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1 lrrigation

1.1 The Data
Irrigation Variety
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Figure 1: Boxplots of the yield group according to each ofttiree effects: irrigation, variety and field. The last batishows the yield total.

The objective is to determine the effects of four differgnigation methods and two crop varieties in
an agricultural field trial. Eight fields are available, bug wan only apply one type of irrigation to each
field. We can however split each field in two and plant diffénearieties in each half. The irrigation

method is the whole plot factor, which should be assignedaanly to each field. Within each field the

variety is assigned randomly. Irrigation il is used on fididand f5, irrigation i2 is used on fields 2

and f6, irrigation i3 is used on fields f3 and f7 and irrigatidris used on fields f4 and f8. In each field
variety v1 is planted in half of the field and variety v2 is keohin the other half of the field.

Boxplots of the yield grouped according to irrigation, \edyi and field can be seen in the figure. There
seems to be difference between some fields and also betwaed ihe other irrigation methods.

Table | shows the data.

1.2 The Model and Hypothesis

Yfiy = B 1+ Vv + (19)jy + 0 +Efjy

The irrigation and variety are obviously fixed effects simeeare testing exactly those types. The fields
on the other hand are random, since the soil and weather &ongbe can not be chosen exactly. There
is also interaction between irrigation and variety and alstveen field and variety. We can not assume
that there is interaction between field and irrigation sieaeh field only has one type of irrigation. The
irrigation/variety interaction is fixed but the field/vaenteraction is random. We therefore propose
the model

Yiiv = M+ i +Vy+ (IV)iv + @ + (@) tv + Efiv

wherep is the overall mean;, vy, (1v)jy are the fixed effets which represent the deviation from tharme
due to irrigation, variety and their interatction ampd (¢v)y are random variables which represent the



Table 1: The Data

Field Irrigation Variety| Yield
fl il vl 35.4
fl il v2 37.9
f2 i2 vl 36.7
f2 i2 v2 38.2
f3 i3 vl 34.8
f3 i3 v2 36.4
f4 i4 vl 39.5
f4 i4 v2 40.0
5 i1 vl 41.6
f5 il v2 40.3
f6 i2 vl 42.7
f6 i2 v2 41.6
f7 i3 vl 43.6
f7 i3 v2 42.8
f8 i4 vl 445
f8 i4 v2 47.6

deviation from the mean due to field and the interaction ofifehd variety. The random variable
€fjy represents the deviation of the yield of varietyirrigated with irrigationi on field f. Hereg; ~

n(0,0), (@) v ~n(0,0%,,).€xiv ~ n(0,0%).

However, since we only have one observation per varietyimvehch field, we must use a simpler model
which does not account for the variety/field interactionisithodel becomes

Yiiv = U+ i +Vy+ (IV)iv + O + Efiv

where we haveriy ~ n(0,6%),¢r ~ n(0,0%). We also have the resrictions
Zli = ZVV = Z(lv)iv = Z(lv)iv =0.
1 v | v

In the second part of the analysis we will assume ¢has also a fixed effect.

Null hypothesis are
Hogv) : (1V)iv =0, Hoi:1i=0, Hoy:w=0, Hop:@r=0.

and we will find estimates for the varianoed 0% and also for the parameters in our model.

1.3 Matrix formulation

We want to find matriceX, Z such that

y=XB+Zu+e



wheref3 contains the fixed effects/parameters andontains the random effects. What we get is the

following
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we can reduce th®& matrix and write
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In further calculation¥, Z, 3,u will be in the reduced form.

1.4 Anovatables, tests and estimates of variance component

We set up the ANOVA table for the model. It is divided into twarts. The upper part takes care of the
whole-plot, that is the irrigation within each field. The lempart takes care of the split-plot, that is, the
variety within each irrigation. We have a total of 16 obséiores which makes 15 degrees of freedom.
The sums of squares are calculated using the formulas

SSl= ZVIZ(% —¥..)?
SSWPE= 222(%.‘ —y.i)?
SSWPT= 22(%.. —y.)?
SSv=2 Z(Yv. —y.)?
SSIV= 2.2 z(yvi — Vv —Yi+Y.)?
SSE- Z Izg(y‘..i — ¥t — Yoi + Yivi)?

SST=Y 3 3 (7.’

Vol

wherei =1,2,3,4,v=1,2 andf =1,...,8. We also calculate the expected values of the mean sums of
squares and the results can be seen in table 2.

Table 2: ANOVA-table in the mixed model.

Source DF SS MSS E[MSS]

Irrigation 1 —1 SSI MSI = % AL Sir+ 2Ly (v)2+ 02
W.P.E. F—1 SSWPE MSWPE=S2%FF Va2 +o?

W.PT. F-1 SSWPT

Variety V-1 SSV  MSV= % P Sy V2 + A (V)3 + 02
\Y% (V-1)(1-1) SSIV MSIV= G5ty g i Sv(V)i +0°
S.PEE. I(V—1) SSE  MSE= > o?

Total Al-1 SST

We can now test our null-hypothesis. We start by testingdfititeraction between irrigation and variety
is significant, the hypothesidy . We do that by calculating the ratio

MSIV/MSE

and comparing it to the appropriate F-value. We can now keshypothesisly andHg, which corre-
spond to effect of irrigation and variety. It is done by cortipg the ratios

MSV/MSE, MSI/MSE

respectively. Now we have found out if each of the fixed efexct significant and we move on to the
random effect. To see if the random effect, field (null-hy@stisHoy), is significant we compute

MSW PE/MSE



Table 3: ANOVA-table of mixed model with numerical values.

Source of DF Sum of Squares Mean Square Ratio  Contrast

variation

Irrigation 3 40.190 13.397 0.388 < F34=16.59
W.P.E. 4 138.030 34.507 16.37 > F44=6.39
W.P.T. 7 178.22

Variety 1 2.250 2.250 1.068 <F4=7.71
v 3 1.550 0.517 0.2452 < F34=6.59
Split Plot 4 8.43 2.1075

Error

Total 15 190.45

and compare to the right F-value. If a computed ratio is |diivan the appropriate F-value the effect is
not significant and we can not reject the correspondingmyplethesis. If on the other hand, the ratio is
greater than the F-value we reject the null hypotheses thateals of a single effect are the same and
say that there is infact difference between the levels.

We can use the ANOVA-table to calculate estimatesd®iand 0% after we check which effects are
significant. We get the estimate fof directly from the table, that is

6% = MSE

After we have found the estimate fof, and if the effect of fields is significant, we can fiﬁ@ using
the equation
MSF=Vag+0°.

We are now ready to look at the ANOVA-table with all the nurnativalues, see table 3.

