# stats6254suff 625.3 - Sufficiency 

Gunnar Stefánsson

May 24, 2023

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

## Contents

1 Sufficient statistics ..... 3
1.1 Data Reduction ..... 3
1.1.1 Handout ..... 3
1.2 Sufficiency ..... 3
1.2.1 Handout ..... 3
1.3 Minimal Sufficient Statistics ..... 6
1.3.1 Handout ..... 6
1.4 Ancillary statistics ..... 7
1.4.1 Handout ..... 7
1.5 The Likelihood Principle ..... 11
1.5.1 Handout ..... 11

## 1 Sufficient statistics

### 1.1 Data Reduction

Let $\{X\}_{n}$ be i.i.d.
If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that $T(\mathbf{X})$ is a random variable then $T(\mathbf{X})$ is a statistic.

### 1.1.1 Handout

## Data reduction

Let $X_{1}, \ldots, X_{n}$ be i.i.d. random variables with a common c.d.f., $F_{\theta}$, where the parameter $\theta$ is unknown, but in some parameter set $\theta \in \Theta$. We commonly have $\theta \in \mathbb{R}$, sometimes $\theta \in \mathbb{R}^{p}$ and $\Theta$ may even be a discrete set. Write $\mathbf{X}$ for the random vector

$$
\mathbf{X}=\left(X_{1}, . ., X_{n}\right)^{T}: \Omega \rightarrow \mathbb{R}^{n}
$$

If $t: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that $T=t \circ \mathbf{X}=t(\mathbf{X})$ is also a random variable, then $T=t(\mathbf{X})$ is called a statistic.

Note that we may be sloppy with the notation, alternatively using $T, t(\mathbf{X})$ or $T(\mathbf{X})$ for the same thing.

For a given set of data $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ one might consider just using $T(\mathbf{x})$ and then "forgetting" the original values, thus reducing the data set. To do this one needs to know that the resulting number $T(\mathbf{x})$ in some sense contains all the information about the parameter that is in the original data set. This section will make these concepts specific.

### 1.2 Sufficiency

$T(\mathbf{X})$ is called a sufficient statistic if the distribution of $X$, conditionally on $T(\mathbf{X})$ is a constant function of $\theta$
The definition implies that if $T=T(\mathbf{X})$ is sufficient then $f_{X \mid T}(x \mid t)$ does not contain $\theta$.

### 1.2.1 Handout

We want to define a concept to represent the notion that $T(\mathbf{X})$ is a sufficient statistic for $\theta$. This concept should mean that information about $\theta$ is completely contained in $T(\mathbf{X})$, i.e. $\mathbf{X}$ does not give any information once we know $T(\mathbf{X})$.

Note that the only link between the data and the parameter is through the probability distribution. Thus, for a given data set ( $\mathbf{x}$ ), all the information about $\theta \in \Theta$ is contained in the joint density (or p.m.f.) of the data set, i.e. in $f_{\theta}(\mathbf{x})$.

Definition $1 T(\mathbf{X})$ is a sufficient statistic if the distribution of $\mathbf{X}$, conditionally on $T(\mathbf{X})$, is a constant function of $\theta$.

Remark 1.1. Recall that the probability measure $P_{\theta}$ is indexed by $\theta \in \Theta$.

- Basically the definition implies that if $T=T(\mathbf{X})$ is sufficient, then the function

$$
f_{\mathbf{X} \mid T}(x \mid t)
$$

does not contain $\theta$. In other words, $P_{\theta}[\mathbf{X} \in A \mid T(\mathbf{X})=t]$ is a constant in $\theta$.

- For a discrete r.v.X, assume $P_{\theta}[T(\mathbf{X})=t]>0$, to obtain

$$
P_{\theta}[\mathbf{X}=x \mid T(\mathbf{X})=t]=\frac{P_{\theta}[\mathbf{X}=x, T(\mathbf{X})=t]}{P_{\theta}[T(\mathbf{X})=t]}
$$

- Note that that $\{X=x\}$ is a subset of $\{T(X)=T(x)\}$ and hence $P_{\theta}[\mathbf{X}=x, T(\mathbf{X})=$ $\left.t]=P_{\theta}[\mathbf{X}=x]\right)$.
- Now, assume $t=T(x)$ and we want to investigate whether

$$
P_{\theta}[\mathbf{X}=x \mid T(\mathbf{X})=T(x)]=\frac{P_{\theta}[\mathbf{X}=x]}{P_{\theta}[T(\mathbf{X})=T(x)]}
$$

is a constant in $\theta$.
For a discrete r.v. $\mathbf{X}$ this is given by

$$
P_{\theta}[\mathbf{X}=x \mid T(\mathbf{X})=T(x)]=\frac{p_{\theta}(x)}{q_{\theta}(T(x))}
$$

where $p_{\theta}$ is the p.m.f. of $\mathbf{X}$ and $q_{\theta}$ is the p.m.f. of $T(\mathbf{X})$

$$
q_{\theta}(T)=\sum_{x: T(x)=t} p_{\theta}(x)
$$

We have shown the following for a discrete random variable, but state it for the general case:

