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1 Su�ient statistis

1.1 Data Redution

Let {X}n be i.i.d.

If T : Rn → R is a funtion suh that T (X) is a random variable then T (X) is a statisti.

1.1.1 Handout

Data redution

Let X1, ...,Xn be i.i.d. random variables with a ommon .d.f., Fθ, where the parameter

θ is unknown, but in some parameter set θ ∈ Θ. We ommonly have θ ∈ R, sometimes

θ ∈ R
p
and Θ may even be a disrete set. Write X for the random vetor

X = (X1, ..,Xn)
T : Ω → R

n.

If t : Rn → R is a funtion suh that T = t ◦X = t(X) is also a random variable, then

T = t(X) is alled a statisti.

Note that we may be sloppy with the notation, alternatively using T , t(X) or T (X) for
the same thing.

For a given set of data x = (x1, ..., xn)
T
one might onsider just using T (x) and then

�forgetting� the original values, thus reduing the data set. To do this one needs to know that

the resulting number T (x) in some sense ontains all the information about the parameter

that is in the original data set. This setion will make these onepts spei�.

1.2 Su�ieny

T (X) is alled a su�ient statisti if the distribution of X, onditionally on T (X) is a
onstant funtion of θ
The de�nition implies that if T = T (X) is su�ient then fX|T (x|t) does not ontain θ.

1.2.1 Handout

We want to de�ne a onept to represent the notion that T (X) is a su�ient statisti for

θ. This onept should mean that information about θ is ompletely ontained in T (X), i.e.
X does not give any information one we know T (X).

Note that the only link between the data and the parameter is through the probability

distribution. Thus, for a given data set (x), all the information about θ ∈ Θ is ontained in

the joint density (or p.m.f.) of the data set, i.e. in fθ(x).

De�nition 1 T (X) is a su�ient statisti if the distribution of X, onditionally on T (X),
is a onstant funtion of θ.

Remark 1.1. Reall that the probability measure Pθ is indexed by θ ∈ Θ.

� Basially the de�nition implies that if T = T (X) is su�ient, then the funtion

fX|T (x|t)

does not ontain θ. In other words, Pθ[X ∈ A|T (X) = t] is a onstant in θ.

� For a disrete r.v.X, assume Pθ[T (X) = t] > 0 , to obtain

Pθ[X = x|T (X) = t] =
Pθ[X = x, T (X) = t]

Pθ[T (X) = t]
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� Note that that {X = x} is a subset of {T (X) = T (x)} and hene Pθ[X = x, T (X) =
t] = Pθ[X = x]).

� Now, assume t = T (x) and we want to investigate whether

Pθ[X = x|T (X) = T (x)] =
Pθ[X = x]

Pθ[T (X) = T (x)]

is a onstant in θ.

For a disrete r.v. X this is given by

Pθ[X = x|T (X) = T (x)] =
pθ(x)

qθ(T (x))

where pθ is the p.m.f. of X and qθ is the p.m.f. of T (X)

qθ(T ) =
∑

x:T (x)=t

pθ(x)

We have shown the following for a disrete random variable, but state it for the general

ase:

Theorem 1.1 If fθ is the (joint) p.d.f. of X and qθ is the p.d.f. of T (X), then T (X) is

su�ient for θ if

pθ(x)
qθ(T (x)) is a onstant in θ for every x ∈ R

n
(or x ∈ X(Ω)).

Example 1 Consider random variables X1, ...,Xn ∼ b(1, p) iid; θ = p
An obvious andidate for a su�ient statisti is T (X) :=

∑n
i=1Xi ∼ b(n, p).

Here we have P [Xi = xi] = p(1− p) and we obtain

pθ(x)

qθ(T (x))
=

∏n
i=1 p

xi
i (1 − p)1−xi

(
n

T (x)

)
pT (x)(1− p)n−T (x)

=
p
∑

xi(1− p)n−
∑

xi

(
n∑
xi

)
p
∑

xi(1− p)n−
∑

xi
=

1
(

n∑
xi

)

We thus see that T (X) is a su�ient statisti sine this last fration does not involve θ
and is thus a onstant in θ.

Example 2 Consider Gaussian random variables, X1, ...,Xn ∼ n(µ, σ2), with known σ2

but unknown loation parameter θ = µ.
Here, the obvious andidate for a su�ient statisti is T (X) := X̄ = 1

n

∑n
i=1 Xi.