As we can see from the table the effects of irrigation, vgréatd their interaction are not significant.
However, the effect of field is significant. In null-hypotieethis means that we rejeklyy but can not
rejectHor, Hov, Hov)-

Finally we get the variance estimates

6°=21075 §5=162

In the above estimates we used 95% significance level.

1.5 Estimating equations (for u and beta) and solutions.

We have the equation
y=XB+Zu+c¢
from slide 20 and we want to estimdieu using BLUP.

We find matricess, R so that

_ o[ G 0] _[0/c%g O
Var[y]_o[o R]_[ 0 I

and we thus havé = 0(2[,/02118 andR = I15. Now we can estimat®, u with the equations

B = (X'(R+ZGZ)X)X'(R+2GZ) 1y



= ZR 122+ H YZR - ZR IX(X'(R+2GZ) X)X (R+2GZ) L)y

These equations give us the BLUP-estimates

M 385 f1 —2.018692

i 12 fa —2.206477

i3 0.7 f3 —3.567920

a_| || 35 g | fo |_| —2957618
o % o 0.6 ’ o fs | 2.018692
(iV)zz -04 f6 2.206477
(iV)gz -0.2 f7 3.567920
(iV)42 1.2 fg 2.957618

1.6 REML estimates (of variances).

We want to use REML to estimate the variances. We start byrfgndimatrixK such that
KX =0.
We can us&@R-decomposition and write

X:QR: [Ql,~~~7Qp,---7Qn]R

whereR is n x p matrix like X andQ is n x n matrix and the vectorg;,...,q, form an orthonormal
basis. Then it holds that

[Gp+1.-- -Gl X = 0.
so we letK = [Qp+1,...0n)-

We look at
¥y=Ky~ n(KZyK’)

whereZy = 0%(ZGZ + R), we denoteA = ZGZ + R. The likelihood function of/is

1 1o/ n—1y
— —3Y (K&K ™y
L(e) (ZH)n/2|KZyK’|1/2e 2

and we findd = (62, 62) that solves

meaxL(e) or meaxln(L(e)).
The function we need to maximize with respectfoandoy is
_.n 1 / n 2 1. n-1gy
In(L(B)) = 2In2n 2In|KAK| 2Ino 202y(KAK) y

and some calculations give us the maximum value @f)n

meax(ln(L(e)) = —27.66671

and the REML-estimates of, 07

5_ 62\ [ 0.7024995
- 65, —\ 169025017 /-

10



1.7 Estimate with all effects fixed.

If we assume that all effects are fixed the only random vaeigi, and we only need to estimate,

notcé. The model is still

Yiiv = U+ i + W+ (iV)iv + @f + Eiv

but since we only have 16 observations which is not a full hade can not estimate all the parameters.
We have a total of 16 1= 15 degrees of freedom to work with, which means that we mtsteéxclude
the effect of irrigation or the effect of 3 fields. We will firskclude the effects of three fields and then

the effects of the irrigations. We can write the model on Rdtrm as

y = XB+e¢
100 0 00 0O0O
100 010000
1100 000O00O01
110011001
1 01 000O0O00O0
101010100
1001 00O0O00O0
_ 100110010
o 1 00 0 0O0O0O0O0OTO
1 00010000
1100 0 0 0O00O0
110011000
101 000 O0O0O
101010100
1 001 000O00O0
1 00110010
and use regular methods to estimptéVe get
H
12
i3
i4
V2
N (INeN—1g, (iV)ZZ
P=0C0TXY =1 ()es
(iV)a2
(7
@3
O
3

eNeoNoNoNeoNoNoNoNoNaol i _NeolNolNoNel
OO O0OO0OO0OO0OO0OO0ORFrR P OOOOOO
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We will use the first model, the one without three fields, inghbsequent slides.

1.8 The SS-formulas in the ANOVA tables.

We can not estimate all levels in the factors and must leaeethut. We chose to leave out three levels
of the fields and therefore we have 5 levels of the fields andldggees of freedom are 4. We can
use MSE to calculate wether each of the factors is significanbt and therefore we can simplify the

ANOVA table from slide 25 and it looks like table 4. The sumsqtiares are

Table 4: ANOVA-table for the fixed model.

Source of DF Sum of Squares Mean Square Ratio F-test
variation

Field F—1 SSF MSF = E—ff MSF/MSE
Irrigation 1 -1 SSI MSI = % MSI/MSE
Variety V-1 SSV MSV = % MSV/MSE

\Y, (V-1)(1-1) SSIV MSIV = (\,75% MSIV/MSE
Error VI+1-F SSE MSE = 235

Total AVl-1 SST

SSI=2V 5 (i - ¥..)?

SSF= zzlz(y‘f.. —¥.i)?
SSV=21'y (V. —¥-.)?
ssiv=2% gw‘; R AR
SSE- Z IZIZ()TJ — ¥t — Yoi +Yivi)?
SST=33 3 i ~¥.)?

1.9 SS computed by hand.

We get, with some help from ANOVA tables in
SSF=13803, SSI=40.190 SSVv=225 SSIV=155
SSE=8.43, SST=19045
Table 5 shows the ANOVA table.

Notice that the effect of fields only has four degrees of fogednstead of seven. This is because we
only have 16 observations. Therefore we can not take theteffall fields into account and we chose
to exclude the last three field§, f7, fs.

The table shows that only the effect of fields is significanat fis, we reject that all the fields are the
same. This does not come as a surprise if we look at the boaptbe fields and this is also the same
result as in the mixed model.

As beforeMSE gives us an estimate of, that is
62 =MSE=2.1075

An ANOVA-table that leaves out the irrigations instead ok fields, gives the same result.

12



Table 5: The ANOVA table for the fixed model with numerical wes.

Source of DF Sum of Squares Mean Square Ratio F-test Contrast F-value

variation

Field 4 138.03 34.507 16.37 >6.39
Irrigation 3 40.19 13.397 6.36 <6.59
Variety 1 2.25 2.25 1.07 <7.71
v 3 1.55 0.517 0.25 <6.59

Error 4 8.43 2.1075

Total 15 190.45

1.10 ML estimates.

The ML estimate of is the same as on slide 45, that is

u 36.35
i 5.70

i3 6.65

ig 8.80

Vo 0.60

B ION=107, (iV)zz . —0.40
B=XX)"Xy=1 iV | = | —0.20
(iV)42 1.20

(073 —-4.70

(07} —7.60

o ~6.30

0 4.30

The estimate we get far? from the table is not the ML estimate, but it is easily complgice

o = %ZzZ(Yfiv—yfiv)z

1
= —843=0527
16

whereytj, are our estimated values calculated according to the mmﬂeﬁ.a

This estimate is much lower than the one we got from the ANG&fle.