Theorem 1.1 If $f_{\theta}$ is the (joint) p.d.f. of $\mathbf{X}$ and $q_{\theta}$ is the p.d.f. of $T(\mathbf{X})$, then $T(\mathbf{X})$ is sufficient for $\theta$ if $\frac{p_{\theta}(x)}{q_{\theta}(T(x))}$ is a constant in $\theta$ for every $x \in \mathbb{R}^{n}$ (or $x \in \mathbf{X}(\Omega)$ ).

Example 1 Consider random variables $X_{1}, \ldots, X_{n} \sim b(1, p)$ iid; $\theta=p$
An obvious candidate for a sufficient statistic is $T(\mathbf{X}):=\sum_{i=1}^{n} X_{i} \sim b(n, p)$.
Here we have $P\left[X_{i}=x_{i}\right]=p(1-p)$ and we obtain

$$
\frac{p_{\theta}(x)}{q_{\theta}(T(x))}=\frac{\prod_{i=1}^{n} p_{i}^{x_{i}}(1-p)^{1-x_{i}}}{\left(T(x) p^{T(x)}(1-p)^{n-T(x)}\right.}=\frac{p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}}{\left(\sum^{n} x_{i}\right) p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}}=\frac{1}{\left(\sum^{n} x_{i}\right)}
$$

We thus see that $T(\mathbf{X})$ is a sufficient statistic since this last fraction does not involve $\theta$ and is thus a constant in $\theta$.

Example 2 Consider Gaussian random variables, $X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$, with known $\sigma^{2}$ but unknown location parameter $\theta=\mu$.

Here, the obvious candidate for a sufficient statistic is $T(\mathbf{X}):=\overline{\mathbf{X}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
The joint p.d.f. is given by

$$
f_{\mu}(x)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}
$$

The density function for $T(\mathbf{X})$ is easy to obtain since it is known that $\mathbf{X} \sim n\left(\mu, \frac{\sigma^{2}}{n}\right)$ and thus

$$
g_{\mu}(T(\mathbf{X}))=g_{\mu}(x)=\frac{1}{\sqrt{2 \pi} \sigma / \sqrt{n}} e^{-\frac{(\bar{x}-\mu)^{2}}{2 \sigma^{2} / n}}
$$

Note that the quadratic term involving the $x$ and the unknown can be rewritten:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =\sum_{i=1}^{n}\left(\left(x_{i}+\bar{x}\right)+(\bar{x}-\mu)\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+2(\bar{x}-\mu) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)+n(\bar{x}-\mu)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
\end{aligned}
$$

which implies

$$
\frac{f_{\mu}(x)}{g_{\mu}(T(x))}=\frac{\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\bar{x}\right)^{2}}-\frac{n}{2 \sigma^{2}}(\bar{x}-\mu)^{2}}{\frac{1}{(2 \pi)^{1 / 2} \sigma / \sqrt{n}} e^{-(\bar{x}-\mu)^{2} / 2 \sigma^{2} / n}}=\frac{(2 \pi)^{1 / 2} \sigma}{\sqrt{n}(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Since this ratio does not involve $\mu, T$ is a sufficient statistic.

Example 3 Let $\Theta$ be the collection of all c.d.f.s of continuous random variables and let $X_{1}, \ldots, X_{n} \sim F \in \Theta$ be i.i.d. Then the order statistic, $\left(X_{(1)}, \ldots, X_{(n)}\right)$, is sufficient.

The search for sufficient statistics is made easier by the following theorem.

Theorem 1.2 $T(\mathbf{X})$ is a sufficient statistic if and only if there exist functions $g_{\theta}$ and $h$ such that the joint p.d.f. of $\mathbf{X}$ can be written in the form

$$
f_{\theta}(x)=g_{\theta}(T(x)) h(x)
$$

Proof. Suppose $\mathbf{X}$ is discrete.
(1) Let $T(\mathbf{X})$ be sufficient. Then we can define

$$
\begin{gathered}
g_{\theta}(t):=p_{\theta}[T(\mathbf{X})=t] \\
h(x):=p_{\theta}[\mathbf{X}=x \mid T(\mathbf{X})=t]
\end{gathered}
$$

