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1 Irrigation

1.1 The Data

Figure 1: Boxplots of the yield group according to each of thethree effects: irrigation, variety and field. The last boxplot shows the yield total.

The objective is to determine the effects of four different irrigation methods and two crop varieties in
an agricultural field trial. Eight fields are available, but we can only apply one type of irrigation to each
field. We can however split each field in two and plant different varieties in each half. The irrigation
method is the whole plot factor, which should be assigned randomly to each field. Within each field the
variety is assigned randomly. Irrigation i1 is used on fieldsf1 and f5, irrigation i2 is used on fields f2
and f6, irrigation i3 is used on fields f3 and f7 and irrigationi4 is used on fields f4 and f8. In each field
variety v1 is planted in half of the field and variety v2 is planted in the other half of the field.

Boxplots of the yield grouped according to irrigation, variety and field can be seen in the figure. There
seems to be difference between some fields and also between i4and the other irrigation methods.

Table I shows the data.

1.2 The Model and Hypothesis

yf iv = µ+ ιi +νv +(ιν)iv +φ f + ε f iv

The irrigation and variety are obviously fixed effects sincewe are testing exactly those types. The fields
on the other hand are random, since the soil and weather for example can not be chosen exactly. There
is also interaction between irrigation and variety and alsobetween field and variety. We can not assume
that there is interaction between field and irrigation sinceeach field only has one type of irrigation. The
irrigation/variety interaction is fixed but the field/variety interaction is random. We therefore propose
the model

yf iv = µ+ ιi + νv +(ιν)iv + φ f +(φν) f v + ε f iv

whereµ is the overall mean,ιi ,νv,(ιν)iv are the fixed effets which represent the deviation from the mean
due to irrigation, variety and their interatction andφ f ,(φν) f v are random variables which represent the
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Table 1: The Data

Field Irrigation Variety Yield
f1 i1 v1 35.4
f1 i1 v2 37.9
f2 i2 v1 36.7
f2 i2 v2 38.2
f3 i3 v1 34.8
f3 i3 v2 36.4
f4 i4 v1 39.5
f4 i4 v2 40.0
f5 i1 v1 41.6
f5 i1 v2 40.3
f6 i2 v1 42.7
f6 i2 v2 41.6
f7 i3 v1 43.6
f7 i3 v2 42.8
f8 i4 v1 44.5
f8 i4 v2 47.6

deviation from the mean due to field and the interaction of field and variety. The random variable
ε f iv represents the deviation of the yield of varietyv, irrigated with irrigationi on field f . Hereφ f ∼
n(0,σ2

φ),(φν) f v ∼ n(0,σ2
(φν)),ε f iv ∼ n(0,σ2).

However, since we only have one observation per variety within each field, we must use a simpler model
which does not account for the variety/field interaction. This model becomes

yf iv = µ+ ιi + νv +(ιν)iv + φ f + ε f iv

where we haveε f iv ∼ n(0,σ2),φ f ∼ n(0,σ2
φ). We also have the resrictions

∑
i

ιi = ∑
v

νv = ∑
i

(ιν)iv = ∑
v

(ιν)iv = 0.

In the second part of the analysis we will assume thatφ f is also a fixed effect.

Null hypothesis are

H0(iv) : (ιν)iv = 0, H0i : ιi = 0, H0v : νv = 0, H0φ : φ f = 0.

and we will find estimates for the variancesσ2,σ2
φ and also for the parameters in our model.

1.3 Matrix formulation

We want to find matricesX,Z such that

y = Xβ +Zu+ ε

6



whereβ contains the fixed effects/parameters andu contains the random effects. What we get is the
following





y111

y112

y221

y222

y331

y332

y441

y442

y511

y512

y621

y622

y731

y732

y841

y842





=





1 1 0 0 0 1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 1
1 1 0 0 0 1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 1









µ
ι1

ι2

ι3

ι4

ν1

ν2

(ιν)11

(ιν)12

(ιν)21

(ιν)22

(ιν)31

(ιν)32

(ιν)41

(ιν)42





+





1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

...
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1









φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8





+ ε.

Because of the restrictions

∑
i

ιi = ∑
v

νv = ∑
i
(ιν)iv = ∑

v
(ιν)iv = 0

we can reduce theX matrix and write




y111

y112

y221

y222

y331

y332

y441

y442

y511

y512

y621

y622

y731

y732

y841

y842





=





1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1









µ
ι2

ι3

ι4

ν2

(ιν)22

(ιν)32

(ιν)42





+





1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

...
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1









φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8





+ ε.
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In further calculationsX,Z,β,u will be in the reduced form.

1.4 Anova tables, tests and estimates of variance components.

We set up the ANOVA table for the model. It is divided into two parts. The upper part takes care of the
whole-plot, that is the irrigation within each field. The lower part takes care of the split-plot, that is, the
variety within each irrigation. We have a total of 16 observations which makes 15 degrees of freedom.
The sums of squares are calculated using the formulas

SSI= 2V ∑
i

(ȳ··i − ȳ···)
2

SSWPE= 2∑
i

∑
f

(ȳf ··− ȳ··i)
2

SSWPT= 2∑
f

(ȳf ··− ȳ···)
2

SSV= 2I ∑
v

(ȳ·v·− ȳ···)
2

SSIV= 2∑
i

∑
v

(ȳ·vi − ȳ·v·− ȳ··i + ȳ···)
2

SSE= ∑
f

∑
i

∑
v

(ȳ··i − ȳf ··− ȳ·vi + ȳf vi)
2

SST= ∑
f

∑
v

∑
i

(ȳf vi − ȳ···)
2

wherei = 1,2,3,4,v= 1,2 and f = 1, . . . ,8. We also calculate the expected values of the mean sums of
squares and the results can be seen in table 2.

Table 2: ANOVA-table in the mixed model.

Source DF SS MSS E[MSS]
Irrigation I −1 SSI MSI = SSI

(I−1)
2V
I−1 ∑i ι2

i + 2V
I−1 ∑i(ῑν)2

i· + σ2

W.P.E. F − I SSWPE MSWPE= SSWPE
F−I Vσ2

φ + σ2

W.P.T. F −1 SSWPT
Variety V −1 SSV MSV= SSV

(V−1)
2I

V−1 ∑v ν2
v + 2I

V−1 ∑v(ῑν)2
·v + σ2

IV (V −1)(I −1) SSIV MSIV = SSIV
(V−1)(I−1)

2
(I−1)(V−1) ∑i ∑v(ιν)2

iv + σ2

S.P.E. I(V −1) SSE MSE= SSE
I(V−1) σ2

Total 2VI−1 SST

We can now test our null-hypothesis. We start by testing if the interaction between irrigation and variety
is significant, the hypothesisH0(ιν). We do that by calculating the ratio

MSIV/MSE

and comparing it to the appropriate F-value. We can now test the hypothesisH0ι andH0ν which corre-
spond to effect of irrigation and variety. It is done by computing the ratios

MSV/MSE, MSI/MSE

respectively. Now we have found out if each of the fixed effects are significant and we move on to the
random effect. To see if the random effect, field (null-hypothesisH0φ), is significant we compute

MSWPE/MSE

8



Table 3: ANOVA-table of mixed model with numerical values.

Source of
variation

DF Sum of Squares Mean Square Ratio Contrast

Irrigation 3 40.190 13.397 0.388 < F3,4 = 6.59
W.P.E. 4 138.030 34.507 16.37 > F4,4 = 6.39
W.P.T. 7 178.22
Variety 1 2.250 2.250 1.068 < F1,4 = 7.71
IV 3 1.550 0.517 0.2452 < F3,4 = 6.59
Split Plot
Error

4 8.43 2.1075

Total 15 190.45

and compare to the right F-value. If a computed ratio is lowerthan the appropriate F-value the effect is
not significant and we can not reject the corresponding null-hypothesis. If on the other hand, the ratio is
greater than the F-value we reject the null hypotheses that all levels of a single effect are the same and
say that there is infact difference between the levels.

We can use the ANOVA-table to calculate estimates forσ2 andσ2
φ after we check which effects are

significant. We get the estimate forσ2 directly from the table, that is

σ̂2 = MSE.

After we have found the estimate forσ2, and if the effect of fields is significant, we can findσ̂2
φ using

the equation
MSF= Vσ2

φ + σ2.

We are now ready to look at the ANOVA-table with all the numerical values, see table 3.

As we can see from the table the effects of irrigation, variety and their interaction are not significant.
However, the effect of field is significant. In null-hypothesis this means that we rejectH0φ but can not
rejectH0ι,H0ν,H0(ιν).

Finally we get the variance estimates

σ̂2 = 2.1075, σ̂2
φ = 16.2.

In the above estimates we used 95% significance level.

1.5 Estimating equations (for u and beta) and solutions.

We have the equation

y = Xβ +Zu+ ε

from slide 20 and we want to estimateβ,u using BLUP.

We find matricesG,Rso that

Var[y] = σ2
[

G 0
0 R

]
=

[
σ2

φ/σ2
I8 0

0 I16

]

and we thus haveG = σ2
φ/σ2

I8 andR= I16. Now we can estimateβ,u with the equations

β̂ = (X′(R+ZGZ′)−1X)−1X′(R+ZGZ′)−1y

9



û = (Z′R−1Z+G−1)−1(Z′R−1−Z′R−1X(X′(R+ZGZ′)−1X)−1X′(R+ZGZ′)−1)y

These equations give us the BLUP-estimates

β̂ =





µ
i2
i3
i4
v2

(iv)22

(iv)32

(iv)42





=





38.5
1.2
0.7
3.5
0.6
−0.4
−0.2
1.2





, û =





f1
f2
f3
f4
f5
f6
f7
f8





=





−2.018692
−2.206477
−3.567920
−2.957618
2.018692
2.206477
3.567920
2.957618





.

1.6 REML estimates (of variances).

We want to use REML to estimate the variances. We start by finding a matrixK such that

KX ≡ 0.

We can useQR-decomposition and write

X = QR= [q1, . . . ,qp, . . . ,qn]R

whereR is n× p matrix like X andQ is n× n matrix and the vectorsq1, . . . ,qn form an orthonormal
basis. Then it holds that

[qp+1, . . .qn]
′X = 0.

so we letK = [qp+1, . . .qn].

We look at
ỹ = Ky ∼ n(KΣyK′)

whereΣy = σ2(ZGZ′ +R), we denoteA = ZGZ′ +R. The likelihood function of ˜y is

L(θ) =
1

(2π)n/2|KΣyK′|1/2
e−

1
2 ỹ′(KΣyK′)−1ỹ

and we findθ̂ = (σ̂2, σ̂2
φ) that solves

max
θ

L(θ) or max
θ

ln(L(θ)).