The joint p.d.f. is given by

fµ(x) =
n∏

i=1

1√
2πσ

e−
(xi−µ)2

2σ2 =
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1 (xi−µ)2

The density funtion for T (X) is easy to obtain sine it is known that X ∼ n(µ, σ
2

n )
and thus

gµ(T (X)) = gµ(x) =
1√

2πσ/
√
n
e
− (x̄−µ)2

2σ2/n
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Note that the quadrati term involving the x and the unknown an be rewritten:

n∑

i=1

(xi − µ)2 =

n∑

i=1

((xi + x̄) + (x̄− µ))2

=

n∑

i=1

(xi − x̄)2 + 2(x̄− µ)

n∑

i=1

(xi − x̄) + n(x̄− µ)2

=
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

whih implies

fµ(x)

gµ(T (x))
=

1
(2π)n/2σn e

− 1
2σ2

∑
(xi−x̄)2 − n

2σ2 (x̄− µ)2

1
(2π)1/2σ/

√
n
e−(x̄−µ)2/2σ2/n

=
(2π)1/2σ√
n(2π)n/2σn

e−
1

2σ2

∑n
i=1 (xi−x̄)2

Sine this ratio does not involve µ, T is a su�ient statisti.

Example 3 Let Θ be the olletion of all .d.f.s of ontinuous random variables and let

X1, ...,Xn ∼ F ∈ Θ be i.i.d. Then the order statisti, (X(1), ...,X(n)), is su�ient.

The searh for su�ient statistis is made easier by the following theorem.

Theorem 1.2 T (X) is a su�ient statisti if and only if there exist funtions gθ and h
suh that the joint p.d.f. of X an be written in the form

fθ(x) = gθ(T (x))h(x)

Proof. Suppose X is disrete.

(1) Let T (X) be su�ient. Then we an de�ne

gθ(t) := pθ[T (X) = t]

h(x) := pθ[X = x|T (X) = t]

and these funtions satisfy the onditions.

(2) Next assume that the funtions gθ and h exist and let qθ be the mass funtion of T (X).
Take an arbitrary point x ∈ R

n
and let t = T (X). Consider

fθ(x)

qθ(T (x))
=

gθ(T (x))h(x)

qθ(T (x))
=

gθ(T (x))h(x)

qθ(t)
=

gθ(T (x))h(x)
∑

y:T (y)=t fθ(y)
=

gθ(T (x))h(x)
∑

y:T (y)=t gθ(T (y))h(y)
=

to obtain

gθ(T (x))h(x)

gθ(t)
∑

y:T (y)=t h(y)
=

h(x)
∑

y:T (y)=t h(y)

whih is a onstant in θ and hene T (X) is su�ient.
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Example 4 X1, ...,Xn ∼ n(µ, σ2) iid, θ = (µ, σ2)
T (X) := (X̄, S2) is su�ient:

fµ,σ2 =
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1 (xi−µ)2 =

1

(2π)n/2σn
e−

1
2σ2 (

∑n
i=1 (xi−x̄)2+n(x̄−µ)2) =

1

(2π)n/2σn
e−

(n−1)S2

2σ2 −n(x̄−µ)2

2σ2

︸ ︷︷ ︸

=: gθ(T (x))

Example 5 Let X1, . . . ,Xn be i.i.d. observations from the disrete uniform distribution

on 1, . . . , θ. The pmf is then

f(x|θ) =
{

1
θ x = 1, 2, . . . , θ

0 otherwise.

The joint pmf of X1, . . . ,Xn is then

f(x|θ) =
{

θ−n xi ∈ {1, . . . , θ} for i = 1, . . . , n

0 otherwise.

Denote the set of natural numbers as N and let Nθ = {1, 2, . . . , θ}. We an rewrite the

joint pmf of X1, . . . ,Xn as

f(x|θ) = θ−n
n∏

i=1

INθ
(xi),

where I is the indiator funtion. De�ning T (x) = maxi xi we an rewrite

n∏

i=1

INθ
(xi) =

(
n∏

i=1

IN(xi)

)

INθ
(T (x)).