and these functions satisfy the conditions.
(2) Next assume that the functions $g_{\theta}$ and $h$ exist and let $q_{\theta}$ be the mass function of $T(\mathbf{X})$. Take an arbitrary point $x \in \mathbb{R}^{n}$ and let $t=T(\mathbf{X})$. Consider
$\frac{f_{\theta}(x)}{q_{\theta}(T(x))}=\frac{g_{\theta}(T(x)) h(x)}{q_{\theta}(T(x))}=\frac{g_{\theta}(T(x)) h(x)}{q_{\theta}(t)}=\frac{g_{\theta}(T(x)) h(x)}{\sum_{y: T(y)=t} f_{\theta}(y)}=\frac{g_{\theta}(T(x)) h(x)}{\sum_{y: T(y)=t} g_{\theta}(T(y)) h(y)}=$ to obtain

$$
\frac{g_{\theta}(T(x)) h(x)}{g_{\theta}(t) \sum_{y: T(y)=t} h(y)}=\frac{h(x)}{\sum_{y: T(y)=t} h(y)}
$$

which is a constant in $\theta$ and hence $T(\mathbf{X})$ is sufficient.

Example $4 X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$ iid, $\theta=\left(\mu, \sigma^{2}\right)$ $T(\mathbf{X}):=\left(\overline{\mathbf{X}}, S^{2}\right)$ is sufficient:

$$
\begin{gathered}
f_{\mu, \sigma^{2}}=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right)}= \\
\underbrace{\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{(n-1) S^{2}}{2 \sigma^{2}}-\frac{n(\bar{x}-\mu)^{2}}{2 \sigma^{2}}}}_{=: g_{\theta}(T(x))}
\end{gathered}
$$

Example 5 Let $X_{1}, \ldots, X_{n}$ be i.i.d. observations from the discrete uniform distribution on $1, \ldots, \theta$. The pmf is then

$$
f(x \mid \theta)= \begin{cases}\frac{1}{\theta} & x=1,2, \ldots, \theta \\ 0 & \text { otherwise }\end{cases}
$$

The joint pmf of $X_{1}, \ldots, X_{n}$ is then

$$
f(\mathbf{x} \mid \theta)= \begin{cases}\theta^{-n} & x_{i} \in\{1, \ldots, \theta\} \text { for } i=1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

Denote the set of natural numbers as $\mathbb{N}$ and let $\mathbb{N}_{\theta}=\{1,2, \ldots, \theta\}$. We can rewrite the joint pmf of $X_{1}, \ldots, X_{n}$ as

$$
f(\mathbf{x} \mid \theta)=\theta^{-n} \prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}\left(x_{i}\right),
$$

where $I$ is the indicator function. Defining $T(\mathbf{x})=\max _{i} x_{i}$ we can rewrite

$$
\prod_{i=1}^{n} I_{\mathbb{N}_{\theta}}\left(x_{i}\right)=\left(\prod_{i=1}^{n} I_{\mathbb{N}}\left(x_{i}\right)\right) I_{\mathbb{N}_{\theta}}(T(\mathbf{x}))
$$

Thus the joint pmf factors into

$$
f(\mathbf{x} \mid \theta)=\theta^{-n} I_{\mathbb{N}_{\theta}}(T(\mathbf{x}))\left(\prod_{i=1}^{n} I_{\mathbb{N}}\left(x_{i}\right)\right) .
$$

By the factorization theorem, $T(\mathbf{X})=\max _{i} X_{i}$ is a sufficient statistic for $\theta$.

### 1.3 Minimal Sufficient Statistics

### 1.3.1 Handout

Definition 2 Let $X_{n} \sim F_{\theta}$ be independent and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $T(\mathbf{X})$ is a random variable. $T(\mathbf{X})$ is a minimal sufficient statistic if for every sufficient statistic $T^{\prime}$ there exists a function $k$ such that $T(\mathbf{x})=k\left(T^{\prime}(\mathbf{x})\right), \mathbf{x} \in \mathbb{R}^{n}(\mathbf{x} \in \mathbf{X}(\Omega))$.

Theorem 1.3 If $T$ is such that, for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the ratio $\frac{f_{\theta}(\mathbf{x})}{f_{\theta}(\mathbf{y})}$ is constant as a function of $\theta$ if and only if $T(\mathbf{x})=T(\mathbf{y})$, then $T(\mathbf{X})$ is a minimal sufficient statistic for $\theta$.

Proof: Define the sets $A_{t}=\{x: T(x)=t\}$ Thus if $T(x)=T(y)=t$ then x and y are both elements in $A_{t}$.