The function we need to maximize with respect toσ2 andσ2
φ is

ln(L(θ)) = −
n
2

ln2π−
1
2

ln |KAK′|−
n
2

lnσ2−
1

2σ2 ỹ′(KAK′)−1ỹ

and some calculations give us the maximum value of ln(L)

max
θ

(ln(L(θ)) = −27.66671

and the REML-estimates ofσ2,σ2
φ

θ̂ =

(
σ̂2

σ̂2
φ

)
=

(
0.7024995
16.9025017

)
.
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1.7 Estimate with all effects fixed.

If we assume that all effects are fixed the only random variable isε f iv and we only need to estimateσ2,
notσ2

φ. The model is still
yf iv = µ+ i i +vv +(iv)iv + φ f + ε f iv

but since we only have 16 observations which is not a full model, we can not estimate all the parameters.
We have a total of 16−1= 15 degrees of freedom to work with, which means that we must either exclude
the effect of irrigation or the effect of 3 fields. We will firstexclude the effects of three fields and then
the effects of the irrigations. We can write the model on matrix form as

y = X̃β + ε

=





1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 1 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 1 0 0 1 0 0 0 0 0 0 1









µ
i2
i3
i4
v2

(iv)22

(iv)32

(iv)42

φ2

φ3

φ4

φ5

φ6

φ7

φ8





+ ε

and use regular methods to estimateβ. We get

β̂ = (X̃′X̃)−1X̃′y =





µ
i2
i3
i4
v2

(iv)22

(iv)32

(iv)42

φ2

φ3

φ4

φ5





=





36.35
5.70
6.65
8.80
0.60
−0.40
−0.20
1.20
−4.70
−7.60
−6.30
4.30





.

The second estimation where we leave out the effect of irrigation is

β̂ = (X̃′X̃)−1X̃′y =





µ
v2

(iv)22

(iv)32

(iv)42

φ2

φ3

φ4

φ5

φ6

φ7

φ8





=





36.35
0.60
−0.40
−0.20
1.20
1.00
−0.95
2.50
4.30
5.70
6.65
8.80.




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We will use the first model, the one without three fields, in thesubsequent slides.

1.8 The SS-formulas in the ANOVA tables.

We can not estimate all levels in the factors and must leave three out. We chose to leave out three levels
of the fields and therefore we have 5 levels of the fields and thedegrees of freedom are 4. We can
use MSE to calculate wether each of the factors is significantor not and therefore we can simplify the
ANOVA table from slide 25 and it looks like table 4. The sums ofsquares are

Table 4: ANOVA-table for the fixed model.

Source of
variation

DF Sum of Squares Mean Square Ratio F-test

Field F − I SSF MSF= SSF
F−I MSF/MSE

Irrigation I −1 SSI MSI = SSI
(I−1) MSI/MSE

Variety V −1 SSV MSV= SSV
(V−1)

MSV/MSE

IV (V −1)(I −1) SSIV MSIV = SSIV
(V−1)(I−1) MSIV/MSE

Error VI + I −F SSE MSE= SSE
VI+I−F

Total 2VI −1 SST

SSI= 2V ∑
i

(ȳ··i − ȳ···)
2

SSF= 2∑
i

∑
f

(ȳf ··− ȳ··i)
2

SSV= 2I ∑
v

(ȳ·v·− ȳ···)
2

SSIV= 2∑
i

∑
v

(ȳ·vi − ȳ·v·− ȳ··i + ȳ···)
2

SSE= ∑
f

∑
i

∑
v

(ȳ··i − ȳf ··− ȳ·vi + ȳf vi)
2

SST= ∑
f

∑
v

∑
i

(ȳf vi − ȳ···)
2

1.9 SS computed by hand.

We get, with some help from ANOVA tables inR:

SSF= 138.03, SSI= 40.190, SSV= 2.25, SSIV= 1.55

SSE= 8.43, SST= 190.45

Table 5 shows the ANOVA table.

Notice that the effect of fields only has four degrees of freedom instead of seven. This is because we
only have 16 observations. Therefore we can not take the effect of all fields into account and we chose
to exclude the last three fields,f6, f7, f8.

The table shows that only the effect of fields is significant, that is, we reject that all the fields are the
same. This does not come as a surprise if we look at the boxplotof the fields and this is also the same
result as in the mixed model.

As beforeMSEgives us an estimate ofσ2, that is

σ̂2 = MSE= 2.1075.

An ANOVA-table that leaves out the irrigations instead of three fields, gives the same result.

12



Table 5: The ANOVA table for the fixed model with numerical values.

Source of
variation

DF Sum of Squares Mean Square Ratio F-test Contrast F-value

Field 4 138.03 34.507 16.37 >6.39
Irrigation 3 40.19 13.397 6.36 <6.59
Variety 1 2.25 2.25 1.07 <7.71
IV 3 1.55 0.517 0.25 <6.59
Error 4 8.43 2.1075
Total 15 190.45

1.10 ML estimates.

The ML estimate ofβ is the same as on slide 45, that is

β̂ = (X̃′X̃)−1X̃′y =





µ
i2
i3
i4
v2

(iv)22

(iv)32

(iv)42

φ2

φ3

φ4

φ5





=





36.35
5.70
6.65
8.80
0.60
−0.40
−0.20
1.20
−4.70
−7.60
−6.30
4.30





.

The estimate we get forσ2 from the table is not the ML estimate, but it is easily computed since

σ̂2
MLE =

1
N ∑

i
∑
v

∑
f

(yf iv − ŷf iv)
2

=
1
16

8.43= 0.527

whereŷf iv are our estimated values calculated according to the model and β̂.

This estimate is much lower than the one we got from the ANOVA-table.

1.11 Compare estimates of fixed effects (sl 30 vs. sl 60)

In both models we got that the effects of irrigation, varietyand their interaction were not significant.
That means that there is no difference between the levels of those effects, and we assume that their
estimates are equal to zero. We still calculated their estimates.

In the mixed model we got the following estimates for the fixedeffectsµ, ι,ν,(ιν)

β̂ =





µ
ι2

ι3

ι4

ν2

(ιν)22

(ιν)32

(ιν)42





=





38.5
1.2
0.7
3.5
0.6
−0.4
−0.2
1.2




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and in the fixed effect model we got the estimates

β̂ =





µ
ι2

ι3

ι4

v2

(ιν)22

(ιν)32

(ιν)42

φ2

φ3

φ4

φ5









36.35
5.70
6.65
8.80
0.60
−0.40
−0.20
1.20
−4.70
−7.60
−6.30
4.30





.

As can be seen the total mean estimatesµ are close to each other, they are both positve and in the same
range. Although the estimates ofιi are all positive in both cases, they are different, the estimates in the
mixed model being much lower. The estimates ofν2 are the same in both cases and the same can be said
about the(ιν)iv interaction estimates. In the fixed effects modelφ2, . . . ,φ5 are also estimated, which is
not the case in the mixed model.

We see that the estimates of the effects that we have concluded to be zero usually turn out to be close to
zero, and if we would calculate their confidence intervals zero would be an element in each of them.

On the other hand, the effect of field is significant, so those estimates are different from zero.

1.12 Compare variance and SS estimates (sl 25, sl 35, sl 55, sl60)

We start by comparing the variances. On slide 25 we got estimates ofσ2 andσ2
φ from the ANOVA-table

and they were
σ̂2 = 2.1075, σ̂2

φ = 16.2

and on slide 35 we used the REML method to find MLE for the two sigmas, and the estimates were

σ̂2 = 0.702, σ̂2
φ = 16.90.

As can be seen, the estimates forσ2 are quite different but the estimates forσ2
φ are almost the same.

On slide 55 we got an estimate forσ2 from the ANOVA-table and it was

σ̂2 = 2.1075

which is the same as in the mixed model. The MLE ofσ2 in the fixed model was

σ̂2 = 0.527

as can be seen on slide 60. This is much lower than the estimateof σ2 on slide 55.

We will now compare the SS-estimates for the models. In the mixed model, we don’t have a sum for
the fields, they are included in the residuals of the whole plot. In the fixed effects model we do not need
those residuals, and therefore we can use that sum for the fields. The sums of squares for irrigation,
variety and their interaction are the same in both models andalso the error term.

1.13 Compare results from assuming fixed vs. random effects.

In the mixed effect model we assumed that the effect of fields was random and that the other effects were
fixed. Therefore we had two variancesσ2 andσ2

φ to think about. We could estimate all the levels of the

14



Level Estimate in mixed model Differencefi − f1 Estimate in fixed model
f1 -2.018692 0 0
f2 -2.206477 0.18 1.00
f3 -3.567920 1.55 -0.95
f4 -2.957618 0.94 2.50
f5 2.018692 4.04 4.30
f6 2.206477 4.23 5.70
f7 3.567920 5.59 6.65
f8 2.957618 4.98 8.80

fields and also all the levels of the fixed effects. We estimated the sigmas with two different methods,
and they gave the same estimate forσ2

φ but different estimates forσ2.

In the fixed effects model we assumed that all effectes were fixed. Due to lack of observations we could
not estimate all the levels of all effects, and we chose to leave out effects of three fields. All other
leves were estimated. As before we estimatedσ2 in two different ways, and the estimates gave different
results.

In both models, only the effect of fields was significant. We can therefore assume that all the levels
of the other factors equal zero. We got the same ANOVA-estimate for σ2 in both models but the ML
estimates were quite different.

1.14 Discussion

We have now gone through two approaches to analyse our problem and build a model for it. First we
built a model with both random and fixed effects and then we built a model with only fixed effects.

We proposed the equation
yf iv = µ+ ιi + νv +(ιν)iv + φ f + ε f iv.

In both approaches the effects of irrigation, variety and their interaction were non-significant so we can
reduce the model and write it as

yf iv = µ+ φ f + ε f iv

whereφ f is either a random or fixed effect. We estimated the levels ofφ f and the results from each
model can be seen in the table. First come the estimates in themixed model which we obtained using
BLUP. The next column shows the differencefi − f1 for i = 1, . . . ,8 in the first column. The last column
shows the estimates from the fixed model using ML, and theref1 = 0 and the otherfi represent the
difference betweenf1 and fi . As can be seen in the table the difference between the estimates in the two
models is not much.

In the fixed model we were able to estmate all levels of all effects but in the mixed model we had to leave
out three levels because we had so few observations. This problem with the number of observations and
not being able to estimate all leves makes the fixed effects model worse than the mixed model. More
things could be derived from the mixed model, which makes it more accurate. It is also natural to think
of the fields as a random effect since the soil and weather can not be controled. Some of the fields may
have gotten more rain and others could have gotten warmer weather during the experiment, for example.