Thus the joint pmf fators into

f(x|θ) = θ−nINθ
(T (x))

(
n∏

i=1

IN(xi)

)

.

By the fatorization theorem, T (X) = maxiXi is a su�ient statisti for θ.

1.3 Minimal Su�ient Statistis

1.3.1 Handout

De�nition 2 Let Xn ∼ Fθ be independent and T : Rn → R suh that T (X) is a random

variable. T (X) is a minimal su�ient statisti if for every su�ient statisti T ′
there exists

a funtion k suh that T (x) = k(T ′(x)), x ∈ R
n (x ∈ X(Ω)).
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Theorem 1.3 If T is suh that, for x,y ∈ R
n
, the ratio

fθ(x)
fθ(y)

is onstant as a funtion of

θ if and only if T (x) = T (y), then T (X) is a minimal su�ient statisti for θ.

Proof: De�ne the sets At = {x : T (x) = t} Thus if T (x) = T (y) = t then x and y are both

elements in At.

De�ne a funtion γ suh that γ(t) that piks some element of At, for eah t.
Note that γ(T (x)) is in the same set At as x but is not neessarily equal to x.

The fration K = fθ(x)
fθ(γ(T (x)) does not depend on θ beause of how we have de�ned γ. We

an now write the density as

fθ(x) = fθ(γ(T (x))[
fθ(x)

fθ(γ(T (x))
]

now we hoose g(T, θ) = fθ(γ(T (x)) and h(x) = K from above (whih does not depend

upon θ) Obtaining by theorem 1.2. that T is a su�ient statisti.

Now let S(X) be another su�ient statisti. By theorem 1.2. we obtain fθ(x) =
g2(S, θ)h2(x).

Then, if S(x) = S(y),
fθ(x)

fθ(y)
=

g2(S, θ)h2(x)

g2(S, θ)h2(y)
=

h2(x)

h2(y)

whih does not depend on θ implying T (x) = T (y) by assumption.

If T (x) = T (y) whenever S(x) = S(y), then T is a funtion of S. Therefore, T is a funtion

of any su�ient statisti S.

Now we have shown that T is both a su�ient statisti and a funtion of any other

su�ient statisti. Thus T is a minimal su�ient statisti. q.e.d.

Example 6 (X̄, S2) is a minimal su�ient statisti for (µ, σ2) in a normal distribution

(both unknown).

From example 4, we have that (X̄, S2) is su�ient for (µ, σ2). Let X1, ..,Xn ∼ N(µ, σ2)
and Y1, .., Yn ∼ N(µ, σ2). The ratio of the likelihoods is

1
(2π)n/2σn e

− 1
2σ2

∑n
i=0(xi−µ)2

1
(2π)n/2σn e

− 1
2σ2

∑n
i=0(yi−µ)2

=

1
(2π)n/2σn e

− (n−1)S2
X

2σ2 −n(x̄−µ)2

2σ2

1
(2π)n/2σn e

− (n−1)S2
Y

2σ2 −n(ȳ−µ)2

2σ2

Clearly, this ratio is independent of µ and σ2
only if X̄ = Ȳ and S2

X = S2
Y . (X̄, S2) is

therefore minimally su�ient.

1.4 Anillary statistis

1.4.1 Handout

De�nition 3 S(x) is an anillary statisti if the distribution of S(X) is a onstant in θ
(�free of θ�).
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Example 7 If X1, . . . ,Xn ∼ N(θ, 1) are i.i.d., we know that

Zi = Xi − θ ∼ N(0, 1)

and X̄ = Z̄ + θ ∼ N(θ, 1/n)

where X̄ = 1
n

∑n
i=1 Xi.

And we know that if we de�ne

X̃ = median(X1, . . . ,Xn)

Z̃ = median(Z1, . . . , Zn)

then X̃ has a distribution with parameter θ, but the distribution of Z̃ has nothing to do

with θ.
On the other hand, if R = X̄ − X̃ then

R = Z̄ − Z̃

sine

Z̃ = median(Z1, . . . , Zn)

= median(X1 − θ, . . . ,Xn − θ)

= median(X1, . . . ,Xn)− θ

But sine the distribution of Z̄ and Z̃ is �free of θ�, so is the distribution of R. R is a

random variable and is therefore an anillary statisti.