Define a function $\gamma$ such that $\gamma(t)$ that picks some element of $A_{t}$, for each $t$.
Note that $\gamma(T(x))$ is in the same set $A_{t}$ as $\mathbf{x}$ but is not necessarily equal to $x$.
The fraction $K=\frac{f_{\theta}(x)}{f_{\theta}(\gamma(T(x))}$ does not depend on $\theta$ because of how we have defined $\gamma$. We can now write the density as

$$
f_{\theta}(x)=f_{\theta}\left(\gamma(T(x))\left[\frac{f_{\theta}(x)}{f_{\theta}(\gamma(T(x))}\right]\right.
$$

now we choose $g(T, \theta)=f_{\theta}(\gamma(T(x))$ and $h(x)=K$ from above (which does not depend upon $\theta$ ) Obtaining by theorem 1.2. that T is a sufficient statistic.

Now let $\mathrm{S}(\mathrm{X})$ be another sufficient statistic. By theorem 1.2. we obtain $f_{\theta}(x)=$ $g_{2}(S, \theta) h_{2}(x)$.

Then, if $S(x)=S(y)$,

$$
\frac{f_{\theta}(x)}{f_{\theta}(y)}=\frac{g_{2}(S, \theta) h_{2}(x)}{g_{2}(S, \theta) h_{2}(y)}=\frac{h_{2}(x)}{h_{2}(y)}
$$

which does not depend on $\theta$ implying $T(x)=T(y)$ by assumption. If $T(x)=T(y)$ whenever $S(x)=S(y)$, then T is a function of S . Therefore, T is a function of any sufficient statistic $S$.

Now we have shown that T is both a sufficient statistic and a function of any other sufficient statistic. Thus T is a minimal sufficient statistic. q.e.d.

Example $6\left(\bar{X}, S^{2}\right)$ is a minimal sufficient statistic for $\left(\mu, \sigma^{2}\right)$ in a normal distribution (both unknown).
From example 4, we have that ( $\bar{X}, S^{2}$ ) is sufficient for $\left(\mu, \sigma^{2}\right)$. Let $X_{1}, . ., X_{n} \sim N\left(\mu, \sigma^{2}\right)$ and $Y_{1}, . ., Y_{n} \sim N\left(\mu, \sigma^{2}\right)$. The ratio of the likelihoods is

$$
\frac{\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=0}^{n}\left(x_{i}-\mu\right)^{2}}}{\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=0}^{n}\left(y_{i}-\mu\right)^{2}}}=\frac{\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{(n-1) S_{X}^{2}}{2 \sigma^{2}}-\frac{n(\bar{x}-\mu)^{2}}{2 \sigma^{2}}}}{\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\frac{(n-1) S_{Y}^{2}}{2 \sigma^{2}}-\frac{n(\bar{y}-\mu)^{2}}{2 \sigma^{2}}}}
$$

Clearly, this ratio is independent of $\mu$ and $\sigma^{2}$ only if $\bar{X}=\bar{Y}$ and $S_{X}^{2}=S_{Y}^{2} .\left(\bar{X}, S^{2}\right)$ is therefore minimally sufficient.

### 1.4 Ancillary statistics

### 1.4.1 Handout

Definition $3 S(\mathbf{x})$ is an ancillary statistic if the distribution of $S(\mathbf{X})$ is a constant in $\theta$ ("free of $\theta$ ").

Example 7 If $X_{1}, \ldots, X_{n} \sim N(\theta, 1)$ are i.i.d., we know that

$$
\begin{aligned}
Z_{i} & =X_{i}-\theta \sim N(0,1) \\
\text { and } \quad \bar{X} & =\bar{Z}+\theta \sim N(\theta, 1 / n)
\end{aligned}
$$

where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
And we know that if we define

$$
\begin{aligned}
\tilde{X} & =\operatorname{median}\left(X_{1}, \ldots, X_{n}\right) \\
\tilde{Z} & =\operatorname{median}\left(Z_{1}, \ldots, Z_{n}\right)
\end{aligned}
$$

then $\tilde{X}$ has a distribution with parameter $\theta$, but the distribution of $\tilde{Z}$ has nothing to do with $\theta$.

On the other hand, if $R=\bar{X}-\tilde{X}$ then

$$
R=\bar{Z}-\tilde{Z}
$$

since

$$
\begin{aligned}
\tilde{Z} & =\operatorname{median}\left(Z_{1}, \ldots, Z_{n}\right) \\
& =\operatorname{median}\left(X_{1}-\theta, \ldots, X_{n}-\theta\right) \\
& =\operatorname{median}\left(X_{1}, \ldots, X_{n}\right)-\theta
\end{aligned}
$$

But since the distribution of $\bar{Z}$ and $\tilde{Z}$ is "free of $\theta$ ", so is the distribution of $R . R$ is a random variable and is therefore an ancillary statistic.