We therefore propose the mixed model (which is acctually a random model)

yf iv = µ+ φ f + ε f iv

whereφ f ∼ n(0,σ2
φ) andε f iv ∼ n(0,σ2).

We estimated the variances using two methods, the estimatesfrom the ANOVA-tables are

σ̂2 = 2.1075, σ̂2
φ = 16.2

15



and the ML estimates are
σ̂2 = 0.702, σ̂2

φ = 16.9.

The estimates of̂σ2
φ are almost the same, and it should not matter much which one weuse. On the other

hand, there is a big difference between theσ̂2 estimates. It is not obvious which one to use.

2 Barley seed example

2.1 Anova tables, tests and estimates of variance components

The relevant sums of squares for the model described in 14 are:

SSA= JK
I

∑
i=1

(ȳi.. − ȳ...)
2

SSB= K
I

∑
i=1

J

∑
j=1

(ȳi j . − ȳi..)
2

SSE=
I

∑
i=1

J

∑
j=1

K

∑
k=1

(yi jk − ȳi j .)
2

(1)

The expected sums of squares are:

E[SSA] = JK

(
I

∑
i=1

(αi − ᾱ.)
2 +E[(β̄.(i)− ¯β.(.))

2]+E[(ε̄i..− ¯ε...)
2]

)

= JK
I

∑
i=1

(αi − ᾱ.)
2 +K(I −1)σ2

β +(I −1)σ2

E[SSB] = K(E[(β̄ j(i)− ¯β.(i))
2]+E[(ε̄i j .− ¯εi..)

2])

= KI(J−1)σ2
β + I(J−1)σ2

E[SSE] = IJ(K−1)σ2

(2)

so the ANOVA table for this problem is:

Source SS DF MSS E[MSS]
Treatment SSA I −1 SSA

I−1
JK
I−1 ∑I

i=1(αi − ᾱ.)
2 +Kσ2

β + σ2

Seedbag SSB I(J−1) SSB
I(J−1) Kσ2

β + σ2

Residuals SSE IJ(K−1) SSE
IJ(K−1) σ2

To test our hypothesis from 16 we note that under the null hypothesis the ratio

F =
MSA
MSB

has an centred F-distribution. From table 4.5 we can calculate our estimate of F is 1.035 with a p-value

Df Sum Sq Mean Sq
treatment 2.00 1758.72 879.36

treatment:seedgrp 6.00 5099.26 849.88
Residuals 18.00 137.87 7.66

Table 6: ANOVA table

of 0.589, with 2 and 6 degrees of freedom. MSE serves as an estimatefor σ2 andMSB−MSE
K for σ2

β. Here

σ̂2 = 7.660 andσ̂β
2 = 280.739.
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2.2 The data

A barley seed test example. This originally came in as a request from an MSc student (Aðalheiður
Einarsdóttir, advisor Ólafur Andrésson) in biology and resulted in a bit of discussion. The dataset
describes the results from an experiment on barley and its response to different fertilizers. The design
of the experiment is a nested design where the seedgroup ( - bag) varies within the treatment levels.
There were treatment levels, one group was given water, the second urea and the third water. For each
treatment level three seedgroups were planted with three repetitions. The experimental results can be
seen in figure 2 and table 7.

Figure 2: Boxplot of the response as a function of treatment and seedgroups.

2.3 The model and hypothesis

The treatment is obviously not random while the seedgroup within treatments could be considered to be
a random effect. The model for the measurement is therefore

yi jk = µ+ αi + β j(i) + εi jk

i = 1, . . . , I

j = 1, . . . ,J

k = 1, . . . ,K

(3)

whereµ is the overall mean,αi is the effect of thei-th treatment andβ j(i) ∼ n(0,σ2
β) is the effect of the

seedgroupj within treatmenti. The formulation ofµ as the overall mean ofy introduces the following
restraints:

∑
i

αi = 0 (4)

The hypothesis of interest is :

H0 : αi = 0∀i vs. Ha : ∃i s.t. αi 6= 0 (5)
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y treatment seedgrp st s t
1 46.10 1 1 11 1 1
2 47.40 1 1 11 1 1
3 43.60 1 1 11 1 1
4 14.70 1 2 21 2 1
5 12.90 1 2 21 2 1
6 10.90 1 2 21 2 1
7 71.30 1 3 31 3 1
8 66.80 1 3 31 3 1
9 64.60 1 3 31 3 1

10 30.40 2 1 12 1 2
11 30.20 2 1 12 1 2
12 24.30 2 1 12 1 2
13 46.10 2 2 22 2 2
14 47.70 2 2 22 2 2
15 39.20 2 2 22 2 2
16 35.20 2 3 32 3 2
17 31.60 2 3 32 3 2
18 28.20 2 3 32 3 2
19 26.70 3 1 13 1 3
20 27.20 3 1 13 1 3
21 27.40 3 1 13 1 3
22 23.20 3 2 23 2 3
23 22.60 3 2 23 2 3
24 20.20 3 2 23 2 3
25 19.80 3 3 33 3 3
26 18.60 3 3 33 3 3
27 16.60 3 3 33 3 3

Table 7: The Barley-dataset

2.4 Matrix formulation

In matrix form the model described in equation 14 becomes

y = Xα+Zβ + ε (6)

whereε ∼ n(0,σ2I27), β ∼ n(0,σ2
βI9) andα = (µ,α1,α2,α3) fixed. If we disregard the restriction in

equation 15 we have that the matricies in 8 are

X =





1 1 0 0
...

...
...

...
1 1 0 0
1 0 1 0
...

...
...

...
1 0 1 0
1 0 0 1
...

...
...

...
1 0 0 1





,Z =





1 0 · · · 0
1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
0 1 · · · 0

0 0
... 0

0 · · · 0 1
0 · · · 0 1
0 · · · 0 1





(7)

To include the restraints in 15 we will here follow the approach in R and introduceµ′ = µ+ α1 and
delete the column representingα1, i.e. the second column inX.
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2.5 Matrix formulation

In matrix form the model described in equation 14 becomes

y = Xα+Zβ + ε (8)

whereε ∼ n(0,σ2I27), β ∼ n(0,σ2
βI9) andα = (µ,α1,α2,α3) fixed. If we disregard the restriction in

equation 15 we have that the matricies in 8 are

X =





1 1 0 0
...

...
...

...
1 1 0 0
1 0 1 0
...

...
...

...
1 0 1 0
1 0 0 1
...

...
...

...
1 0 0 1





,Z =





1 0 · · · 0
1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
0 1 · · · 0

0 0
... 0

0 · · · 0 1
0 · · · 0 1
0 · · · 0 1





(9)

To include the restraints in 15 we will here follow the approach in R and introduceµ′ = µ+ α1 and
delete the column representingα1, i.e. the second column inX.

2.6 Estimating equations forα and β

From the matrix formulation above we can derive the BLUP estimates forα andβ from the following
formulae:

α̂ = (XT(R+ZGZT)X)−1XT(R+ZGZT)−1y

β̂ = (ZTR−1Z+G−1)−1(ZTR−1−ZTR−1X(XT(R+ZGZT)−1X)−1XT(R+ZGZT)−1)y
(10)

whereRandG solve

Var(y) = σ2
[

G 0
0 R

]
=

[
σ2

β/σ2IIJ 0
0 IIJK

]
(11)

and the BLUP estimates are

alpha beta_1 beta_2 beta_3
1 42.03 0.28 -2.21 1.93
2 -7.27 -0.49 0.72 -0.23
3 -19.56 0.35 -0.04 -0.31

2.7 Restricted maximum likelihood estimates of variances

To find the REML estimate for the variances we need to find an appropriate linear transformation to
elimate the fixed effects in 8. That find K such that

KX = 0

To find a possible K we can use aQR-decomposition forX, that is

X = QR
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were R is ann× p matrix like X andQ is ann×n orthonormal matrix, that is the columnsq1, . . . ,qn

of Q form an orthonormal basis. Furthermore,K = [qp+1, . . . ,qn], the matrix containing the lastn− p
columns, has the property

KX = 0

Using this as our selected K we use it to transform our measurements and we see that

ỹ = Ky ∼ n(0,KΣyK
′)

whereΣy = σ2(ZGZ′ +R). The problem now translates into finding the pair(σ2,σ2
β) that maximises the

log-likelihood function ofn(0,KΣyK′). Using the nonlinear optimiser in R (nlm) with starting values

close to the estimate which we found with the anova table the REML estimate is ˆσ2
β,REML = 280.739

and ˆσ2
REML = 7.659 which is exactly the same estimate as estimated with the ANOVA up to the third

digit.

2.8 Likelihood ratio test of hypothesis

We will here test the hypothesis presented in 16 with a likelihood ratio test. The model in 14 will be
compared with

yi jk = µ+ β j(i) + εi jk

Here the test statistic is
D = −2log(L f ull )− log(Lred)

whereD ∼ χ2
d andd is the difference in degrees of freedom between the models. We haveD = 2.192

with p = 0.334.

2.9 Estimate with all effects fixed

Assuming that the seedgroup effects are constant we can estimateα andβ with ordinary linear regres-
sion. The augmentedX - matrix will include columns from the originalX from earlier andZ excluding
the second column fromX and first, fourth and seventh fromZ to be comparable with R. Equation 8
reduces to

y = Xα+ ε (12)

where

α =





µ
α2

α3

β1(2)

β1(3)

β2(2)

β2(3)

β3(2)

β3(3)





(13)

alpha beta_2 beta_3
1 45.70 -32.87 21.87
2 -17.40 16.03 3.37
3 -18.60 -5.10 -8.77

Table 8: Estimate with all effects fixed
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2.10 The ss-formulas in the ANOVA tables

Same as from the mixed effects except forβ j(i) is considered fixed and∑J
j=1 β j(i) = 0 for all i. Therefore

the test statistic for the hypothesis in equation 16 is

F =
MSA
MSE

The results can be seen in table 9.

Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 1758.72 879.36 114.80 0.0000
treatment:seedgrp 6 5099.26 849.88 110.96 0.0000
Residuals 18 137.87 7.66

Table 9: ANOVA table for the model in efeq:model assumimg alleffects are fixed

2.11 SS computed by ’hand’

y sum_y_ij. bar_y_ij. sum_y_i.. bar_y_i.. diff_ij diff_i
1:1 46.1 47.4 43.6 137.1 45.7 378.3 42.03 3.67 8.94
1:2 14.7 12.9 10.9 38.5 12.83 378.3 42.03 -29.2 8.94
1:3 71.3 66.8 64.6 202.7 67.57 378.3 42.03 25.53 8.94
2:1 30.4 30.2 24.3 84.9 28.3 312.9 34.77 -6.47 1.67
2:2 46.1 47.7 39.2 133 44.33 312.9 34.77 9.57 1.67
2:3 35.2 31.6 28.2 95 31.67 312.9 34.77 -3.1 1.67
3:1 26.7 27.2 27.4 81.3 27.1 202.3 22.48 4.62 -10.61
3:2 23.2 22.6 20.2 66 22 202.3 22.48 -0.48 -10.61
3:3 19.8 18.6 16.6 55 18.33 202.3 22.48 -4.14 -10.61

2.12 Maximum likelihood estimates

The maximum likelihood estimators for all effects of the model can be seen in table 8. The maximum
likelihood estimate forσ is computed from the residuals from the fitted model

σ̂2
MLE =

1
IJK

I ,J,K

∑
i, j ,k=1

(yi jk − ˆyi jk)
2

whereŷi jk is the fitted value foryi jk . The estimate is ˆσMLE = 5.303.

2.13 Compare estimates of fixed effects

The estimates of the fixed effects can be seen in table 10. We can see that the estimates differ somewhat,
which can be attributed to how the seedgroup effect is handled in the different estimation processes.

2.14 Compare variance and SS estimates

We see that the estimates ofσ2 andσ2
β are identical when estimated with REML and ANOVA. The

maximum likelihood estimator forσ2 when assuming that the seed group effect is fixed is lower than
when using REML. That however is made at the expense 4 more degrees of freedom being used.
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1 2 3
1 mu 45.7 42.03
2 alpha_2 -17.4 -7.27
3 alpha_3 -18.6 -19.56

Table 10: Comparison of estimates ofalphai

2.15 Compare results from assuming fixed vs random effects

When assuming that the seed group effect is random the effects of the treatment is dwarfed by the
seed group noise. When they are considered fixed the effects of the seed group influences greatly all
comparisons.

2.16 Discussion

The results from this analysis is inconclusive as the effectof the seedgroup, as noted earlier, is such that
the effects of the treatment cannot be measured with the current setup with a mixed effects models. A
fixed effects model seems implausible as one would like to draw inferences on the treatment effects for
all barly seedgroups. Therefor the number of seedbag shouldbe increased to effectively determine the
effects of the treatment.

2.17 The model and hypothesis

The treatment is obviously not random while the seedgroup within treatments could be considered to be
a random effect. The model for the measurement is therefore

yi jk = µ+ αi + β j(i) + εi jk

i = 1, . . . , I

j = 1, . . . ,J

k = 1, . . . ,K

(14)

whereµ is the overall mean,αi is the effect of thei-th treatment andβ j(i) ∼ n(0,σ2
β) is the effect of the

seedgroupj within treatmenti. The formulation ofµ as the overall mean ofy introduces the following
restraints:

∑
i

αi = 0 (15)

The hypothesis of interest is :

H0 : αi = 0∀i vs. Ha : ∃i s.t. αi 6= 0 (16)

3 Handball

3.1 The data

This data comes from a BSc project in physical therapy. The prjoects name is: "Effects of training with
a weighted implement on throwing velocity of male team handball players" and it’s authors are Hildur
Sólveig Sigurðardóttir and Tinna Jökulsdóttir who worked under the instructions of Dr. Árni Árnason.
An abstract of the project can be seen at: http://www2.hi.is/Apps/WebObjects/HI.woa/1/wa/dp?id=1024878wosid=kR8n2Adm
40 handball players were randomly assign to two groups. Players in the research group trained three
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times a week for 8 weeks with a heavy handball. Players in the control group did no extra training.
Injured players where excluded from the research. 15 players in the research group and 12 players in
the control group finished the research. Players throwing velocity was measured before and after the
8 week training period. We are interested in seeing if the extra training has an effect on the players
throwing velocity.

3.2 The model and hypothesis

We have throwing velocity (y) as an response variable. We have 3 explanatory variables: The time (τ),
the group factor (γ) and the players effect (ρ). We can there for suggest the model:

yi jk = µ+ τi + γ j +(τγ)i j + ρk( j) + εi jk

• µ is the overall mean

• τi is the time effect and is fixed.i = 1,2 stands for before and after training.

• γ j is the group effect and is fixed.j = 0,1 stands for no extra training and training with a heavy
handball.

• (τγ)i j stands for the interaction between the time and group effect. It is also fixed.

• ρk( j) stands for the players effect which is nested within the groups and is assumed to be random,
independent and identically normally distributed with mean 0 and varianceσ2

ρ. In shortρk( j) ∼

N(0,σ2
ρ) iid.

• εi jk is the mesurment error and is also assumed to be random and iid. εi jk ∼ N(0,σ2).

We also assume thatρk( j) andεi jk are independent. We will refer to this model as the full model.

We can’t estimate all these parameters and there for have to have some restrictions on them. The most
common restrictions are.

∑
i

τi = 0

∑
j

γ j = 0

∑
i

(τγ)i j = ∑
j

(τγ)i j = 0
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Because much of our analysis will take place in the R statistical package we will have different restric-
tions. Our restrictions will be:

τ1 = 0

γ0 = 0

(τγ)10 = (τγ)20 = (τγ)11 = 0

Instead of having these restrictions on the parameters we could have stated the model as follows:

yi jk = µi j + ρk( j) + εi jk

whereµi j represents the four first parameters in the model.

If we look at the change in performance for individual players we get a much simpler model.

∆y jk = y2 jk −y1 jk

= µ+ τ2+ γ j +(τγ)2 j + ρk( j) + ε2 jk − (µ+ τ1+ γ j +(τγ)1 j + ρk( j) + ε1 jk)

= τ2− τ1 +(τγ)2 j − (τγ)1 j + ε2 jk − ε1 jk

= ∆τ+ ∆(τγ) j + ∆ε jk

an one-way anova with fixed effects. Note that∆ε jk ∼ N(0,2σ2). Our restrictions in this model are
∆(τγ)0 = 0. Like the full model we can state this model in a simpler form:

∆y jk = ∆µj + ∆ε jk

We will refer to this model as the∆-model.

The hypothesis we want to test are:

1. If the players are have any effect. That is can we drop the random effect from the model. Our
null-hypothesis is therefor

H1 : σ2
ρ = 0

2. Is the interaction significant?
H2 : All (τγ)i j = 0

We will show that testing this is the same as testing the groupeffect in the∆-model. And it’s
known that testing the group effect in a one-way anova with only two groups is the same as doing
a regluar t-test for means assuming equal variance.

In the hypothesis above we are really asking if we can simplify the full model. We also like to test, if
we find the interaction significant, which groups means are different.

3. Were the groups just different before the training period?

H3 : µ10 = µ11

With our restrictions this simplifies to
H3 : γ1 = 0

4. Are the groups different after the training period?

H4 : µ20 = µ21

simplifies to
H4 : γ1 +(τγ)21 = 0
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5. Did throwing velocity change for players in the control group?

H5 : µ10 = µ20

in the∆-model this would be∆µ0 = 0. This simplifies to

H5 : τ2 = 0

6. Did throwing velocity change for players in the treatmentgroup?

H6 : µ21 = µ11

We can also test this hypothesis with the∆-model. Taking the restrictions into account this sim-
plifies to

H6 : τ2 +(τγ)21 = 0

3.3 Matrix formulation

If we state the full model in matrix form:

y = Xβ +Zu+ ε
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whereβ contains the fixed effects andu the random effects. We have the following vectors and matrixes.





y1,0,1

y1,0,2
...

y1,0,12

y1,1,13

y1,1,14
...

y1,1,27

y2,0,1

y2,0,2
...

y2,0,12

y2,1,13

y2,1,14
...

y2,1,27





=





1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
...

...
...

...
...

...
...

...
...

· · · 1 0 1 0 · ·
· · · 0 1 0 1 · ·
· · · 0 1 0 1 · ·
...

...
...

...
...

...
...

...
...

· 1 0 0 1 · 1 0 ·
· 0 1 1 0 · 0 1 ·
· 0 1 1 0 · 0 1 ·
...

...
...

...
...

...
...

...
...

· · · 1 0 · · 1 0
· · · 0 1 · · 0 1
· · · 0 1 · · 0 1
...

...
...

...
...

...
...

...
...

1 0 1 0 1 0 0 0 1









µ
τ1

τ2

γ0

γ1

(τγ)10

(τγ)11

(τγ)20

(τγ)21





+





1 0 · · · · · · · · · 0

0 1
... · · ·

. . . ·
...

. . .
. . .

. . .
. . .

. ..
. . .

...

· ·
. . . 1 · ·

. . . ·

· ·
. . . · 1 ·

. . . ·

· ·
. . . · · 1

... ·
...

. . .
. . .

. . .
. . .

. ..
. . . 0

0 · · · · · · · 0 1

1 0
... · · ·

. . . 0

0 1
... · · ·

. . . ·
...

. . .
. . .

. . .
. . .

. ..
. . .

...

· ·
. . . 1 · ·

. . . ·

· ·
. . . · 1 ·

. . . ·

· ·
. . . · · 1

... ·
...

. . .
. . .

. . .
. . .

. ..
. . . 0

0 · · · · · · · 0 1









ρ1(0)

ρ2(0)
...

ρ12(0)

ρ13(1)

ρ14(1)
...

ρ27(1)





+





ε1,0,1

ε1,0,2
...

ε1,0,12

ε1,1,13

ε1,1,14
...

ε1,1,27

ε2,0,1

ε2,0,2
...

ε2,0,12

ε2,1,13

ε2,1,14
...

ε2,1,27




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Because of our restrictions the fixed effect part of the modelis reduced to:

Xβ =





1 0 0 0
1 0 0 0
...

...
...

...
· · 0 ·
· · 1 ·
· · 1 ·
...

...
...

...
· 0 1 ·
· 1 0 ·
· 1 0 ·
...

...
...

...
· · 0 0
· · 1 1
· · 1 1
...

...
...

...
1 1 1 1









µ
τ2

γ1

(τγ)21





We don’t have any random effects for the∆-model. We can therefor state it as:

y = X∆β∆ + ε∆




∆y0,1

∆y0,2
...

∆y0,12

∆y1,13

∆y1,14
...

∆y1,1,27





=





1 1 0
1 1 0
...

...
...

· 1 0
· 0 1
· 0 1
...

...
...

1 0 1








∆τ

∆(τγ)0

∆(τγ)1



+





∆ε0,1

∆ε0,2
...

∆ε0,12

∆ε1,13

∆ε1,14
...

∆ε1,1,27





Because of the restrictions the reduced form of theX∆-matrix and theβ∆-vector are:

X∆β∆ =





1 0
1 0
...