Note that Zi are not proper random variables: The Xi are of ourse random variables so

they are of the form Xi : Ω −→ R whereas Zi is a funtion of both ω and θ, i.e. is a funtion
of the form Zi : Ω×Θ −→ R.

Example 8 Assume that X1, . . . ,Xn are independent random variables with a .d.f. of

the form

Pθ[Xi ≤ x] = I(x− θ),

i.e.

X1, . . . ,Xn ∼ Fθ with Fθ(x) = F (x− θ).

Suh a family is alled a loation family.

If we write Zi = Xi − θ, then the .d.f. of Zi is given by:

P (Zi ≤ z) = P (Xi − θ ≤ z)

= P (Xi ≤ z + θ)

= F ((z + θ)− θ)

= I(z)

whih is a onstant in θ.
We thus see that R = X̄ − X̃ = Z̄ − Z̃ is an anillary statisti.
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Example 9 Let X1, . . . ,Xn ∼ U(θ, θ + 1) be i.i.d.
De�ne Zi ∼ U(0, 1) i.i.d.
Then X(n) −X(1) has the same distribution as Z(n) − Z(1) is anillary.

Example 10 Suppose X1, . . . ,Xn ∼ Fσ where Fσ(x) = F
(
Xi
σ

)

, σ > 0, a sale fam-

ily. Statistis of interest in relation to σ inlude the usual standard deviation and the

median absolute deviation (MAD):

S =
√

1
n−1

∑(
Xi − X̄

)2

M = median(|Xi − X̃|)

Note that M/S is an anillary statisti [Write Vi =
Xi
σ et.℄

Example 11 (Loation sale family) X1, . . . ,Xn ∼ Fµ,σ iid, Fµ,σ(x) = F
(x−µ

σ

)
and

show in eah of the following ases that the random variable is anillary.

1.

X̄ − X̃

S

2.

X̄ − X̃

M

3.

X(n) −X(1)

X̄ − X̃

Solution:

1. Let Z1, . . . , Zn ∼ F . We get:

Pµ,σ

[
Xi − µ

σ
≤ w

]

= Pµ,σ [Xi ≤ σw + µ] = Fµ,σ(σw + µ) = F (w) = P [Zi ≤ w]

and thus

(Z1, . . . , Zn) =

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)

in distribution. Therefore:

X̄ − X̃

SX
=

σZ̄ + µ− σZ̃ − µ

SσZ+µ
=

σZ̄ − σZ̃

σSZ
=

Z̄ − Z̃

MZ

where

S =

√

1

n− 1

∑

(Xi − X̄)2.
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2. Let Z1, . . . , Zn ∼ F . We get:

Pµ,σ

[
Xi − µ

σ
≤ w

]

= Pµ,σ [Xi ≤ σw + µ] = Fµ,σ(σw + µ) = F (w) = P [Zi ≤ w]

and thus

(Z1, . . . , Zn) =

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)

in distribution. Therefore:

X̄ − X̃

M
=

σZ̄ + µ− σZ̃ − µ

MσZ+µ
=

σZ̄ − σZ̃

σMZ
=

Z̄ − Z̃

MZ

where MX = median|Xi − X̄|.

3. Let Zi be as in 1) and 2). We get:

X(n) −X(1)

X̄ − X̃
=

Z(n) − Z(1)

Z̄ − Z̃

De�nition 4 A statisti T (X) is omplete if the following holds for all funtions g:

Eθ[g(T )] = 0 for all θ ∈ Θ

⇒Pθ[g(T ) = 0] = 1 for all θ ∈ Θ

Example 12 Let X1, . . . ,Xn ∼ Pois(λ) be i.i.d. samples from a Poisson distribution and

T (X) =
∑n

i=1 Xi be a su�ient statisti based on the sample, X = [X1, . . . Xn]. Sine

T (X) is a sum of n i.i.d. Pois(λ) variables it is distributed as T (X) ∼ Pois(nλ). Thus,

for all funtions g and all λ ≥ 0, if

Eλ[g(T (X))] = Eλ[g(t)] =

∞∑

t=0

g(t)
e−nλ(nλ)t

t!
= 0,

then Pλ[g(t) = 0] = 1 for all λ ≥ 0. Thus, T (X) =
∑n

i=1 Xi is a omplete su�ient

statisti.