Note that $Z_{i}$ are not proper random variables: The $X_{i}$ are of course random variables so they are of the form $X_{i}: \Omega \longrightarrow \mathbb{R}$ whereas $Z_{i}$ is a function of both $\omega$ and $\theta$, i.e. is a function of the form $Z_{i}: \Omega \times \Theta \longrightarrow \mathbb{R}$.

Example 8 Assume that $X_{1}, \ldots, X_{n}$ are independent random variables with a c.d.f. of the form

$$
P_{\theta}\left[X_{i} \leq x\right]=I(x-\theta)
$$

i.e.

$$
X_{1}, \ldots, X_{n} \sim F_{\theta} \quad \text { with } \quad F_{\theta}(x)=F(x-\theta)
$$

Such a family is called a location family.
If we write $Z_{i}=X_{i}-\theta$, then the c.d.f. of $Z_{i}$ is given by:

$$
\begin{aligned}
P\left(Z_{i} \leq z\right) & =P\left(X_{i}-\theta \leq z\right) \\
& =P\left(X_{i} \leq z+\theta\right) \\
& =F((z+\theta)-\theta) \\
& =I(z)
\end{aligned}
$$

which is a constant in $\theta$.
We thus see that $R=\bar{X}-\tilde{X}=\bar{Z}-\tilde{Z}$ is an ancillary statistic.

Example 9 Let $X_{1}, \ldots, X_{n} \sim U(\theta, \theta+1)$ be i.i.d.
Define $Z_{i} \sim U(0,1)$ i.i.d.
Then $X_{(n)}-X_{(1)}$ has the same distribution as $Z_{(n)}-Z_{(1)}$ is ancillary.

Example 10 Suppose $X_{1}, \ldots, X_{n} \sim F_{\sigma}$ where $F_{\sigma}(x)=F\left(\frac{X_{i}}{\sigma}\right), \quad \sigma>0$, a scale family. Statistics of interest in relation to $\sigma$ include the usual standard deviation and the median absolute deviation (MAD):

$$
\begin{aligned}
S & =\sqrt{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)^{2}} \\
M & =\operatorname{median}\left(\left|X_{i}-\tilde{X}\right|\right)
\end{aligned}
$$

Note that $M / S$ is an ancillary statistic [Write $V_{i}=\frac{X_{i}}{\sigma}$ etc.]

Example 11 (Location scale family) $X_{1}, \ldots, X_{n} \sim F_{\mu, \sigma}$ iid, $F_{\mu, \sigma}(x)=F\left(\frac{x-\mu}{\sigma}\right)$ and show in each of the following cases that the random variable is ancillary.
1.

$$
\frac{\bar{X}-\tilde{X}}{S}
$$

2. 

$$
\frac{\bar{X}-\tilde{X}}{M}
$$

3. 

$$
\frac{X_{(n)}-X_{(1)}}{\bar{X}-\tilde{X}}
$$

## Solution:

1. Let $Z_{1}, \ldots, Z_{n} \sim F$. We get:

$$
P_{\mu, \sigma}\left[\frac{X_{i}-\mu}{\sigma} \leq w\right]=P_{\mu, \sigma}\left[X_{i} \leq \sigma w+\mu\right]=F_{\mu, \sigma}(\sigma w+\mu)=F(w)=P\left[Z_{i} \leq w\right]
$$

and thus

$$
\left(Z_{1}, \ldots, Z_{n}\right)=\left(\frac{X_{1}-\mu}{\sigma}, \ldots, \frac{X_{n}-\mu}{\sigma}\right)
$$

in distribution. Therefore:

$$
\frac{\bar{X}-\tilde{X}}{S_{X}}=\frac{\sigma \bar{Z}+\mu-\sigma \tilde{Z}-\mu}{S_{\sigma Z+\mu}}=\frac{\sigma \bar{Z}-\sigma \tilde{Z}}{\sigma S_{Z}}=\frac{\bar{Z}-\tilde{Z}}{M_{Z}}
$$

where

$$
S=\sqrt{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)^{2}} .
$$

2. Let $Z_{1}, \ldots, Z_{n} \sim F$. We get:

$$
P_{\mu, \sigma}\left[\frac{X_{i}-\mu}{\sigma} \leq w\right]=P_{\mu, \sigma}\left[X_{i} \leq \sigma w+\mu\right]=F_{\mu, \sigma}(\sigma w+\mu)=F(w)=P\left[Z_{i} \leq w\right]
$$

and thus

$$
\left(Z_{1}, \ldots, Z_{n}\right)=\left(\frac{X_{1}-\mu}{\sigma}, \ldots, \frac{X_{n}-\mu}{\sigma}\right)
$$