...
· 0
· 1
· 1
...

...
1 1





[
∆τ

∆(τγ)1

]
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3.4 Anova tables, tests and estimates of variance components

Let N = 27 represent the total number of players in the study. Letn0 = 12 andn1 = 15 represent the
number of players in the control and the training group. We have the following sums of squares.

SST= N∑
i
(ȳi··− ȳ···)

2

SSG= 2∑
j

n j(ȳ· j ·− ȳ···)
2

SSTG= ∑
i

∑
j

n j(ȳi j · + ȳ···− ȳi··− ȳ· j ·)
2

SSP(G) = 2∑
j
∑
k

(ȳ· jk − ȳ· j ·)
2

SSE= ∑
i

∑
j
∑
k

(yi jk + ȳ· j ·− ȳi j ·− ȳ· jk)
2

SSTOT= ∑
i

∑
j
∑
k

(yi jk − ȳ···)
2

We see from expected MS in table 11 that we can testH1 with a F-test whereF = MSP(G)/MSE. We

Table 11: Anova table: formulas

Source df SS MS E[MS]

Time I −1 SST SST/d fT σ2 +N∑i τ2
i

Group J−1 SSG SSG/d fG σ2 +2σ2
ρ +2∑ j n jγ2

j
Time× Group (I −1)(J−1) SSTG SSTG/d fTG σ2 + ∑i ∑ j n j(τγ)i j

Players ∑ j(n j −1) SSP(G) SSP(G)/d fP(G) σ2 +2σ2
ρ

Error ∑ j(n j −1) SSE SSE/d fE σ2

can also testH2 with a F-test,F = MSTG/MSE. The result from this tests are in table 12. We reject
both of these hypothesis and therefor have to stick to the full model.

Table 12: Anova table: Estimates

Source df SS MS F p
Time 1 44.46 44.46

Group 1 9.07 9.07
Time× Group 1 32.38 32.38 5.71 0.0247

Players 25 1825.93 73.04 12.89 6.25·109

Error 25 141.66 5.67
Total 53 2053.5 38.75

We also see that MSE is an unbiased estimator ofσ2 and that we can get an unbiased estimator ofσ2
ρ.

Our estimates are:

σ̂2 = MSE= 5.66633

σ̂2
ρ =

MSP(G)−MSE
2

=
73.04−5.67

2
= 33.68533

3.5 REML estimates

We fitted the full model with the lme4 package in R. The background of REML can be view in other
lectures here on the web. The estimates we got from REML are:

σ̂2 = 5.666334

σ̂2
ρ = 33.68533
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Which are the same as our previous estimates.

3.6 Estimating equations and solutions

If we think about the full model in matrix form

y = Xβ +Zu+ ε

we see that

Var[u] = σ2
ρ · I27 = σ2 ·G

Var[ε] = σ2 · I54 = σ2 ·R

Estimating equations forβ andu are

β̂ =
{

X′(R+ZGZ′)−1X
}−1

X′(R+ZGZ′)−1y

û =
(
Z′R−1Z+G−1)−1

[
Z′R−1−Z′R−1X ·

{
X′(R+ZGZ′)−1X

}−1
·X′(R+ZGZ′)−1

]
y

We have the following estimates forβ andu:

β̂ =





µ̂
τ̂2

γ̂1
ˆ(τγ)21



=





96.667
0.083333
−0.73333

3.1167





û =





ρ̂1(0)

ρ̂2(0)
...

ρ̂12(0)

ρ̂13(1)

ρ̂14(1)
...

ρ̂27(1)





=





3.959
−4.804
−7.572
3.036
11.339
−7.572
−0.653
−1.576
0.269
−5.727
−0.192
9.494
−7.410
2.275
0.892
−4.182
−3.259
−3.259
1.353
−1.876
−5.566
−3.721
10.116
0.892
5.504
−0.492
8.733




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3.7 ML estimates

We can also estimate the variances using maximum likelihood. The MLE’s are

MLE(σ2) =
SSE
N

= 5.246605

MLE(σ2
ρ) =

SSP(G)
N − SSE

N

2
= 31.19013

We get the same estimates forβ andu because we see that theG-matrix should be the only thing that

changes. TheG-matrix isG =
σ̂2

ρ
σ̂2 · I . But the REML estimates were the same as the estimates from the

Anova table. So we see that

MLE(σ2
ρ)

MLE(σ2)
=

2 · (SSP(G)−SSE)
N

·
N

SSE

=
2 · (SSP(G)−SSE)

N−2
·
N−2
SSE

=
σ̂2

ρ

σ̂2

When the REML estimate of variance and the estmate from the Anova table are not same this will not
hold. But it does in our incident.

3.8 LRT of hypothesis

We can test hypothesisH1 andH2 by likelihood ratio test. We do this by comparing our full model

f m : yi jk = µ+ τi + γ j +(τγ)i j + ρk( j) + εi jk

To reduced models. ForH1 we compare to

rm1 : yi jk = µ+ τi + γ j +(τγ)i j + εi jk

and forH2 to
rm2 : yi jk = µ+ τi + γ j + ρk( j) + εi jk

The likelihood ratio test statistic is

D = −2(log(Lrm)− log(L f m)) .

This statistic follows approximately aχ2-distribution with one degree of freedom. ForH1 we getD =
44.48906 and a p-value,p = 2.557828·10−11. ForH2 we getD = 7.70081 andp = 0.005519605.

We therefor reject both hypothesis like we did with the previous F-test. We can’t really simplify the
model.

3.9 Estimates with all effects fixed

If we estimate assuming all effects are fixed. We have to have restrictions on theρ’s. We will use

ρ1(0) = 0

ρ13(1) = 0

Our model in matrix form we be

y = Xβ + ε.
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Where we have

Xβ =





1 0 0 0 0 · · · · · · · · 0

1 0 0 0 1
... · ·

. . . ·
...

...
...

...
. . .

. . .
. . .

. . .
...

· · 0 · ·
. . . 1 ·

. . . ·

· · 1 · ·
. . . · 0

... ·

· · 1 · ·
. . . · 1

... ·
...

...
...

...
...

. . .
. . .

. . .
. . . 0

· 0 1 · 0 · · · · · 0 1
· 1 0 · 0 · · · · · · · · 0

· 1 0 · 1
... · ·

. . . ·

· · · · 0
...

...
.. .

. . .
...

...
...

...
...

· · 0 0 ·
. . . 1 ·

. . . ·

· · 1 1 ·
. . . · 0

... ·

· · 1 1 ·
. . . · 1

... ·
...

...
...

...
...

. . .
. . .

. . .
. . . 0

1 1 1 1 0 · · · · · 0 1









µ
τ2

γ1

(τγ)21

ρ2(0)
...

ρ12(0)

ρ14(1)
...

ρ27(1)




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The result we get are

β̂ = (X′X)−1X′y =





100.95833
0.08333

−13.05833
3.11667
−9.50000
−12.50000
−1.00000
8.00000

−12.50000
−5.00000
−6.00000
−4.00000
−10.50000
−4.50000
6.00000
10.50000
9.00000
3.50000
4.50000
4.50000
9.50000
6.00000
2.00000
4.00000
19.00000
9.00000
14.00000
7.50000
17.50000





We though have to keep in mind the the interpretation of the parameters is quit different than in the
random effect model.

3.10 Compare estimates of fixed effects REML vs ML

The estimates of the fixed effects are the same for both REML and ML estimates as we showed in the
part about the ML estimate of variance.

3.11 Compare variance and SS estimates

The estimates we got for the variances can be seen in the following table.

Table 13: Variance estimates

Variance SS-estimate REML ML
σ2 5.66633 5.666334 5.246605
σ2

ρ 33.68533 33.68533 31.19013

We see that the SS-estimate and the REML estimate are almost identical. The ML estimate is however
lower. It’s also well known the ML estimates for variances are biased.
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3.12 Compare results from assuming fixed vs random effects

We can’t directly compare the estimates from the model with all effect fixed vs. the orginial random
effect model. But by examin the interpretation of the parameters we can compare between the models.
The comparison can been seen in table 14.

Table 14: Comparison of fixed vs random effect model

Parameter FM Parameters RM Estimate FM Estimate RM Difference FM-RM
µ µ+ ρ1(0) 100.9583 100.6256 0.3328
τ2 τ2 0.0833 0.0833 0.0000
γ1 γ1 + ρ13(1)−ρ1(0) -13.0583 -12.1027 -0.9557

(τγ)21 (τγ)21 3.1167 3.1167 0.0000
ρ2(0) ρ2(0)−ρ1(0) -9.5000 -8.7634 -0.7366
ρ3(0) ρ3(0)−ρ1(0) -12.5000 -11.5308 -0.9692
ρ4(0) ρ4(0)−ρ1(0) -1.0000 -0.9225 -0.0775
ρ5(0) ρ5(0)−ρ1(0) 8.0000 7.3797 0.6203
ρ6(0) ρ6(0)−ρ1(0) -12.5000 -11.5308 -0.9692
ρ7(0) ρ7(0)−ρ1(0) -5.0000 -4.6123 -0.3877
ρ8(0) ρ8(0)−ρ1(0) -6.0000 -5.5348 -0.4652
ρ9(0) ρ9(0)−ρ1(0) -4.0000 -3.6898 -0.3102
ρ10(0) ρ10(0)−ρ1(0) -10.5000 -9.6858 -0.8142
ρ11(0) ρ11(0)−ρ1(0) -4.5000 -4.1511 -0.3489
ρ12(0) ρ12(0)−ρ1(0) 6.0000 5.5348 0.4652
ρ14(1) ρ14(1)−ρ13(1) 10.5000 9.6858 0.8142
ρ15(1) ρ15(1)−ρ13(1) 9.0000 8.3021 0.6979
ρ16(1) ρ16(1)−ρ13(1) 3.5000 3.2286 0.2714
ρ17(1) ρ17(1)−ρ13(1) 4.5000 4.1511 0.3489
ρ18(1) ρ18(1)−ρ13(1) 4.5000 4.1511 0.3489
ρ19(1) ρ19(1)−ρ13(1) 9.5000 8.7634 0.7366
ρ20(1) ρ20(1)−ρ13(1) 6.0000 5.5348 0.4652
ρ21(1) ρ21(1)−ρ13(1) 2.0000 1.8449 0.1551
ρ22(1) ρ22(1)−ρ13(1) 4.0000 3.6898 0.3102
ρ23(1) ρ23(1)−ρ13(1) 19.0000 17.5267 1.4733
ρ24(1) ρ24(1)−ρ13(1) 9.0000 8.3021 0.6979
ρ25(1) ρ25(1)−ρ13(1) 14.0000 12.9144 1.0856
ρ26(1) ρ26(1)−ρ13(1) 7.5000 6.9185 0.5815
ρ27(1) ρ27(1)−ρ13(1) 17.5000 16.1431 1.3569

We see that the estimates are simmilar but we notice that the absolute value of theρ’s estimates are
smaller for the random effect model.