1.11 Compare estimates of fixed effects (sl 30 vs. sl 60)

In both models we got that the effects of irrigation, variatyd their interaction were not significant.
That means that there is no difference between the levelsoskteffects, and we assume that their
estimates are equal to zero. We still calculated their egém

In the mixed model we got the following estimates for the fieéf@ctsy, 1, v, (1v)

H 385
l2 1.2
13 0.7
- lg 35
B=1 v, || os
(l\))zz -0.4
(l\))32 -0.2
(l\))42 1.2

13



and in the fixed effect model we got the estimates

m 36.35
12 5.70

13 6.65

la 8.80

Vo 0.60

A (IV)22 —-0.40
B o (IV)32 -0.20
(IV)42 1.20

» —4.70

@3 —7.60

o ~6.30

0 4.30

As can be seen the total mean estimatase close to each other, they are both positve and in the same
range. Although the estimatesipfare all positive in both cases, they are different, the edésiin the
mixed model being much lower. The estimates pére the same in both cases and the same can be said
about the(1v)y interaction estimates. In the fixed effects mogigl.. ., @s are also estimated, which is
not the case in the mixed model.

We see that the estimates of the effects that we have comttadee zero usually turn out to be close to
zero, and if we would calculate their confidence intervate zeould be an element in each of them.

On the other hand, the effect of field is significant, so thadiemates are different from zero.

1.12 Compare variance and SS estimates (sl 25, sl 35, sl 5%8)

We start by comparing the variances. On slide 25 we got esgaio? ando% from the ANOVA-table
and they were
6°=21075 G;=162

and on slide 35 we used the REML method to find MLE for the twonsig, and the estimates were
6°=0.702 §5=16.90.
As can be seen, the estimatesd@rare quite different but the estimates tq%are almost the same.
On slide 55 we got an estimate fof from the ANOVA-table and it was
6% =2.1075
which is the same as in the mixed model. The MLE8fin the fixed model was
6% =0.527
as can be seen on slide 60. This is much lower than the estohafeon slide 55.

We will now compare the SS-estimates for the models. In theechmodel, we don’t have a sum for
the fields, they are included in the residuals of the wholé piothe fixed effects model we do not need
those residuals, and therefore we can use that sum for tlis.fidlhe sums of squares for irrigation,
variety and their interaction are the same in both modelsadsalthe error term.

1.13 Compare results from assuming fixed vs. random effects.

In the mixed effect model we assumed that the effect of fiels andom and that the other effects were
fixed. Therefore we had two varianoe%ando% to think about. We could estimate all the levels of the

14



Level Estimate in mixed model Differende— f; Estimate in fixed model

f1 -2.018692 0 0
f2 -2.206477 0.18 1.00
fa -3.567920 1.55 -0.95
fa -2.957618 0.94 2.50
f5 2.018692 4.04 4.30
fs 2.206477 4.23 5.70
f7 3.567920 5.59 6.65
fg 2.957618 4.98 8.80

fields and also all the levels of the fixed effects. We estich#tte sigmas with two different methods,
and they gave the same estimatecférbut different estimates fas?.

In the fixed effects model we assumed that all effectes weeé fi®ue to lack of observations we could
not estimate all the levels of all effects, and we chose tedeaut effects of three fields. All other
leves were estimated. As before we estimatéih two different ways, and the estimates gave different
results.

In both models, only the effect of fields was significant. We taerefore assume that all the levels
of the other factors equal zero. We got the same ANOVA-esérfar o2 in both models but the ML
estimates were quite different.

1.14 Discussion

We have now gone through two approaches to analyse our pnadiid build a model for it. First we
built a model with both random and fixed effects and then wé hunodel with only fixed effects.

We proposed the equation
Yeiv = K+ 1i +Vy 4 (1V)iv + @f + Eriv-

In both approaches the effects of irrigation, variety arartinteraction were non-significant so we can
reduce the model and write it as
Yiiv = U+ @f + Etiv

whereqs is either a random or fixed effect. We estimated the levelgsadnd the results from each
model can be seen in the table. First come the estimates mittezl model which we obtained using
BLUP. The next column shows the differenfge- f; fori = 1,...,8 in the first column. The last column
shows the estimates from the fixed model using ML, and tHigre O and the otheff; represent the
difference betweerfy andf;. As can be seen in the table the difference between the dssrimthe two
models is not much.

In the fixed model we were able to estmate all levels of alleféut in the mixed model we had to leave
out three levels because we had so few observations. THiégpnawith the number of observations and
not being able to estimate all leves makes the fixed effectdein@orse than the mixed model. More
things could be derived from the mixed model, which makesataraccurate. It is also natural to think
of the fields as a random effect since the soil and weather atibencontroled. Some of the fields may
have gotten more rain and others could have gotten warmehergduring the experiment, for example.

We therefore propose the mixed model (which is acctuallyndoan model)
Yiv = H+ @f +Etiv
wheregr ~ n(0,03) andefiy ~ n(0,0?).
We estimated the variances using two methods, the estiftataghe ANOVA-tables are

6°=21075 §5=162
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and the ML estimates are
6°=0.702 §5=169.

The estimates 05% are almost the same, and it should not matter much which oneseeOn the other
hand, there is a big difference between éeestimates. It is not obvious which one to use.

2 Barley seed example

2.1 Anova tables, tests and estimates of variance component

The relevant sums of squares for the model described in 14 are

SSA:JKllzl(ﬁ ~V.)?
1 J
SSB=K Vi —¥i.)?
5 le(y, 7.) &)

|
SSE= l;g Z Yijk — ij.)?

The expected sums of squares are:
| _ —
E[SSA =JK <'Z\(0‘i —a)?+E[(Bi)—B.))?+E[@&. - 8._“)2]>

—JKZ a)?+K(-1og+(1-1)0°
E[SSB =K(E [(BJ [3 )]+E[(SIJ —&.)7))
=KIJ-1)a5+1(J—-1)0°
E[SSH = 1J(K —1)0?
so the ANOVA table for this problemis:

)

Source SS DF MSS E[MSS]

Treatment] SSA | —1 SSA s a(oi— ,)2+K0[23+02
Seedbag | SSB 1(J-1) 53§  Kof+0?

Residuals| SSE 1J(K-1) % o7

To test our hypothesis from 16 we note that under the null thgmis the ratio

_ MSA
- MSB
has an centred F-distribution. From table 4.5 we can cdkwlar estimate of F is.Q35 with a p-value

Df SumSq Mean Sq
treatment 2.00 1758.72 879.36
treatment:seedgrp  6.00 5099.26 849.88
Residuals 18.00 137.87 7.66

Table 6: ANOVA table

of 0.589, with 2 and 6 degrees of freedom. MSE serves as an esfiona@and S8 MSE for OB Here
02 = 7.660 andoB = 280.739.
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2.2 The data

reatment : 3

50

= freatment : 1 treatment : 2

40 -

20+

A barley seed test example. This originally came in as a r&guem an MSc student (Adalheidur
Einarsdottir, advisor Olafur Andrésson) in biology andulesd in a bit of discussion. The dataset
describes the results from an experiment on barley andsfmorese to different fertilizers. The design
of the experiment is a nested design where the seedgroupd) vhaees within the treatment levels.
There were treatment levels, one group was given watergitensl urea and the third water. For each
treatment level three seedgroups were planted with thygstitens. The experimental results can be
seen in figure 2 and table 7.