in distribution. Therefore:

$$
\frac{\bar{X}-\tilde{X}}{M}=\frac{\sigma \bar{Z}+\mu-\sigma \tilde{Z}-\mu}{M_{\sigma Z+\mu}}=\frac{\sigma \bar{Z}-\sigma \tilde{Z}}{\sigma M_{Z}}=\frac{\bar{Z}-\tilde{Z}}{M_{Z}}
$$

where $M_{X}=$ median $\left|X_{i}-\bar{X}\right|$.
3. Let $Z_{i}$ be as in 1 ) and 2 ). We get:

$$
\frac{X_{(n)}-X_{(1)}}{\bar{X}-\tilde{X}}=\frac{Z_{(n)}-Z_{(1)}}{\bar{Z}-\tilde{Z}}
$$

Definition 4 A statistic $T(\mathbf{X})$ is complete if the following holds for all functions $g$ :

$$
\begin{aligned}
& E_{\theta}[g(T)]=0 \text { for all } \theta \in \Theta \\
\Rightarrow & P_{\theta}[g(T)=0]=1 \text { for all } \theta \in \Theta
\end{aligned}
$$

Example 12 Let $X_{1}, \ldots, X_{n} \sim \operatorname{Pois}(\lambda)$ be i.i.d. samples from a Poisson distribution and $T(X)=\sum_{i=1}^{n} X_{i}$ be a sufficient statistic based on the sample, $X=\left[X_{1}, \ldots X_{n}\right]$. Since $T(X)$ is a sum of $n$ i.i.d. $\operatorname{Pois}(\lambda)$ variables it is distributed as $T(X) \sim \operatorname{Pois}(n \lambda)$. Thus, for all functions $g$ and all $\lambda \geq 0$, if

$$
E_{\lambda}[g(T(X))]=E_{\lambda}[g(t)]=\sum_{t=0}^{\infty} g(t) \frac{e^{-n \lambda}(n \lambda)^{t}}{t!}=0
$$

then $P_{\lambda}[g(t)=0]=1$ for all $\lambda \geq 0$. Thus, $T(X)=\sum_{i=1}^{n} X_{i}$ is a complete sufficient statistic.

Theorem 1.4 (Basu) If $T(\mathbf{X})$ is a complete and minimal sufficient statistic and $S(\mathbf{X})$ is an ancillary statistic, then $T(\mathbf{X})$ and $S(\mathbf{X})$ are independent.

Proof. We give the proof only for discrete distributions.
Let $S(\mathbf{X})$ be any ancillary statistic. Then $P(S(\mathbf{X})=s)$ does not depend on $\theta$ since $S(\mathbf{X})$ is ancillary. Also the conditional probability,

$$
P(S(\mathbf{X})=s \mid T(\mathbf{X})=t)=P(\mathbf{X} \in\{\mathbf{x}: S(\mathbf{x})=s\} \mid T(\mathbf{X}=t)
$$

does not depend on $\theta$ because $T(\mathbf{X})$ is a sufficient statistic. Thus to show that $S(\mathbf{X})$ and $T(\mathbf{X})$ are independent, it suffices to show that that

$$
P(S(\mathbf{X})=s \mid T(\mathbf{X}=t)=P(S(\mathbf{X}=s)
$$

for all possible value $t \in \tau$. Now,

$$
P(S(\mathbf{X})=s)=\sum_{t \in \tau}=P(S(\mathbf{X})=s \mid T(\mathbf{X})=t) P_{\theta}(T(\mathbf{X})=t)
$$

Furthermore, since $\sum_{t \in \tau} P_{\theta}(T(\mathbf{X})=t)=1$, we can write

$$
P(S(\mathbf{X})=s)=\sum_{t \in \tau}=P(S(\mathbf{X})=s) P_{\theta}(T(\mathbf{X})=t)
$$

Therefore, if we define the statistic

$$
g(t)=P(\mathbf{X})=s \mid T(\mathbf{X})=t)-P(S(\mathbf{X})=s)
$$

the above two equations show that

$$
E_{\theta} g(T)=\sum_{t \in \tau} g(t) P_{\theta}(T(\mathbf{X})=t)=0 \quad \text { for all } \theta
$$

Since $T(\mathbf{X})$ is a complete statistic, this implies that $g(t)=0$ for all possible values $t \in \tau$

Example 13 Consider $X_{1}, \ldots, X_{n} \sim N(\mu, 1)$.
Suppose $g$ is a function such that $E_{\mu}[g(\bar{X})]=0 \quad \forall \mu$. Then we first obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} g(x) \frac{1}{\sqrt{2 \pi n}} e^{-\frac{(x-\mu)^{2}}{2 n}} d x=0 \quad \forall \mu \quad \text { since } \quad \bar{X} \sim N(\mu, 1 / n) \tag{1}
\end{equation*}
$$

If $g$ is a step function then it is easy to see that (1) implies $g=0$ and one can then draw the conclusion that the result follows for all functions which can be approximated by step functions.