3.13 T-test and comparision

To test hypothesis 3-6 we can use a t-test for the parameters in the model. It’s can by shown that

Var
[
β̂
]

= σ2
(

X′
(
R+ZGZ′

)−1
X
)−1

and we can calculate this matrix using the previous estimates for the variances. We can also just do this
t-tests on the raw data. We can testH3 andH4 with a regluar t-test comparing the group before (H3) and
after (H4) the training period. We did this tests assuming equal variance. We can testH5 andH6 with
a paired t-test or with regluar t-test using the change in throwing velocity for each group. The results
from this t-tests are in table 15.
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Table 15: T-tests from full model and raw data

Hypothesis Hypothesis with restriction T-value from the full model T-value from raw data
H3 : µ10 = µ11 γ1 = 0 0.3018522 0.2936248
H4 : µ20 = µ21 γ1 +(τγ)21 = 0 0.9810197 1.010041
H5 : µ10 = µ20 τ2 = 0 0.0857518 0.08304548
H6 : µ21 = µ11 τ2 +(τγ)21 = 0 3.68154 3.781253

We see that the t-values are similar for the tests from the full model and from the raw data. This implies
that our assumtion of equal variance is appropriate. We aslosee thatH6 is the only null-hypothesis we
can reject (α = 0.05). That is there is a significant change in throwing velocity for the players in the
training group.

3.14 Equaliance of F-tests in the full model and the∆-model

Now we will show that we could have testedH2 (the test for the interaction) with a simple t-test com-
paring players change in throwing velocity by group. We do this by showing that the F-test for the
interaction in the full model is the same as the F-test for thegroup effect in the∆-model. Then we take
for granted that the F-test in a simple anova with two groups is the same as doing a simple t-test. To
show that the F-test are the same we have to show that

MSG∆
MSE∆

=
MSTGf m

MSEf m
.

To show this it’s enough to show that

SSE∆ = 2 ·SSEf m

SSG∆ = 2 ·SSTGf m

Some formulas we need for this are

ȳ· jk =
y2 jk +y1 jk

2

ȳ· j · =
ȳ2 j · + ȳ1 j ·

2

ȳ··· =
ȳ2·· + ȳ1··

2
∆̄y j · = ∆ȳ j · = ȳ2 j ·− ȳ1 j ·

∆̄y·· = ∆ȳ·· = ȳ2··− ȳ1··

We’ll begin by showing this for the SSEs

SSEf m = ∑
i

∑
j
∑
k

(
yi jk + ȳ· j ·− ȳi j ·− ȳ· jk

)2

= ∑
j
∑
k

(
y2 jk + ȳ· j ·− ȳ2 j ·− ȳ· jk

)2
+
(
y1 jk + ȳ· j ·− ȳ1 j ·− ȳ· jk

)2

= ∑
j
∑
k

(
y2 jk +

ȳ2 j·+ȳ1 j·
2 − ȳ2 j ·−

y2 jk+y1 jk
2

)2
+
(

y1 jk +
ȳ2 j·+ȳ1 j·

2 − ȳ1 j ·−
y2 jk+y1 jk

2

)2

= ∑
j
∑
k

1
22

(
y2 jk −y1 jk − (ȳ2 j ·− ȳ1 j ·)

)2
+ 1

22

(
y1 jk −y2 jk − (ȳ1 j ·− ȳ2 j ·)

)2

= 1
2 ∑

j
∑
k

(
∆y jk −∆ȳ j ·

)2

= 1
2SSE∆.

34



The proof is similar for the second part

SSTGf m = ∑
i

∑
j

n j (ȳi j · + ȳ···− ȳi··− ȳ· j ·)
2

= ∑
j

n j (ȳ2 j · + ȳ···− ȳ2··− ȳ· j ·)
2 +n j (ȳ1 j · + ȳ···− ȳ1··− ȳ· j ·)

2

= ∑
j

n j

(
ȳ2 j · +

ȳ2··+ȳ1··
2 − ȳ2··−

ȳ2 j·+ȳ1 j·
2

)2
+n j

(
ȳ1 j · +

ȳ2··+ȳ1··
2 − ȳ1··−

ȳ2 j·+ȳ1 j·
2

)2

= ∑
j

n j

22 (ȳ2 j ·− ȳ1 j ·− (ȳ2··− ȳ1··))
2 +

n j

22 (ȳ1 j ·− ȳ2 j ·− (ȳ1··− ȳ2··))
2

= 1
2 ∑

j
n j (∆ȳ j ·−∆ȳ··)

2

= 1
2SSG∆

3.15 Discussion

We have shown what hypothesis we can reject and which not. We found that we could rejectH1 so the
individual players effect is significant. We also found thatwe could rejectH2 so that either the groups
were either different or the training had an effect on their throwing velocity. By testing hypothesis
H3 −H6 we saw that the change in throwing velocity for the training group was the only significant
thing. So we see that the training has an effect. The players throwing velocity increases.

Another interesting thing is that we could have tested all our hypothesis except the first one with t-tests
on the raw data. And gotten the same or simmilar results.

4 Machines

4.1 Discussion

In terms of significant effects, we cannot decide which modelis better. It appears that all the effects in
the proposed model (be it mixed or fixed) have effect on the productivity score.

However since we are really interested in checking whether there is a difference in terms of productivity
score of the machines, but not between individual workers inthis sample, it is more natural to got with
the mixed effect model.

The conclusion is, there is a significant difference of ovarall productivity score between the machines.

4.2 The data

Data on an experiment to compare three brands of machines used in an industrial process are presented.
Six workers were chosen randomly among the employees of a factory to operate each machine three
times. The response is an overall productivity score takinginto account the number and quality of
components produced. These data are shown in Figure 1.

4.3 The model and hypothesis

The proposed model is

yi jk = µ+ αi +b j +(αb)i j + εi jk , i = 1, . . . ,3, j = 1, . . . ,6, , k = 1. . . ,3 (17)
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Figure 3: Overall productivity score for machines A, B and C for each worker.

where

• µ is a constant which describes the overall effect

• theαi are constants to which we impose the restrictions∑αi = 0

• bi are independentN (0,σ2
b) random variables

• (αb)i j are pairwise independentN (0, I−1
I σ2

αb) random variables.

• εi jk are independentN (0,σ2) random variables

• b j , (αb)i j , andεi jk are pairwise independent for alli, j,k.

This model has a fixed main effect for each type of machine and arandom main effects for every
worker, namelyαi andb j respectively. It also incorporates an interaction term between the two main
effects which must be a random effect, namely(αb)i j .

We want to check the hypothesis whether there is any difference in productivity between machines. That
is, we have the null hypothesis

H0A : αi = 0 ∀i v.s. H1A : ∃i s.t. αi 6= 0 (18)

The hypothesis whether the workers have effect on productivity may be stated as follows

H0B : σ2
b = 0 v.s. H1B : σ2

b > 0. (19)

To test whether or not machine and workers interact we test the following

H0(AB) : σ2
αb = 0 v.s. H1(AB) : σ2

αb > 0. (20)

4.4 Matrix formulation

Now we want to find matricesX andZ which will satisfy

y = Xα+Zu+ ε.
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We construct the following

y =





y111

y112

y113

y121
...

y163

y211
...

y363





+





1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
...

...
...

...
1 1 0 0
1 0 1 0
...

...
...

...
1 0 0 1





α+





1 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0
... 1 0 0 0 0 0 1 0

... 0
1 0 0 0 0 0 0 0 0 1 0
...

...
...

...
...

...
...

...
...

...
...

0 0 1 0 0 0 0 0 0 0 1





u

and

α =





µ
α1

α2

α3



 , u =





b1

b2
...

b6

(αb)11
...

(αb)16

(αb)21
...

(αb)36





, ε =





ε111

ε112

ε113

ε121
...

ε363





.

To include the restraints in mentioned above we will introduceµ∗ = µ+α1 and delete the second column
in X.

4.5 Anova tables, tests and estimates of variance components

Let N = 54 denote the total number of observation,I = 3 denote the number of machines,J = 6 number
of workers andK = 3 the totals numbers of trials of each worker on each machine.The total sum of
squares may be partitioned into

SSA= JK
I

∑
i=1

(ȳi.. − ȳ...)
2 : machine, fixed effect

SSB= IK
J

∑
j=1

(ȳ. j .− ȳ...)
2 : workers, random effect

SSAB= K
I

∑
i=1

J

∑
j=1

(ȳi j . − ȳi..− ȳ. j . + ȳ...)
2 : interaction, random effect

SSE=
I

∑
i=1

J

∑
j=1

K

∑
k=1

(yi jk − ȳi j .)
2 : residuals

(21)

We also calculate the expected values of the mean sums of squares and the results can be seen in the
following table
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Source SS DF MSS E[MSS]

Machine SSA I −1 SSA
I−1 σ2 +JK∑α2

i
I−1 +Kσ2

αb
Workers SSB J−1 SSB

I−1 σ2 + IKσ2
b

Machine:Worker SSAB (I −1)(J−1) SSB(A)
I(J−1) σ2 +Kσ2

αb

Residuals SSE IJ(K −1) SSE
IJ(K−1) σ2

Total SST IJK−1 SST
IJK−1

To test hypothesis (18) we calculate
MSA

MSAB
and make use of the fact that this ratio fallows aF-distribution. Similarly we check hypotheses (19) and
(20) by calculating the ratios

MSB
MSE

and
MSAB
MSE

respectively and compare them to corresponding quantiles from theF- distribution.