Figure 2: Boxplot of the response as a function of treatmedtseedgroups.

2.3 The model and hypothesis

The treatment is obviously not random while the seedgrotipinvireatments could be considered to be
a random effect. The model for the measurement is therefore

Yijk = K+ 0i + Bji) + Eijk

i=1...1

) 9y 3
i=1,...,3 ®)
k=1,... K

whereptis the overall meary; is the effect of the-th treatment an@; ;) ~ n(0, 0%) is the effect of the
seedgroupj within treatmeni. The formulation of1 as the overall mean gfintroduces the following
restraints:

Z a;=0 4)
|
The hypothesis of interest is :

Ho:0;=0Vi vs. Hy:distaj#0 (5)
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y treatment seedgrp st

1 46.10 1 1 11 1 1
2 4740 1 1 11 1 1
3 4360 1 1 11 1 1
4 1470 1 2 21 2 1
5 1290 1 2 21 2 1
6 1090 1 2 21 2 1
7 7130 1 3 31 3 1
8 6680 1 3 31 3 1
9 6460 1 3 31 3 1
10 3040 2 1 12 1 2
11 30.20 2 1 12 1 2
12 2430 2 1 12 1 2
13 46.10 2 2 22 2 2
14 4770 2 2 22 2 2
15 39.20 2 2 22 2 2
16 3520 2 3 32 3 2
17 3160 2 3 32 3 2
18 28.20 2 3 32 3 2
19 26.70 3 1 13 1 3
20 2720 3 1 13 1 3
21 2740 3 1 13 1 3
22 2320 3 2 23 2 3
23 2260 3 2 23 2 3
24 20.20 3 2 23 2 3
25 19.80 3 3 33 3 3
26 18.60 3 3 33 3 3
27 16.60 3 3 33 3 3

Table 7: The Barley-dataset

2.4 Matrix formulation

In matrix form the model described in equation 14 becomes
y=Xa+ZB+¢ (6)

wheree ~ n(0, 02I27), B ~ n(0, O'é|9) anda = (W, a1,02,03) fixed. If we disregard the restriction in
equation 15 we have that the matricies in 8 are

1 1 0 07

()

0O RRROOO

x

|

N

Il
OCO0OO0OO0 OO0OORPRE
RPRP,PRO OOOOOO

ocooo -

1 00 1

To include the restraints in 15 we will here follow the approan R and introducgl = p+ a3 and
delete the column representiog, i.e. the second column iX.
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2.5 Matrix formulation

In matrix form the model described in equation 14 becomes
y=Xa+ZB+e (8)

wheree ~ n(0, 02I27), B ~ n(0, 0'[23|9) anda = (W, a1,0z,03) fixed. If we disregard the restriction in
equation 15 we have that the matricies in 8 are

[1 1 0 0]
1100
1010
)

[

oo--
O RRROOO

X

I

N

I
O0OO0OO0O OO0OORRE
PFRPRPRO OOOOCOO

coo -

1 00 1

To include the restraints in 15 we will here follow the approan R and introducel = p+ oy and
delete the column representiog, i.e. the second column X.

2.6 Estimating equations fora and 3

From the matrix formulation above we can derive the BLUPnestes fora and3 from the following
formulae:

6 =(X"(R+z2GZHX) IXT(R+2GZ") 1ty

10
B=(@RIZ+ 6 TR ZTROX(XT (R ZGZ) X)X (R 267 Ty
whereR andG solve 2 /52
_2[G 0] _[og/c®y O
Vary)=0"| o g ] - 0 lk )

and the BLUP estimates are

alpha beta_ 1 beta 2 beta 3
1 4203 0.28 -2.21 1.93
2 -7.27 -0.49 0.72 -0.23
3 -19.56 0.35 -0.04 -0.31

2.7 Restricted maximum likelihood estimates of variances

To find the REML estimate for the variances we need to find amagpjate linear transformation to
elimate the fixed effects in 8. That find K such that

KX=0
To find a possible K we can usegR-decomposition foX, that is

X =QR
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were R is am x p matrix like X andQ is ann x n orthonormal matrix, that is the columasg, ..., qn
of Q form an orthonormal basis. Furthermoke= [gp;1,...,0n], the matrix containing the last— p
columns, has the property

KX=0

Using this as our selected K we use it to transform our measemés and we see that
¥ =Ky ~n(0,KZK")

whereZy = 0%(ZGZ +R). The problem now translates into finding the paif, o§) that maximises the
log-likelihood function ofn(0,KXyK’). Using the nonlinear optimiser in R (nlm) with starting vedu
close to the estimate which we found with the anova table tB®R estimate i9°;23.REML = 280739

and GZR;ML = 7.659 which is exactly the same estimate as estimated with M@®\A up to the third
digit.

2.8 Likelihood ratio test of hypothesis

We will here test the hypothesis presented in 16 with a litedid ratio test. The model in 14 will be
compared with
Yijk = K+ Bij) + Eijk
Here the test statistic is
D = —2log(Ltui1) —109(Lred)

whereD ~ xg andd is the difference in degrees of freedom between the modedshaVeD = 2.192
with p=0.334.

2.9 Estimate with all effects fixed

Assuming that the seedgroup effects are constant we canatsti andf3 with ordinary linear regres-
sion. The augmented - matrix will include columns from the origina{ from earlier andZ excluding
the second column frorK and first, fourth and seventh frofhto be comparable with R. Equation 8
reduces to

y=Xa+¢ (12)

where

(13)

alpha beta_2 beta 3
1 4570 -32.87 21.87
2 -17.40 16.03 3.37
3 -1860 -5.10 -8.77

Table 8: Estimate with all effects fixed
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2.10 The ss-formulas in the ANOVA tables

Same as from the mixed effects exceptfgy) is considered fixed angle Bji) = O foralli. Therefore
the test statistic for the hypothesis in equation 16 is

_ MSA
~ MSE

The results can be seen in table 9.