Example 14 Let $X \sim P(\lambda)$. If

$$
\begin{aligned}
& E_{\lambda}[g(X)]=0 \quad \forall \lambda \\
\Rightarrow & \sum_{x=0}^{\infty} g(x) \frac{e^{-\lambda} \lambda^{x}}{x!}=0 \quad \forall \lambda \\
\Rightarrow & \sum_{x=0}^{\infty}\left(\frac{g(x)}{x!}\right) \lambda^{x}=0 \quad \forall \lambda
\end{aligned}
$$

i.e. a function of the form $h(\lambda)=\sum_{0}^{\infty} a_{n} \lambda^{u}$ is the constant $0 \quad \forall \lambda$.

Such a series is an analytic fuction and it can only be uniformly zero if all the terms are zero, i.e. $a_{n}=0 \quad \forall n$ og thus $g(x)=0$ for $x \in \mathbb{N}$ and hence $P_{\lambda}[g(X)=0]=1$.

### 1.5 The Likelihood Principle

### 1.5.1 Handout

## Likelihood functions

Definition 5 Let $X_{1}, \ldots, X_{n}$ be random variables with a joint probability density function $f_{\theta}$, so that $f_{\theta}(\mathbf{x})$ is defined for $\mathbf{x} \in \mathbf{X}(\Omega) \subset \mathbb{R}^{n}$ and $\theta \in \Theta$.

Write $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime} \sim f_{\theta}$.
Given a data vector, $\mathbf{x}$, the likelihood function is the function $L_{\mathbf{x}}(\theta):=f_{\theta}(\mathbf{x}), \quad \theta \in$ $\Theta$.

Remark 1.2. Note that $L$ and $f$ are "the same" in the sense that if we write $g(\mathbf{x}, \theta):=f_{\theta}(\mathbf{x})$ and $h(\mathbf{x}, \theta):=L_{\mathbf{x}}(\theta)$ then of course $h(\mathbf{x}, \theta)=f_{\theta}(\mathbf{x})=L_{\mathbf{x}}(\theta)=g(\mathbf{x}, \theta)$, i.e. both can be viewed as functions with two arguments.

However, the point of the definition is to emphasize that the likelihood is a function of the parameters for a fixed data set.

Example $15 X_{1}, \ldots, X_{n} \sim U(0, \theta)$ iid.

$$
\begin{aligned}
f_{\theta}(\mathbf{x}) & =h_{\theta}\left(x_{1}\right) \cdots h_{\theta}\left(x_{n}\right)= \begin{cases}\frac{1}{\theta^{n}} & 0 \leq x_{i} \leq \theta, \quad i=1, \ldots, n \\
0 & \text { otherwise }\end{cases} \\
h_{\theta}(t) & = \begin{cases}\frac{1}{\theta} & 0 \leq x_{i} \leq \theta \\
0 & \text { otherwise }\end{cases} \\
\text { note } \quad h_{\theta}(t) & =\frac{1}{\theta} I_{[0, \theta]}(t) \\
\text { so } \quad f_{\theta}(\mathbf{x}) & =\frac{1}{\theta^{n}} \prod_{i=1}^{n} I_{[0, \theta]}\left(x_{i}\right) \\
\Rightarrow \quad f_{\theta}(\mathbf{x}) & =\frac{1}{\theta^{n}} I_{[0, \theta]}\left(x_{(n)}\right) I_{[0, \infty[ }\left(x_{(1)}\right)
\end{aligned}
$$

$\left[0 \leq x_{i} \leq \theta\right.$ for all $i \Leftrightarrow x_{(1)} \geq 0$ og $\left.x_{(n)} \leq \theta\right]$

$$
L_{\mathbf{x}}(\theta)=\frac{1}{\theta^{n}} I_{[0, \theta]}\left(x_{(n)}\right) I_{[0, \infty[ }\left(x_{(1)}\right)
$$

If $x_{(1)}>0$ then $x_{(n)}>0$

$$
L_{\mathbf{x}}(\theta)=\frac{1}{\theta^{n}} I_{\left[x_{(n)}, \infty[ \right.}(\theta)
$$

Example 16 Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a sample of $n$ i.i.d. Poisson random variables with joint pdf $f(\mathbf{x} \mid \lambda)$. The likelihood function of $\lambda$ given $\mathbf{X}=\mathbf{x}$ is

$$
L(\lambda \mid \mathbf{x})=f(\mathbf{x} \mid \lambda)=\prod_{i=1}^{n} \frac{\lambda^{x_{i}}}{x_{i}!} e^{\lambda}=\frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} e^{n \lambda}
$$

## Likelihood principle

The likelihood principle states that inference on $\theta$ should only be based on the relative value of the likelihood function. In other words, if

$$
L_{\mathbf{x}}(\theta)=\kappa L_{\mathbf{y}}(\theta), \quad \forall \theta \in \Theta \quad(\kappa \text { is a constant })
$$

then $\mathbf{x}$ og $\mathbf{y}$ should lead to the same inference on $\theta$.

