Sigma}))$.

Proof. Since $X_{1}, \ldots, X_{n} \sim n(0,1)$ iid, the joint density is given as the product

$$
f_{\mathbf{X}}(\mathbf{x})=\prod_{i=1}^{n} f_{\mathbf{X}_{\mathbf{i}}}\left(\mathbf{x}_{\mathbf{i}}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-x_{i}^{2} / 2}=\frac{1}{(2 \pi)^{n / 2}} e^{-\sum x_{i}^{2} / 2}
$$

The inverse of the function $\mathbf{x} \rightarrow \mathbf{y}=P \mathbf{x}+\mu$ is $\mathbf{y} \rightarrow \mathbf{x}=P^{-1}(\mathbf{y}-\mu)=g(\mathbf{y})$ with Jacobian determinant $J=\left|\frac{\delta g}{\delta y}\right|=\left|P^{-1}\right|$ so the density of \mathbf{Y} is

$$
f(y)=f_{X}(g(y))|J|=f_{X}\left(P^{-1}(\mathbf{y}-\mu)\right)\left|P^{-1}\right|
$$

Since $\boldsymbol{\Sigma}=\left|P P^{\prime}\right|=|P|^{2}>0$ we see that

$$
\begin{aligned}
& f(\mathbf{y})=\frac{1}{(2 \pi)^{n / 2}|P|} e^{-\left[P^{-1}(\mathbf{y}-\mu)\right]^{\prime}\left[P^{-1}(\mathbf{y}-\mu)\right]} \\
& \Rightarrow f(\mathbf{y})=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-(\mathbf{y}-\mu)^{\prime} \mathbf{\Sigma}^{-1}(\mathbf{y}-\mu)}
\end{aligned}
$$

(since $\left.\left(P^{-1}\right)^{\prime} P^{-1}=\left(P^{\prime}\right)^{-1} P^{-1}=\left(P P^{\prime}\right)^{-1}=\boldsymbol{\Sigma}^{-1}\right)$ - and in particular, this is in fact a density).

Remark 5.1. Some comments

- The univariate normal is a special case
- If $\boldsymbol{\Sigma}$ is diagonal (i.e. $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0$ if $i \neq j$), then the random variables are independent.

Theorem 5.3 If $X \sim n(\mu, \boldsymbol{\Sigma})$, then X_{i}, X_{j} are independent if and only if $\operatorname{Cov}\left(X_{i}, X_{j}\right)=$ 0.

Theorem 5.4 If $\left(X_{1}, X_{2}, \ldots X_{n}, Y_{1}, Y_{2}, \ldots, Y_{m}\right)^{\prime}$ is a Gaussian r.v., then $\mathbf{X}=$ $\left(X_{1}, X_{2}, \ldots X_{n}\right)^{\prime}$ and $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)^{\prime}$ are independent iff $\operatorname{Cov}\left(X_{i}, Y_{j}\right)=0 \forall i, j$.

Theorem 5.5 Let $X_{i} \sim n\left(\mu, \sigma^{2}\right)$ be independent, $i=1, \ldots, n$, and $Y_{i}:=\boldsymbol{\xi}_{i}^{\prime} \mathbf{X}$ where $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ form an orthonormal basis for \mathbb{R}^{n}. Then Y_{1}, \ldots, Y_{n} are independent Gaussian random variables with

$$
Y_{i} \sim n\left(\boldsymbol{\xi}_{i}{ }^{\prime} \boldsymbol{\mu}, \sigma^{2}\right) .
$$

Proof. All of this follows from the definition of a multivariate normal distribution.
Remark 5.2. The properties of the common t-test now follow from a collection of results based on the above. First let

$$
\xi_{1}:=\frac{1}{\sqrt{n}} \mathbf{1}, V:=\operatorname{Span}\left\{\boldsymbol{\xi}_{1}\right\}
$$

and expand this (using e.g. a Gram-Schmidt process) to obtain $\boldsymbol{\xi}_{\mathbf{2}}, \ldots, \boldsymbol{\xi}_{n}$ which form an orthonormal basis for V^{\perp}. Thus $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}$ form an orthonormal basis for \mathbb{R}^{n}. Write $X=$ $\sum_{i=1}^{n} \hat{\zeta}_{i} \cdot \boldsymbol{\xi}_{i}$ - the coordinates of \mathbf{X} in the basis $\left(\xi_{i}\right)$ are $\hat{\zeta}_{1}, \ldots, \hat{\zeta}_{n}$ where $\hat{\zeta}_{i}=\mathbf{X} \cdot \xi_{\mathbf{i}}$ so that