Df SumSq MeanSq Fvalue PB¥F)

treatment 2 1758.72 879.36 114.80 0.0000
treatment:seedgrp 6 5099.26 849.88 110.96 0.0000
Residuals 18 137.87 7.66

Table 9: ANOVA table for the model in efeq:model assumimgeéfiécts are fixed

2.11 SS computed by 'hand’

y sum_y ij. bar_ y ij. sum_y i. bar_y i. diff ij diffi
1:1 46.147.443.6 137.1 45.7 378.3 42.03 3.67 8.94
1.2 147129109 385 12.83 378.3 42.03 -29.2 8.94
1:3 71.366.864.6 202.7 67.57 378.3 42.03 25,53 8.94
2:1 304302243 849 28.3 312.9 34.77 -6.47 1.67
2:2 46.147.739.2 133 44.33 312.9 34.77 9.57 1.67
2:3 35.231.628.2 95 31.67 312.9 34.77 -3.1 1.67
3:1 26.727.227.4 813 27.1 202.3 22.48 4.62 -10.61
3:2 23.222.620.2 66 22 202.3 22.48 -0.48 -10.61
3:3 19.818.616.6 55 18.33 202.3 22.48 -4.14  -10.61

2.12 Maximum likelihood estimates

The maximum likelihood estimators for all effects of the mabdan be seen in table 8. The maximum
likelihood estimate foo is computed from the residuals from the fitted model

1,J,K
o 1

A2
OMLE = 19K | =1(yijk —Yiik)

whereyjj is the fitted value foy;jx. The estimate ismLE = 5.303.

2.13 Compare estimates of fixed effects

The estimates of the fixed effects can be seen in table 10. keesathat the estimates differ somewhat,
which can be attributed to how the seedgroup effect is haridleéhe different estimation processes.

2.14 Compare variance and SS estimates
We see that the estimates @f and 0[23 are identical when estimated with REML and ANOVA. The

maximum likelihood estimator fos? when assuming that the seed group effect is fixed is lower than
when using REML. That however is made at the expense 4 moreekegf freedom being used.
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1 2 3
1 mu 45.7 42.03
alpha_2 -17.4 -7.27
3 alpha_3 -18.6 -19.56

N

Table 10: Comparison of estimatesadphg

2.15 Compare results from assuming fixed vs random effects

When assuming that the seed group effect is random the &ffddhe treatment is dwarfed by the
seed group noise. When they are considered fixed the effetie seed group influences greatly all
comparisons.

2.16 Discussion

The results from this analysis is inconclusive as the effétite seedgroup, as noted earlier, is such that
the effects of the treatment cannot be measured with themrusetup with a mixed effects models. A
fixed effects model seems implausible as one would like tvdngerences on the treatment effects for
all barly seedgroups. Therefor the number of seedbag stauildcreased to effectively determine the
effects of the treatment.

2.17 The model and hypothesis

The treatment is obviously not random while the seedgrotipinvireatments could be considered to be
a random effect. The model for the measurement is therefore

Yijk = K+t + Bji) + Eijk

i=1,....1
T (14)
j=1...,d
k=1 K

geeey

wheretis the overall meary; is the effect of the-th treatment an@; ;) ~ n(0, 02) is the effect of the
seedgroupj within treatmeni. The formulation of1 as the overall mean gfintroduces the following
restraints:

Z a;=0 (15)
I
The hypothesis of interest is :

Ho:0i=0Vi vs. Hy:3dista;#0 (16)

3 Handball

3.1 The data

This data comes from a BSc project in physical therapy. Theepts name is: "Effects of training with

a weighted implement on throwing velocity of male team haiididayers" and it's authors are Hildur

Solveig Sigurdardottir and Tinna Jokulsdottir who workeuier the instructions of Dr. Arni Arnason.

An abstract of the project can be seen at: http://www2/Aigps/WebObjects/HI.woa/l/wa/dp?id=1024878wosid=akBR&dr
40 handball players were randomly assign to two groups. eftay the research group trained three
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times a week for 8 weeks with a heavy handball. Players in ¢m¢ral group did no extra training.
Injured players where excluded from the research. 15 péaypethe research group and 12 players in
the control group finished the research. Players throwingcitgy was measured before and after the
8 week training period. We are interested in seeing if theaetxtining has an effect on the players
throwing velocity.

3.2 The model and hypothesis

We have throwing velocityy as an response variable. We have 3 explanatory variabhestifie ),
the group factory)) and the players effecp]. We can there for suggest the model:

Yijk = KA+ Ti +Yj + (TV)ij + Pw(j) + Eijk

e LLis the overall mean
e T is the time effect and is fixed = 1,2 stands for before and after training.

e y;j is the group effect and is fixed.= 0,1 stands for no extra training and training with a heavy
handball.

¢ (Ty)i; stands for the interaction between the time and group effigistalso fixed.

* py(j) stands for the players effect which is nested within the gsand is assumed to be random,
independent and identically normally distributed with m&aand varianceg. In shortpyj) ~
N(0,03) iid.

e & is the mesurment error and is also assumed to be random awgkiiet N(0,0?).

We also assume thptj) ande;jjk are independent. We will refer to this model as the full model

We can't estimate all these parameters and there for havav®dome restrictions on them. The most
common restrictions are.

ZTi =0
V=0
J

> (W)ij = > (y)ij =0

! J
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Because much of our analysis will take place in the R stasispackage we will have different restric-
tions. Our restrictions will be:

T1=0
Yo=0
(tY)10= (Ty)20 = (Ty)12 =0

Instead of having these restrictions on the parameters wld bave stated the model as follows:
Yijk = Hij + Pk(j) T Eijk
whereyy;j represents the four first parameters in the model.

If we look at the change in performance for individual plesyee get a much simpler model.

Ayjk = Y2jk — Y1jk
=H+T2+Yj + (TY)2) + Px(j) + E2jk — (H+Ta+Yj + (TY)1j + Pk(j) + €1jk)
=To—T1+ (Ty)2j — (TY)1j + €2k — E1jk
ZAT+A(Ty)j +A8jk

an one-way anova with fixed effects. Note tiat ~ N(0,202). Our restrictions in this model are
A(ty)o = 0. Like the full model we can state this model in a simpler form

Ayjk = AYj + Agjk

We wiill refer to this model as th&-model.

The hypothesis we want to test are:

1. If the players are have any effect. That is can we drop thdam effect from the model. Our
null-hypothesis is therefor
Hq: O'g =0

2. Is the interaction significant?
Ho @ All (Ty)ij =0

We will show that testing this is the same as testing the geftgrt in theA-model. And it's
known that testing the group effect in a one-way anova witly tmo groups is the same as doing
a regluar t-test for means assuming equal variance.

In the hypothesis above we are really asking if we can simphié full model. We also like to test, if
we find the interaction significant, which groups means dferaint.