Example 17 The likelihood function provides information on how "likely" a parameter value is, given a set of data.

$$
\begin{array}{cr}
X \sim \operatorname{Bin}(n, p), & \theta=p \\
P[X=x]=\binom{n}{x} p^{x}(1-p)^{n-x}, & x=0, \ldots, n \\
L(p)=\binom{n}{x} p^{x}(1-p)^{n-x}, & 0 \leq p \leq 1 \\
\ln (L(p))=\ln \binom{n}{p}+x \ln p+(n-x) \ln (1-p) \\
& \frac{d \ln (L(p))}{d p}=\frac{x}{p}-\frac{n-x}{1-p}=0 \\
\Rightarrow \quad x(1-p)=p(n-x) \\
\Rightarrow & x-p x=n p-x p \\
\Rightarrow & p=\frac{x}{n}
\end{array}
$$

As is typical for the discrete case we can interpret this as the value of $p$ which gives the maximum probability to the measurements which were obtained. This interpretation is not correct in the continuous case.

Example 18 Let $X_{1}, \ldots, X_{n} \sim n\left(\theta, \sigma^{2}\right)$, iid. Both parameters are unknown and we would like to find maximum likelihood estimators for $\theta$ and $\sigma^{2}$. The likelihood function is

$$
\begin{aligned}
L(\boldsymbol{\theta} ; \mathbf{x})=f(\mathbf{x} ; \boldsymbol{\theta}) & =\prod_{i=1}^{n} f_{x_{i}}\left(x_{i} ; \boldsymbol{\theta}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(x_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right)
\end{aligned}
$$

(The following material is covered in more detail in the next section).
We take notice that it is more convenient to maximize the natural logarithm (written here as $\log$ due to convention) of the function instead since

$$
\begin{aligned}
\log L(\boldsymbol{\theta} ; \mathbf{x}) & =\log \left(\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2} \\
& =-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}
\end{aligned}
$$

Necessary conditions for a maximum of $\log L$ w.r.t. $\theta$ and $\sigma^{2}$ are

$$
\begin{equation*}
\frac{\partial \log L(\boldsymbol{\theta} ; \mathbf{x})}{\partial \theta}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \log L(\boldsymbol{\theta} ; \mathbf{x})}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2\left(\sigma^{2}\right)^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}=0 \tag{3}
\end{equation*}
$$

Using (1) and (2) we can find MLE candidates. From (1) we get

$$
\theta=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

so a MLE candidate for $\theta$ is $\hat{\theta}=\bar{X}$ which is the sample mean. Likewise (2) gives

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}
$$

thus a MLE candidate for $\sigma^{2}$ is $\hat{\sigma}^{2}=\frac{n-1}{n} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{n-1}{n} S^{2}$ where we have inserted the MLE candidate for $\theta$. All that is now left to prove is that $\log L$ achieves its maximum at $\hat{\theta}$ and $\hat{\sigma}^{2}$.

Remember that $\sum_{i=1}^{n}\left(x_{i}-a\right)^{2} \geq \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \forall a \in \mathbb{R}$ so $\exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) \geq$ $\exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}\right) \forall a \in \mathbb{R}$. So now we only have to confirm that $\log L$ achieves its maximum w.r.t. $\sigma^{2}$. We look at the second derivative

$$
\begin{aligned}
\frac{\partial^{2} \log L(\boldsymbol{\theta} ; \mathbf{x})}{\partial\left(\sigma^{2}\right)^{2}} & =\frac{n}{2} \frac{n^{2}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}-\frac{n^{3}}{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{3}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{2} n^{3} K-n^{3} K=-\frac{1}{2} n^{3} K \leq 0
\end{aligned}
$$

where $K=\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{-2}$. Thus proving that $\log L$ indeed achieves its maximum at $\left(\hat{\theta}, \hat{\sigma}^{2}\right)$ and it is a global maximum since it's the only critical point of $\log L$ which goes to 0 at the $\pm \infty$ limits.

## Copyright 2021, Gunnar Stefánsson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