Theorem 1.4 (Basu) If T (X) is a omplete and minimal su�ient statisti and S(X)
is an anillary statisti, then T (X) and S(X) are independent.

Proof. We give the proof only for disrete distributions.

Let S(X) be any anillary statisti. Then P (S(X) = s) does not depend on θ sine S(X) is
anillary. Also the onditional probability,

P (S(X) = s | T (X) = t) = P (X ∈ {x : S(x) = s} | T (X = t)
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does not depend on θ beause T (X) is a su�ient statisti. Thus to show that S(X) and
T (X) are independent, it su�es to show that that

P (S(X) = s | T (X = t) = P (S(X = s)

for all possible value t ∈ τ. Now,

P (S(X) = s) =
∑

t∈τ
= P (S(X) = s | T (X) = t)Pθ(T (X) = t)

Furthermore, sine

∑

t∈τ Pθ(T (X) = t) = 1, we an write

P (S(X) = s) =
∑

t∈τ
= P (S(X) = s)Pθ(T (X) = t)

Therefore, if we de�ne the statisti

g(t) = P (X) = s | T (X) = t)− P (S(X) = s)

the above two equations show that

Eθg(T ) =
∑

t∈τ
g(t)Pθ(T (X) = t) = 0 for all θ

Sine T (X) is a omplete statisti, this implies that g(t) = 0 for all possible values t ∈ τ

Example 13 Consider X1, . . . ,Xn ∼ N(µ, 1).
Suppose g is a funtion suh that Eµ[g(X̄)] = 0 ∀µ. Then we �rst obtain

∫ ∞

−∞
g(x)

1√
2πn

e−
(x−µ)2

2n dx = 0 ∀µ sine X̄ ∼ N(µ, 1/n) (1)

If g is a step funtion then it is easy to see that (1) implies g = 0 and one an then

draw the onlusion that the result follows for all funtions whih an be approximated

by step funtions.

Example 14 Let X ∼ P (λ). If

Eλ[g(X)] = 0 ∀λ

⇒
∞∑

x=0

g(x)
e−λλx

x!
= 0 ∀λ

⇒
∞∑

x=0

(
g(x)

x!

)

λx = 0 ∀λ

i.e. a funtion of the form h(λ) =
∑∞

0 anλ
u
is the onstant 0 ∀λ.

Suh a series is an analyti fution and it an only be uniformly zero if all the terms

are zero, i.e. an = 0 ∀n og thus g(x) = 0 for x ∈ N and hene Pλ[g(X) = 0] = 1.

1.5 The Likelihood Priniple

1.5.1 Handout

Likelihood funtions
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De�nition 5 Let X1, . . . ,Xn be random variables with a joint probability density fun-

tion fθ, so that fθ(x) is de�ned for x ∈ X(Ω) ⊂ R
n
and θ ∈ Θ.

Write X = (X1, . . . ,Xn)
′ ∼ fθ.

Given a data vetor, x, the likelihood funtion is the funtion Lx(θ) := fθ(x), θ ∈
Θ.

Remark 1.2. Note that L and f are �the same� in the sense that if we write g(x, θ) := fθ(x)
and h(x, θ) := Lx(θ) then of ourse h(x, θ) = fθ(x) = Lx(θ) = g(x, θ), i.e. both an be

viewed as funtions with two arguments.

However, the point of the de�nition is to emphasize that the likelihood is a funtion

of the parameters for a �xed data set.

Example 15 X1, . . . ,Xn ∼ U(0, θ) iid.

fθ(x) = hθ(x1) · · · hθ(xn) =
{

1
θn 0 ≤ xi ≤ θ, i = 1, . . . , n

0 otherwise

hθ(t) =

{
1
θ 0 ≤ xi ≤ θ

0 otherwise

note hθ(t) =
1

θ
I[0,θ](t)

so fθ(x) =
1

θn

n∏

i=1

I[0,θ](xi)

⇒ fθ(x) =
1

θn
I[0,θ](x(n))I[0,∞[(x(1))

[0 ≤ xi ≤ θ for all i ⇔ x(1) ≥ 0 og x(n) ≤ θ℄

Lx(θ) =
1

θn
I[0,θ](x(n))I[0,∞[(x(1))