3. Were the groups just different before the training pe?iod
Hs @ 1o = Ha1

With our restrictions this simplifies to
Hs: Y1 = 0

4. Are the groups different after the training period?
Ha : poo = H21
simplifies to

Hy:yi+(ty)21=0
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5. Did throwing velocity change for players in the contrabgp?
Hs @ p1o = H2o
in theA-model this would bé\Lpy = 0. This simplifies to
Hs:10=0
6. Did throwing velocity change for players in the treatmgmup?
Hs : H21 = M1

We can also test this hypothesis with #senodel. Taking the restrictions into account this sim-
plifies to
He: T2+ (Ty)21=0

3.3 Matrix formulation

If we state the full model in matrix form:

y=XB+Zu+¢
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wherep contains the fixed effects amdhe random effects. We have the following vectors and mesrix

[yio1] [1
Y1,0,2 1
Y1,0,12
Y1,1,13
Y1114
Y1127 _
Y201
Y202
Y2012
Y2113
Y2,1,14

1Y2,1,27] 11

1
0
0
+
1
0
10

OCOR -

0101000
01010 0 (
1010
0101 m
0101 '[1
oo oo T2
001.- 10 Yo
110-01 (T‘%
110-01 \
_ ||y
: | (Ty)
10 1 0f [(ty)
01 0 1
0 1 0 1
101000 }
o
1
1
1
o
0 1
0
1
1
1
o
0 1
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[€101]
€102

€1012
€1113
€1114

€11.27
€201
€20,2

€20,12
€2113
€21,14

[€2,1,27]



Because of our restrictions the fixed effect part of the maedduced to:

1 0 0 O
1 0 0 O
0
1
1
: W
- 0 1 T2
=110 || w
10-(Ty)21
0 O
1 1
1 1
1 1 1 1

We don’t have any random effects for themodel. We can therefor state it as:

my = XaBa+€a
[Ayor ] [1 1 O [ Aggy ]
Ayo,z 110 Agp 2
: Do At :
A 1 0 Ag
Yo12 | _ Ay)o| + 0,12
Ay113 01 Aty) gy 3
Ay1 14 0 1 AEq 14
|Ay1127] (1 O 1 |Ag1127]

Because of the restrictions the reduced form ofXRematrix and the3,-vector are:

10l
10
: 0 At
XABA: 1 |:A(Ty)l:|
1
ENE1
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3.4 Anova tables, tests and estimates of variance component

Let N = 27 represent the total number of players in the study.nget 12 andn; = 15 represent the
number of players in the control and the training group. Weehhe following sums of squares.

SST=NY (3. —y.)?
SSG= zznjm_yu)z
J
SSTG= 3 nj(¥ij- +¥. —¥i. —¥;)?
!
SSRG) =23 ¥ (Fik—¥:)°
J
SSE=3 3 ¥ Wi + 55~ 55 - ¥i?
I
SSTOT=3 3 3 ik —¥-)?
I

We see from expected MS in table 11 that we cankizswith a F-test wher& = MSRG)/MSE. We

Table 11: Anova table: formulas

Source df SS MS EMY
Time -1 SST SST/dfr 02+ Ny, T
Group J-1 SSG SSGdfs 0% +205+ 23 njy?

Timex Group (I-1)(J—1) SSTG SSTQGdfrg 02+zizjnj(ry)ij
Players yj(nj—1) SSP(G) SSRG)/dfp 0%+ 202
Error  yi(nj—1) SSE SSEdfe o?

can also tesH; with a F-testF = MSTG/MSE. The result from this tests are in table 12. We reject
both of these hypothesis and therefor have to stick to therfodlel.

Table 12: Anova table: Estimates

Source df SS MS F p
Time 1 44.46 44.46
Group 1 9.07 9.07

Time x Group 1 32.38 3238 5.71 0.0247
Players 25 1825.93 73.04 12.89 .26-10°
Error 25 141.66 5.67
Total 53 2053.5 38.75

We also see that MSE is an unbiased estimatar’adnd that we can get an unbiased estimatcnrﬁaf
Our estimates are:
&2 = MSE=5.66633
MSRG)-MSE 7304-5.67
2 N 2

=33.68533

[e})

2 _
0=

3.5 REML estimates

We fitted the full model with the Ime4 package in R. The backgof REML can be view in other
lectures here on the web. The estimates we got from REML are:

02 = 5.666334
65 = 3368533
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Which are the same as our previous estimates.

3.6 Estimating equations and solutions

If we think about the full model in matrix form
y=XB+Zu+e
we see that

Varlu] =03 127=0°-G

Varlg] = 0% 154 = 0% R
Estimating equations fgs andu are

B={X(R+2GZ) X} 'X'(R+2GZ) Yy
0= (ZR'2+67Y) ' [ZRT-ZR X {X'(R+2GZ) X} "-X(R+262Z) |y

We have the following estimates frandu:

i 96.667
~ | %2 | |0083333
P= | |-07333

(Ty), 3.1167

[ 3.959]
—4.804
7572
3.036
11339
7572
~0.653
~ 1576
0.269
P1(0) —5.727
P2(0) —0.192
; 9.494
L ~7.410
P20 | _ | 2275
P130) 0.892
P14 4182
: ~3.259

[Po7ny)] | 3299
1.353

~1.876
5566
~3.721
10.116
0.892
5.504
~0.492
| 8.733 |

]
Il
>

|
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3.7 ML estimates

We can also estimate the variances using maximum likelihdbd MLE’s are

E
MLE(0?) = % = 5.246605

SSRG) _ SSE
MLE(a3) = % =31.19013

We get the same estimates fandu because we see that tlematrix should be the only thing that

2
changes. Th&-matrix isG = % -1. But the REML estimates were the same as the estimates frem th
Anova table. So we see that

MLE(c}) 2-(SSRG)-SSH N

MLE (02) N SSE
_ 2-(SSRG)-SSB N-2
- N—2 SSE

~2

_%

-2

When the REML estimate of variance and the estmate from tlevédtable are not same this will not
hold. But it does in our incident.

3.8 LRT of hypothesis

We can test hypothesi$; andH; by likelihood ratio test. We do this by comparing our full nebd
fm:yijk = H+Ti+Yj + (TY)ij + Pxj) + Eijk

To reduced models. Fét; we compare to

rml:yik = U+ Ti+Yj + (TY)ij +Eijk
and forH; to

rm2 :Yijk = KU+ Ti+Yj + Pk(j) + Eijk
The likelihood ratio test statistic is

D = -2(log(Lim) —log(Ltm))-

This statistic follows approximatelyg-distribution with one degree of freedom. Reéy we getD =
44.48906 and a p-valug = 2.557828 1011, ForH, we getD = 7.70081 andb = 0.005519605.

We therefor reject both hypothesis like we did with the poeg F-test. We can't really simplify the
model.

3.9 Estimates with all effects fixed

If we estimate assuming all effects are fixed. We have to hasteictions on th@’s. We will use

P10) =0
P131) =0

Our model in matrix form we be
y=XB+Ee.