1. $\hat{\zeta}_{1}=\mathbf{X} \cdot \xi_{1}=\frac{1}{\sqrt{n}} \sum_{i} X_{i}=\sqrt{n} \bar{X}$ and
2. $\sum_{i=2}^{n} \hat{\zeta}_{i} \boldsymbol{\xi}_{\boldsymbol{i}}=\mathbf{X}-\hat{\zeta}_{1} \boldsymbol{\xi}_{1}=\mathbf{X}-\sqrt{n} \cdot \bar{X} \frac{1}{\sqrt{n}} \mathbf{1}=\mathbf{X}-\bar{X} \mathbf{1}$.
3. $\operatorname{Cov}\left(\hat{\zeta}_{i}, \hat{\zeta}_{j}\right)=0$ if $i \neq j$ and they are Gaussian so they are independent.
4. $\left(\hat{\zeta}_{1}, \ldots, \hat{\zeta}_{n}\right)^{\prime}=P \mathbf{X} \sim n\left(P \mu, \sigma^{2} P P^{\prime}\right)$ with $P=\left[\xi_{1}^{\prime} \ldots \xi_{n}^{\prime}\right]^{\prime}$ and $P P^{\prime}=I$.
5. $E \hat{\zeta}_{i}=\mathbb{E}\left[\mathbf{X} \cdot \xi_{\mathbf{i}}\right]=(\mu \mathbf{1}) \cdot \boldsymbol{\xi}_{\boldsymbol{i}}=0$ if $i \geq 2$
6. $\left.\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\| \mathbf{X}-\bar{X} \mathbf{1}\right)\left\|^{2}=\right\| \sum_{i=2}^{n} \hat{\zeta}_{i} \cdot \xi_{i} \|^{2}=\sum_{i=2}^{n} \hat{\zeta}_{i}^{2}$
7. For $i \geq 2$ we see that $\hat{\zeta}_{i} \sim n\left(0, \sigma^{2}\right)$ and these are independent so $\frac{\hat{\zeta}_{i}}{\sigma} \sim n(0,1)$ are also independent
8. $\frac{\sum_{i=2}^{n} \hat{\zeta}_{i}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$ and independent of $\hat{\zeta}_{1} \sim n\left(\sqrt{n} \mu, \sigma^{2}\right)$ and we obtain

$$
\left.\begin{array}{l}
\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \\
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim n(0,1)
\end{array}\right\} \text { independent }
$$

thus

$$
\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} / \sigma^{2}}{n-1}}} \sim t_{n-1}
$$

Remark 5.3. Note that if $X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$ iid, then $\mathrm{E} \bar{X}=\mu$ and $\mathrm{E} S^{2}=\sigma^{2}$, where $\left.\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, S^{2}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}-\bar{X}\right)^{2}$. But we also see that e.g.

$$
\mathrm{E} \bar{X}=\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E} X_{i}=\frac{1}{n} n \mu=\mu
$$

which holds independently of any assumptions of normality - and the r.v.s do not have to be independent, i.e.: If X_{1}, \ldots, X_{n} are random variables with $\mathrm{E} X_{i}=\mu$, then $\mathrm{E} \bar{X}=\mu$.

Remark 5.4. Next note that if X_{1}, \ldots, X_{n} are independent random variables with expected value μ variance σ^{2}, then ${ }^{1}$:

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}\right] & =\mathrm{E}\left[\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[X_{i}^{2}\right]-n \mathrm{E}\left[\bar{X}^{2}\right] \\
& =\sum_{i=1}^{n}\left(\sigma^{2}+\mu^{2}\right)-n\left(\sigma_{\bar{X}}^{2}+\mu_{\bar{X}}^{2}\right) \\
& =n \sigma^{2}+n \mu^{2}-n \frac{\sigma^{2}}{n}-n \mu^{2} \\
& =(n-1) \sigma^{2}
\end{aligned}
$$

We have shown: If X_{1}, \ldots, X_{n} are independent with $\mathrm{E} X_{i}=\mu, \mathrm{V} X_{i}=\sigma^{2}$, then $\mathrm{E} \bar{X}=\mu$ and $\mathrm{E} S^{2}=\sigma^{2}$.

Copyright 2023, Anonymous
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

[^0]
[^0]: ${ }^{1}$ Where we use $\sigma_{\bar{X}}^{2}=\sigma^{2} / n$ if the X_{i} are independent and a general formula: $\sigma^{2}=\mathrm{E}\left[X^{2}\right]-\mu^{2}$, inverted to give the very useful version, $\mathrm{E}\left[X^{2}\right]=\sigma^{2}+\mu^{2}$ for a random variable with this expected value and variance.