From the ANOVA-table we obviously get the estimators

σ̂2 = MSE, σ̂2
b =

MSB−MSE
IK

and σ̂2
αb =

MSAB−MSE
K

(22)

With a little help from R we get the following

Df SS MSS Ratio F-test F-Value
Machines 2.00 1755.263 877.631 20.576 4.103
Workers 5.00 1241.895 248.379 2.477

Machine:Worker 10 426.530 42.653 2.106
Residuals 36.00 33.287 0.925

Total 53.00 3456.975 7.66

Table 16: ANOVA table

and the estimates of the variances become

σ̂2 = 0.925, σ̂2
b = 27.495 and σ̂2

αb = 13.909 (23)

4.6 Estimating equations and solutions

When estimatingα andu, we use the following equations

α̂ = (XT(R+ZGZT)−1X)−1XT(ZGZT +R)−1y

û = (ZTR−1Z+G−1)−1(ZTR−1−ZTR−1X(XT(R+ZGZT)−1X)−1XT(R+ZGZT)−1)y

where the matricesG andR fulfill the following equation

Var

[
u
ε

]
=

[
G 0
0 R

]
σ2 =








σ2

b
σ2 I6 0

0
(I−1)σ2

αb
Iσ2 I18



 0

0 I54





That isG =




σ2

b
σ2 I6 0

0
(I−1)σ2

αb
Iσ2 I18



 andR = I18. We use our variance estimates in (23) and get the

following estimates forα

and the estimates foru
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αi

1 52.36
2 7.97
3 13.92

j b j (αb)1 j (αb)2 j (αb)3 j

1 0.24 0.01 0.54 0.16
2 -0.31 0.12 -0.10 -0.95
3 1.22 1.37 1.49 0.76
4 -0.01 -0.26 0.56 -0.34
5 0.58 -0.36 0.96 1.12
6 -1.71 -0.88 -3.45 -0.75

4.7 REML estimates

In order to find REML estimates for the variancesσ2,σ2
b andσ2

αb let K be a matrix such that

KX = 0.

To that end, we use aQR-decomposition forX, namely writeX such that

X = QR

whereR is an upper triangularn× p matrix andQ is an orthonormaln×n matrix, meaning the columns
[q1, . . . ,qn] in Q form an orthonormal basis inRn. Then it is known that

[qp+1, . . . ,qn]
TX = 0.

Consequently we chooseK = [qp+1, . . . ,qn]
T .

It is now easy to see that
ỹ := Ky∼N

(
0,KΣyK

T)

whereΣy = σ2(ZGZ′ + R). The REML estimates can now be found by finding(σ2,σ2
b,σ

2
αb) which

maximizes the log-likelihood function ofN (0,KΣyK′).

We use R to approximate this maxima. In order to use the optimizing functions in R we must specify a
starting point. A sensible choice is using our estimates in (23). We get the REML estimates

σ̂2 = 0.924, σ̂2
b = 22.858 and σ̂2

αb = 13.90933

4.8 LRT of hypothesis

We can test hypothesis (18), (19) and (20) with a likelihood ratio test, which done by comparing the full
model with the following models respectively

reducedA : yi jk = µ+b j +(αb)i j + εi jk

reducedB : yi jk = µ+ αi +(αb)i j + εi jk

reducedAB : yi jk = µ+ αi +b j + εi jk

The likelihood ratio test statistic is given by

D = −2
(
log(Lreduced)− log(L f ull)

)
.

This statistic follows approximately aχ2-distribution with one degree of freedom. The following table
shows theD-values for each model respectively and correspondingp-values.

Thus we reject all the null hypothesis, just like we did earlier with theF-test.
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H0A H0B H0(AB)

D 19.475 6.681 68.288
p-value 5.9 ·10−5 0.009 1.4 ·10−16

4.9 Estimates with all effects fixed

We assume all the effects, exceptεi jk , in the model

yi jk = µ+ αi +b j +(αb)i j + εi jk (24)

are fixed. The corresponding matrix formulation becomes

y = X̃α̃+ ε

where

X̃ =





1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 1 0 0 0 0
... 1 0 0 0 0 0 1 0

... 0
1 0 1 0 1 0 0 0 0 0 0 0 0 1 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 0 0 1 0 0 1 0 0 0 0 0 0 0 1





and

α̃ =





µ∗

α2

α3

b1

b2
...

b6

(αb)11
...

(αb)16

(αb)21
...

(αb)36





, ε =





ε111

ε112

ε113

ε121
...

ε363





.

Because of linear dependence between columns inX̃ we cannot estimate all the effects inβ. Using the
same restrictions as R we will exclude the effects of the firstmachine and the first worker, namely by
removing columns 4,10 to 15, 16 and 22 from the matrixX̃. We get the following estimates

4.10 The SS-formulas in the ANOVA tables

Using the same method to partition the sum of squares as before we get a similar table; the only differ-
ence is the expected mean square since we are using fixed effects.
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αi

µ∗ 52.63
α2 10.27
α3 14.57
b2 -0.07
b3 6.90
b4 -1.40
b5 -1.27
b6 -5.83

(αb)22 -3.27
(αb)23 -1.77
(αb)24 1.23
(αb)25 3.43
(αb)26 -13.43
(αb)32 -5.30
(αb)33 -3.30
(αb)34 -1.03
(αb)35 5.80
(αb)36 -0.07

Source SS DF MSS E[MSS]

Machine SSA I −1 SSA
I−1 σ2 +JK∑α2

i
I−1

Workers SSB J−1 SSB
I−1 σ2 + IK

∑b2
j

J−1

Machine:Worker SSAB (I −1)(J−1) SSB(A)
I(J−1)

σ2 +K
∑∑(αb)2

i j
(I−1)(J−1)

Residuals SSE IJ(K −1) SSE
IJ(K−1) σ2

Total SST IJK −1 SST
IJK−1

We can check whether the machine, worker and the interactioneffects are significant by calculating the
ratios

MSB
MSE

,
MSB
MSE

and
MSAB
MSE

.

respectively and comparing them to corresponding quantiles from theF-distribution. Using the results
from table 4.10 we get the values in table 4.10. There we clearly see that all the effects are significant.

Effects Ratio F-test F-Value
Machines 948.79 > F2,36 = 3.26
Workers 268.52 > F5,36 = 2.478

Machine:Worker 46.11 > F10,36 = 2.106
Residuals

Table 17: ANOVA table

4.11 SS computed by ’hand’

Calculating the sums of squares in the ANOVA table (4.5) by ’hand’ yields the following results by
using the formulation in (21).
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i ȳi.. (ȳi.. − ȳ...)
2

1 52.36 53.22
2 60.32 0.45
3 66.27 43.85

Total 178.950 97.515
SSA 1755.27

j ȳ. j . (ȳ. j . − ȳ...)
2

1 60.91 1.59
2 57.99 2.76
3 66.12 41.89
4 59.58 0.01
5 62.72 9.44
6 50.58 82.31

Total 357.90 137.9883
SSB 1241.895

j ȳ1i. ȳ2i. ȳ3i. (ȳi j . −ȳi..− ȳ. j . − ȳ...)
2

i = 1 i = 2 i = 3
1 52.63 62.90 67.20 0.967 1.734 0.111
2 52.57 59.57 61.83 3.505 0.820 7.71
3 59.53 68.03 70.80 0.498 1.535 3.781
4 51.23 62.73 64.77 1.102 6.1669 2.054
5 51.37 65.07 71.73 16.493 2.796 5.707
6 46.80 43.63 61.30 12.367 58.014 16.810

Total 34.932 71.065 36.179
SSAB 426.53

4.12 Maximum likelihood estimates

The ML estimates forα are the same as before. We may find the MLE forσ2 with

σ̂2 =
1

IJK −1

I

∑
i=1

J

∑
j=1

K

∑
k=1

(yi jk − ŷi jk)2

whereŷi jk are the fitted values from the fixed effect model 24. With a little help from R we get̂σ2 =
0.6164

4.13 Compare variance and SS estimates

In the mixed effect model we got the following estimates for the fixed effects

α̂ =




µ∗

α2

α3



=




52.36
7.97
13.92





and in the fixed effect models we got the following estimates for the fixed effects
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̂̃α =





µ∗

α2

α3

b2

b3

b4

b5

b6

(αb)22

(αb)23

(αb)24

(αb)25

(αb)26

(αb)32

(αb)33

(αb)34

(αb)35

(αb)36





=





52.63
10.27
14.57
−0.07
6.90
−1.40
−1.27
−5.83
−3.27
−1.77
1.23
3.43

−13.43
−5.30
−3.30
−1.03
5.80
−0.07





.

We note that estimates forµ∗ are the same in the mixed and fixed effect models. And the estimates for
α2 andα3 are differ only slightly in the mixed and fixed effects models.

4.14 Compare variance and SS estimates

In the mixed effect model, the estimates of the variances by using the ANOVA table were

σ̂2 = 0.925, σ̂2
b = 27.495 and σ̂2

αb = 13.909.
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The REML estimates however were

σ̂2 = 0.924, σ̂2
b = 22.858 and σ̂2

αb = 13.90933.

We see that the estimates forσ2 andσ2
αb are nearly identical and the estimates forσ2

b differ slightly.

In the fixed effect model, the ANOVA estimate forσ2 is found with the same method as in the mixed
effect model, yielding the estimate

σ̂2 = 0.925.

The ML estimate forσ2 is however
σ̂2 = 0.6164.

We see that the ML estimate is slightly lower that the ANOVA estimate.

Compare results from assuming fixed vs random effectsIn the mixed effect model we saw that the
fixed effect terms were significant, and we rejected the null hypotheses thatσ2

b = 0 andσ2
αb = 0. Meaning

that all the proposed effects in model 17 should be included since they appear to have a significant effect
on the overall productivity score.

In the fixed effect model we saw that all the effects were significant and thus should not be excluded
from model 24.

We also note that the ANOVA estimate ofσ2 for both models are the same but there is slight difference
between the REML estimate for the mixed effect model and the ML estimate for the fixed effect model.

5 Rail

5.1 The Data

Figure 4: Boxplot of the data

The data (Rail) are from an experiment in nondestructive testing for longitudinal stress in railway. Six
rails where chosen at random and tested three times each by measuring the time it took for a cer-
tain type of ultrasonic wave to travel the length of the rail.The following table contains the data
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Rail Travel
1 A 55
2 A 53
3 A 54
4 B 26
5 B 37
6 B 32
7 C 78
8 C 91
9 C 85
10 D 92
11 D 100
12 D 96
13 E 49
14 E 51
15 E 50
16 F 80
17 F 85
18 F 83

We can see in the boxplot that there is more variability beetween groups than within groups.