30



Where we have

1 0 0 0 O 0]
1 00 0 1
0 1
1 0 BT
1 1 T2
. . . Y1
. . . 0 (TV)21
0 1 0 0 1 P2(0)
XB = 10 0 - 0 :
10 1 P12(0)
0 P141)
L P27(1) |
00 1 W
1 1 0
11 1
: 0
111 1 0 0 1]
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The result we get are

[10095833]
0.08333
—13.05833
3.11667
—9.50000
—12.50000
—1.00000
8.00000
—12.50000
—5.00000
—6.00000
—4.00000
—10.50000
A —4.50000
B=(X'X)"IX'y=| 6.00000
10.50000
9.00000
3.50000
4.50000
4.50000
9.50000
6.00000
2.00000
4.00000
19.00000
9.00000
14.00000
7.50000
17.50000 |

We though have to keep in mind the the interpretation of thrarpaters is quit different than in the
random effect model.

3.10 Compare estimates of fixed effects REML vs ML

The estimates of the fixed effects are the same for both REMILMin estimates as we showed in the
part about the ML estimate of variance.

3.11 Compare variance and SS estimates
The estimates we got for the variances can be seen in thevfolidable.

Table 13: Variance estimates

Variance SS-estimate REML ML
o’ 5.66633 5.666334 5.246605
o2 33.68533 33.68533 31.19013

p

We see that the SS-estimate and the REML estimate are aldevdidal. The ML estimate is however
lower. It's also well known the ML estimates for variances hiased.
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3.12 Compare results from assuming fixed vs random effects

We can't directly compare the estimates from the model witleféect fixed vs. the orginial random
effect model. But by examin the interpretation of the parmrsewe can compare between the models.
The comparison can been seen in table 14.

Table 14: Comparison of fixed vs random effect model

Parameter FM Parameters RM Estimate FM Estimate RM DifféiM-RM

m TEE 100.9583 100.6256 0.3328

T2 T2 0.0833 0.0833 0.0000

Vi Y1+ P131) — P1(0) -13.0583 -12.1027 -0.9557
(Ty)21 (Ty)21 3.1167 3.1167 0.0000
p2(0> p2<o) - p1(0> -9.5000 -8.7634 -0.7366
P3(0) P3(0) — P1(0) -12.5000 -11.5308 -0.9692
p4(o> p4<o) - p1(0> -1.0000 -0.9225 -0.0775
Pe(0) Ps(0) — P1(0) 125000  -11.5308 -0.9692
p7(o> p7<o) - p1(0> -5.0000 -4.6123 -0.3877
pS(O) pB(O) - p1(0> -6.0000 -5.5348 -0.4652
Po(0) Po(0) — P1(0) -4.0000 -3.6898 -0.3102
P10(0) P10(0) — P1(0) -10.5000 -9.6858 -0.8142
pll(O) pll(O) — pl(O) -4.5000 -4.1511 -0.3489
P12(0) P120) — P1(0) 6.0000 5.5348 0.4652
P141) P141) — P131) 10.5000 9.6858 0.8142
P15(1) P1s(1) — P13(1) 9.0000 8.3021 0.6979
P16(1) P1e(1) — P13(1) 3.5000 3.2286 0.2714
pl7(l) p17(1) — p13(1) 4.5000 4.1511 0.3489
pl8(l) p18(1) — p13(1) 4.5000 4.1511 0.3489
P19(1) P19(1) — P13(1) 9.5000 8.7634 0.7366
P20(1) P20(1) — P13(1) 6.0000 5.5348 0.4652
P21(1) P21(1) — P13(1) 2.0000 1.8449 0.1551
p22(1> p22(1) - p13(1) 4.0000 3.6898 0.3102
p23(1> p23(1) - p13(1) 19.0000 17.5267 1.4733
p24(l) p24(1) - p13(1) 9.0000 8.3021 0.6979
p25(l) p25(1) - p13(1) 14.0000 12.9144 1.0856
pZG(l) p26(1) - p13(1) 7.5000 6.9185 0.5815
pZ?(l) p27(1) - p13(1) 17.5000 16.1431 1.3569

We see that the estimates are simmilar but we notice thatlibelute value of the’s estimates are
smaller for the random effect model.

3.13 T-test and comparision
To test hypothesis 3-6 we can use a t-test for the paramatére model. It's can by shown that
~ 5 , 1 -1
var|B] = o(X (R+262Z) ')
and we can calculate this matrix using the previous estisrfatethe variances. We can also just do this
t-tests on the raw data. We can telgstandH, with a regluar t-test comparing the group befdrg)(and
after (Hy) the training period. We did this tests assuming equal waga We can tedtls andHg with

a paired t-test or with regluar t-test using the change iavtitrg velocity for each group. The results
from this t-tests are in table 15.
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Table 15: T-tests from full model and raw data

Hypothesis  Hypothesis with restriction  T-value from th# fnodel T-value from raw data

Hs : thio = pus yi=0 0.3018522 0.2936248
Ha @ Yoo = Ho1 vi+(ty)22=0 0.9810197 1.010041
Hs: H10 = H20 T,=0 0.0857518 0.08304548
He cH21= M1 T2+ (Ty)21 =0 3.68154 3.781253

We see that the t-values are similar for the tests from tHerfatlel and from the raw data. This implies
that our assumtion of equal variance is appropriate. Wesestdhat is the only null-hypothesis we
can reject @ = 0.05). That is there is a significant change in throwing velofir the players in the
training group.

3.14 Equaliance of F-tests in the full model and thé-model

Now we will show that we could have testéf} (the test for the interaction) with a simple t-test com-
paring players change in throwing velocity by group. We dis thy showing that the F-test for the
interaction in the full model is the same as the F-test foigitweip effect in thé\-model. Then we take
for granted that the F-test in a simple anova with two grogphé same as doing a simple t-test. To
show that the F-test are the same we have to show that

MSG, _ MSTGn
MSEx  MSEq,

To show this it's enough to show that

SSR =2-SSEn,
SSG@ =2-SSTGnm

Some formulas we need for this are

Vik = Y2ijk +Yijk
— _ Y2j +VYij
— Yo +V1.

[

Ayj. = Ayj. = Yoj. = Y1j.
Ay, =Ay. =Y. — Y.
We'll begin by showing this for the SSEs
— - —\2
SSEmZZZZ(Yijk"‘yj‘_Yij-—YJK)
T

=y Z (Yaik + Vi = Vai. — Vi) >+ (Yajk+ V- — Vaj. = Vik)
]

_ 2 =~ = 2
Y2j- V1. o Y2jk +Y1jk Y2j- 1) o Y2jk+Y1jk
(yzjk—Ir—J 5 = Y2j. — R ) +(Yljk+ b =y — = )

_ _ 2 _ — \\2
52 (Yij_Yljk_ (¥2j. —Y1j~)) + 2—12 (yljk —Yoik — (Y1j- —YZj~))
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The proof is similar for the second part
SSTGm=3 3 N (ij +¥. — ¥ —¥.)°

T

=Z”j(3721~+)7~—)7z..—)71~)2+nj()711~+)7~—)71~—)71~)2
]

o e gmoaw N2 o e gmoawN2

= an (YZJ: + _yz.;yl.. —Yo. — y—z‘;y“') +n; (Y1j< + _yz.;yl.. —Y1.— y—zlzy”)
]

=5 5 (V2i —V1j. — V2 —1.))2 + 3 (Vaj. — V2j.— (V1. — ¥2.))?