If x(1) > 0 then x(n) > 0

Lx(θ) =
1

θn
I[x(n),∞[(θ)

Example 16 Let X = (X1, ...,Xn) be a sample of n i.i.d. Poisson random variables with

joint pdf f(x|λ). The likelihood funtion of λ given X = x is

L(λ|x) = f(x|λ) =
n∏

i=1

λxi

xi!
eλ =

λ
∑

xi

∏n
i=1 xi!

enλ

Likelihood priniple

The likelihood priniple states that inferene on θ should only be based on the relative

value of the likelihood funtion. In other words, if

Lx(θ) = κLy(θ), ∀θ ∈ Θ (κ is a onstant)
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then x og y should lead to the same inferene on θ.

Example 17 The likelihood funtion provides information on how "likely" a parameter

value is, given a set of data.

X ∼ Bin(n, p), θ = p

P [X = x] =

(
n

x

)

px(1− p)n−x, x = 0, . . . , n

L(p) =

(
n

x

)

px(1− p)n−x, 0 ≤ p ≤ 1

ln (L(p)) = ln

(
n

p

)

+ x ln p+ (n − x) ln (1− p)

d ln (L(p))

dp
=

x

p
− n− x

1− p
= 0

⇒ x(1− p) = p(n− x)

⇒ x− px = np− xp

⇒ p =
x

n

As is typial for the disrete ase we an interpret this as the value of p whih gives

the maximum probability to the measurements whih were obtained. This interpretation

is not orret in the ontinuous ase.

Example 18 Let X1, ...,Xn ∼ n(θ, σ2), iid. Both parameters are unknown and we would

like to �nd maximum likelihood estimators for θ and σ2
. The likelihood funtion is

L(θ;x) = f(x;θ) =

n∏

i=1

fxi(xi;θ)

=

n∏

i=1

1√
2πσ

exp

(

−(xi − θ)2

2σ2

)

=

(
1√
2πσ2

)n

exp

(

− 1

2σ2

n∑

i=1

(xi − θ)2

)

(The following material is overed in more detail in the next setion).

We take notie that it is more onvenient to maximize the natural logarithm (written

here as log due to onvention) of the funtion instead sine

logL(θ;x) = log
(

(2πσ2)−
n
2

)

− 1

2σ2

n∑

i=1

(xi − θ)2

= −n

2
log(2π) − n

2
log(σ2)− 1

2σ2

n∑

i=1

(xi − θ)2

Neessary onditions for a maximum of logL w.r.t. θ and σ2
are

∂ logL(θ;x)

∂θ
=

1

σ2

n∑

i=1

(xi − θ) = 0 (2)
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and

∂ logL(θ;x)

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑

i=1

(xi − θ)2 = 0 (3)

Using (1) and (2) we an �nd MLE andidates. From (1) we get

θ =
1

n

n∑

i=1

xi

so a MLE andidate for θ is θ̂ = X̄ whih is the sample mean. Likewise (2) gives

σ2 =
1

n

n∑

i=1

(xi − θ)2

thus a MLE andidate for σ2
is σ̂2 = n−1

n
1

n−1

n∑

i=1
(Xi − X̄)2 = n−1

n S2
where we have

inserted the MLE andidate for θ. All that is now left to prove is that logL ahieves its

maximum at θ̂ and σ̂2
.

Remember that

n∑

i=1
(xi − a)2 ≥

n∑

i=1
(xi − x̄)2 ∀a ∈ R so exp

(

− 1
2σ2

n∑

i=1
(xi − x̄)2

)

≥

exp

(

− 1
2σ2

n∑

i=1
(xi − a)2

)

∀a ∈ R. So now we only have to on�rm that logL ahieves its

maximum w.r.t. σ2
. We look at the seond derivative

∂2 logL(θ;x)

∂(σ2)2
=

n

2

n2

(
n∑

i=1
(xi − x̄)2)2

− n3

(
n∑

i=1
(xi − x̄)2)3

n∑

i=1

(xi − x̄)2

=
1

2
n3K − n3K = −1

2
n3K ≤ 0

where K = (
n∑

i=1
(xi − x̄)2)−2

. Thus proving that logL indeed ahieves its maximum at

(θ̂, σ̂2) and it is a global maximum sine it's the only ritial point of logL whih goes to

0 at the ±∞ limits.
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