5.2 The Model and Hypothesis

The model that is proposed is
yi j = µ+ βi + εi j

whereβi ∼ n(0,σ2
A), εi j ∼ n(0,σ2) andβ andε are independent. Hereµ is the mean travel time across

the population of rails being sampled andβi is the random variable that represents the deviation from
the population mean of the mean travel time for the ith rail.εi j is a random variable representing the
deviation in travel time for observation j on rail i from the mean travel time for rail i.
The null hypothesis is

H0 : σ2
A = 0

5.3 Matrix formulation

We can set up the model with the matrix formulationY = Xµ+ Zβ + ε. Here doesX contain the fixed
effects andZ the random effects.
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



y11

y12

y13

y14

y15

y16

y21

y22

y23

y24

y25

y26

y31

y32

y33

y34

y35

y36





=





1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1





[
µ
]
+





1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1









β1

β2

β3

β4

β5

β6




+





ε11

ε12

ε13

ε14

ε15

ε16

ε21

ε22

ε23

ε24

ε25

ε26

ε31

ε32

ε33

ε34

ε35

ε36





5.4 Anova tables, tests and estimates of variance components.

The anova table is almost the same as it were for the fixed effect model, that is

Source df SS MS E{MS} F
Between groups I-1 SSA=∑ni(ȳi·− ȳ··)2 MSA=SSA/(I-1) σ2 +nσ2

A MSA/MSE
Whithin group n-I SSE=∑∑(yi j − ȳi·)

2 MSE=SSE/(n-I) σ2

Total n-1 SSTOT=∑∑(yi j − ȳ··)

When we calculate these sums we get

df SS MSE F* F
A 5 9319.5 1862.1 115.18 3.11
Error 12 194 16.2
Total 17 9504.5

Here we can see thatF∗ > F so we can reject the hypothesis thatσ2
A = 0.

From the anova table we can calculate the variances of compounds, that isσ̂2 = MSE = 16.2 and
σ̂2

A = MSA−MSE
ni

= 615.3.

5.5 Estimating equations (for mu and beta) and solutions.

When we estimateµ andβ, we can use the equations

µ̂= (XT(R+ZGZT)−1X)−1XT(ZGZT +R)−1y

β̂ = (ZTR−1Z+G−1)−1(ZTR−1−ZTR−1X(XT(R+ZGZT)−1X)−1XT(R+ZGZT)−1)y

where we have that

Var

[
β
ε

]
=

[
G 0
0 R

]
σ2 =

[
σ2

A/σ2I6 0
0 I18

]
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That isG= σ2
A/σ2I6 andR= I18. Then we have everything to calculate ˆµ andβ̂ (we useσ2 andσ2

A from
slide 25). We then obtain

µ̂= 66.5

and

β̂ =





−12.39125
−34.53029
18.00862
29.24335
−16.35645
16.02602





5.6 REML estimates (of variances).

We can use the REML method to estimate the variances. At first we need to find a matrix K such that

KX = 0

We can find that matrix with the QR-decomposition. We get

X = QR= [q1,q2, . . . ,qp, . . . ,qn]R

Hereq1,qn form an orthonormal basis, Q is annxnmatrix and R is annxpmatrix. Then we have that

[qp+1, . . . ,qn]
′X = 0

so we can chooseK = [qp+1, . . . ,qn]
′. Now we know thatKy = ỹ ∼ n(0,KΣyK′) so the likelihood

function ofỹ is

L(θ) =
e−1/2ỹ′KΣyK′ỹ

(2π)n/2|KΣyK′|1/2

Then we findθ̂ = (σ̂2
A, σ̂2) which solves maxθ ln(L(θ)).

By programing this in R we can obtain the following estimatesθ̂ = (σ̂2
A, σ̂2) = (615.72530,14.92307).

These estimates are similar to those that the built in function lmer gives us but not exactly the same
(although it uses the REML method). Those estimates are(615.311,16.167).

5.7 LRT of hypothesis

We can use likelihood ratio test to compare the fit of two models where one is nested in the other. We
can compare our random effect model

yi j = µ+ βi + εi j

to the model
yi j = µ+ εi j

Lets call the likelihood function for the more complex modelL1 and the likelihood function for the other
oneL0. We need to calculate the likelihood ratio test statistic, that is

D = −2(log(L0)− log(L1))

The distribution of this test statistic is approximately chi squared with degrees of freedom equal to
the difference in the dimension of the two parameters spaces. With calculation in R we get thatD =
28.30046 and we get the p-value 1.038714e−07. The p value is well below 5% so we can reject the
null hypothesisH0 : σ2

A = 0.
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5.8 Estimates with all effects fixed

If we assume that all the effects are fixed we get the model

yi j = µ+ βi + εi j

whereβi are constants (β1 = 0) andε ∼ n(0,σ2). The matrix form of the model isy= Xβ+ε (now there
is no Z). That is





y11

y12

y13

y14

y15

y16

y21

y22

y23

y24

y25

y26

y31

y32

y33

y34

y35

y36





=





1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1









µ1

β2

β3

β4

β5

β6




+





ε11

ε12

ε13

ε14

ε15

ε16

ε21

ε22

ε23

ε24

ε25

ε26

ε31

ε32

ε33

ε34

ε35

ε36





Now it is easy to estimateβ. We use simple linear regression methods (OLS and MLE give the same
estimate), that is

β̂ = (XTX)−1XTy =





54.00000
−22.33333
30.66667
42.00000
−4.00000
28.66667





5.9 The SS - formulas in the ANOVA table

The anova table is almost the same as the one for the random effect model. The only difference is in the
E{MS}.

Source df SS MS E{MS} F

Between groups I-1 SSA=∑ni(ȳi·− ȳ··)2 MSA=SSA/(I-1) σ2 + ∑ni(βi−β·)2

I−1 MSA/MSE
Whithin group n-I SSE=∑∑(yi j − ȳi·)

2 MSE=SSE/(n-I) σ2

Total n-1 SSTOT=∑∑(yi j − ȳ··)

5.10 SS computed "by hand"

Now we can compute
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Factor i yi1, yi2, yi3 ∑ j yi j ȳi· ∑ni
j=1(yi j − ȳi·)

2 n(ȳi·− ȳ··)
A 1 55, 53, 54 162 54 2 468.75
B 2 26, 37, 32 95 31.67 60.67 3640.083
C 3 78, 91, 85 254 84.67 84.67 990.083
D 4 92, 100, 96 288 96 32 2610.75
E 5 49, 51, 50 150 50 2 816.75
F 6 80, 85, 83 248 82.67 12.67 784.083
Σ 1197 194 9310.5

where we have that ¯y·· = 1197
18 = 66.5. We also know thatn = 18, I = 6 andni = 3. Now we can fill in

the anova table

df SS MSE F* F
A 5 9319.5 1862.1 115.18 3.11
Error 12 194 16.2
Total 17 9504.5

Here we can see thatF∗ > F so we can reject the hypothesis thatβ = 0 From the anova table we get the
following estimateσ̂2 = MSE= 16.2.

5.11 ML estimates

We have the likelihood function

L(β,σ2) =
1

(2πσ2)n/2
exp

[
−

1
2σ2 ∑

i
∑

j
(yi j − (µ+ βi))

2

]

Maximizing the likelihood function is equvalent to minimizing the sum∑i ∑ j(yi j − (µ+ βi))
2 in the

exponent. The ith component of this sum isQi = ∑ j(yi j − (µ+ βi))
2. When we differentiate with

respect toβi, we obtain
dQi

dβi
= ∑

j
−2(yi j − (µ+ βi))

If we set the derivative equal to zero and isolateβ we obtain the MLE estimator. That iŝβ = ȳi·− µ.
Becauseβ1 = 0 we obtainµ= ȳ1·. Then we get the estimate

β̂i =





54.00000
−22.33333
30.66667
42.00000
−4.00000
28.66667





Which is the same as we got in slide 45.
The logarithm of the likelihood function is

logL(β̂,σ2) = −
n
2

log(2πσ)−
1

2σ2 ∑
i

∑
j
(yi j − β̂i)

2

When we differentiate with respect toσ2 we obtain

−
n

2σ2 +
1

2σ4 ∑
i

∑
j
(yi j − β̂i)

2
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If we set the derivative equal to zero and isolateσ2 we obtain the MLE estimator. That is

σ̂2 =
1
n ∑

i
∑

j

(yi j − β̂i)
2

Then we get the estimate

σ̂2 = 194/18= 10.78

which is smaller than we got from the anova table. (The ML estimate forσ2 is biased).

5.12 Compare estimates of fixed effects [sl30 vs sl60]

In the random effect model we got the following estimate for the fixed effect

β̂ = 66.5

and the estimate for the random effect was

û =





−12.39125
−34.53029
18.00862
29.24335
−16.35645
16.02602





In the fixed effect model we got the following estimates

β̂ =





54.00000
−22.33333
30.66667
42.00000
−4.00000
28.66667





We need to remember how the random effect model and the fixed were built up to understand how these
estimates are related. The models were shown in matrix form in slides 20 and 45. It can be seen thatµ
in the fixed effect model is related toµ−β1 in the random effect model, that is 54 should be not so far
from 66.5−12.39= 54.11, which is true.

5.13 Compare variance and SS estimates [sl25, sl 35, sl55, sl60]

The SS estimates are the same for both models, but there is a difference in the estimates for the variance.

Variance estimates for the random effect model were the following:
In slide 25 we got an estimate forσ̂2 andσ̂2

A from the anova table. That is

σ̂2 = MSE= 16.2 andσ̂2
A =

MSA−MSE
ni

= 615.3.

The MSE estimate forσ2 is the same one as in the fixed effect model. In slide 35 we used the REML
method to get an estimate forσ̂2 andσ̂2

A. They were close to those we got in slide 25 but not exactly the
same. The estimate forσ2 was closer to the one we got forσ2 on slide 25 than the estimate forσ̂2

A. We
obtained

σ̂2
A = 615.72530 and̂σ2 = 14.92307
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Variance estimates for the fixed effect model were the following:
When we used the anova table in slide 55 we got an estimate forσ2 (in the fixed effect model there is
no σ2

A)
σ̂2 = MSE= 16.2

When we used the ML method in slide 60 we got another estimate (that estimate is biased), which was
lower than the one from the anova table

σ̂2 = 194/18= 10.78

5.14 Compare results from assuming fixed vs random effects

In the fixed effect model all effects were assumed to be fixed. All the parameters in the model were
significant, and we estimated them with MLE. We also estimated σ2 with two methods, both with an
anova table and maximum likelihood method. Those estimateswere quite different.

In the random effect model we assumed thatβ ∼ n(0,σ2
A), so we had to estimateσ2

A andσ2. They where
estimated with to methods, REML and ANOVA. The estimates forσ2

A were the same in both methods
and estimates forσ2 were similar in both cases, but not the same. The ANOVA estimate for σ2 was the
same as the one forσ2 estimated with ANOVA in the fixed effect model. We rejected the hypothesis
thatσ2

A = 0, so the parameters in the model were signifacant. Because we rejected the hypothesis that
σ2

A = 0 we assume that the random effect model is a better model thanthe fixed effect model.

5.15 Discussion

The random effect model that we started with was the model

yi j = µ+ βi + εi j

We rejected the hypothesisσ2
A = 0, so we did not reduced the model. Because we rejected the hypothesis

it was decided that the random effect model was better than the fixed effect model. The conclusion was
that the rail was a factor that had random effect on the traveltime.
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