J
35 nj (A —4y.)?
J

SSG

I
NN

3.15 Discussion

We have shown what hypothesis we can reject and which not.oWedfthat we could reje¢i, so the
individual players effect is significant. We also found thegt could reject so that either the groups
were either different or the training had an effect on themowing velocity. By testing hypothesis
Hs — Hg we saw that the change in throwing velocity for the trainimgup was the only significant
thing. So we see that the training has an effect. The plajiessiing velocity increases.

Another interesting thing is that we could have tested allhyyothesis except the first one with t-tests
on the raw data. And gotten the same or simmilar results.

4 Machines

4.1 Discussion

In terms of significant effects, we cannot decide which maglbktter. It appears that all the effects in
the proposed model (be it mixed or fixed) have effect on theycbvity score.

However since we are really interested in checking whetteretis a difference in terms of productivity
score of the machines, but not between individual worketkigisample, it is more natural to got with
the mixed effect model.

The conclusion is, there is a significant difference of olar@ductivity score between the machines.

4.2 The data

Data on an experiment to compare three brands of machindsruae industrial process are presented.
Six workers were chosen randomly among the employees oftarfato operate each machine three
times. The response is an overall productivity score takimg account the number and quality of

components produced. These data are shown in Figure 1.

4.3 The model and hypothesis

The proposed model is

ik = U+ 0 +bj + (ab)ij + &k, i=1,...,3, j=1,....6,, k=1...,3 a0
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Figure 3: Overall productivity score for machines A, B ando€édach worker.
where

e [Lis a constant which describes the overall effect
¢ theaq; are constants to which we impose the restrictipos = 0

bi are independerft((0,0Z) random variables

ap);; are palrwise inaepenae , -0 ranaom varianles.
b)ij irwise independenf (0, '71o2,) rand iabl

&ijk are independem(0, 02) random variables

e bj, (ab)ij, andg;j are pairwise independent for allj, k.

This model has a fixed main effect for each type of machine arehdom main effects for every
worker, namelyo; andbj respectively. It also incorporates an interaction ternwieen the two main
effects which must be a random effect, namelp);; .

We want to check the hypothesis whether there is any difterenproductivity between machines. That
is, we have the null hypothesis

Hoa:0i=0Vi v.s. Hia:3dista;#0 (18)
The hypothesis whether the workers have effect on prodtyctivay be stated as follows
Hos:0f =0 v.s. Hig:0f>0. (19)
To test whether or not machine and workers interact we tedoifowing

HO(AB) . O'csz =0 wvs. Hl(AB) . O'csz > 0. (20)

4.4 Matrix formulation

Now we want to find matriceX andZ which will satisfy

y=Xa+Zu+e.
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We construct the following

yii1 110 0 10 01000000 0
Vii2 110 0 10 01000000 0
V113 1100 10 01000000 0
Y121 11 00 0 1 001 0O0O0OODO 0
Y163 110 0 0 100000107 0
Y11 1010 10 00000O0O0O0 1 0
Y363 1001 0 0 10000000 1
and
b1
b
: €111
1l bs €112
o1 (ab)i1 €113
a_az’u: : v E= | e
as (ab)1 :
(ab)z1 €363
(ab)ss

To include the restraints in mentioned above we will introelui = p+ a1 and delete the second column
in X.

4.5 Anova tables, tests and estimates of variance component

Let N = 54 denote the total number of observatibs, 3 denote the number of machinds; 6 number
of workers andK = 3 the totals numbers of trials of each worker on each machihe. total sum of
squares may be partitioned into

|
SSA=JK Zl(ﬁ —y.)? :machine, fixed effect
i=

J
SSB= IK Z (yj. —)7,,,)2 : workers, random effect
=1
. (21)
SSAB=K 21 > ¥ij. =Y. =i +V.)? :interaction, random effect
i=1]=1
K

1 J
SSE= (Viik —¥ij.)?> : residuals
i;JZlkZl e

We also calculate the expected values of the mean sums ofesgaiad the results can be seen in the
following table

37



Source SS DF MSS E[MSS]
2
Machine SSA  1-1 $SA 24 IKZ%E +KaE,
Workers SSB J-1 SSB o? + 1Ko}
Machine:Worker| SSAB (I —1)(J—1) ISS?(lA) 0% +Ko3,
Residuals SSE  1J(K-1) T
SST
Total SST 1K1 =5
To test hypothesis (18) we calculate
_MSA
MSAB

and make use of the fact that this ratio fallows-aistribution. Similarly we check hypotheses (19) and

(20) by calculating the ratios
MSB MSAB

wse 24 Vise
respectively and compare them to corresponding quantides theF - distribution.

From the ANOVA-table we obviously get the estimators

MSB - MSE MSAB — MSE

2=MSE, &;= —c— and 62, = < (22)
With a little help from R we get the following
Df SS MSS Ratio F-test F-Value
Machines 2.00 1755.263 877.631 20.576 4.103
Workers  5.00 1241.895 248.379 2.477
Machine:Worker 10 426.530 42.653 2.106
Residuals 36.00 33.287 0.925
Total 53.00 3456.975 7.66
Table 16: ANOVA table
and the estimates of the variances become
62=0.925 62=27495 and 62, =13909 (23)

4.6 Estimating equations and solutions
When estimatingt andu, we use the following equations
6 = (XT(R+2GZ")X)"XT(zGZ" +R) "ty

0=(Z"R12+GH Y ZTR - ZTR IX(XT(R+2GZ")IX)"IXT(R+2GZ") L)y
where the matrice& andR fulfill the following equation

% 0
u B G O 2 o? |_1)02 0
Var{ ¢ ] = { 0 R o= 0 ( >0ub|18

162
0 Is4
%) 0
ThatisG= | o '© (1-1)02 andR = I1g. We use our variance estimates in (23) and get the
0 -zl
162

following estimates foo

and the estimates far
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1 52.36
2 797
3 13.92

bj  (ab)ij (ab)j (ab)s
0.24 001 054 0.16
-0.31 012 -0.10 -0.95
122 137 149  0.76
001 -026 056 -0.34
058 -0.36 0.96  1.12
-1.71 -0.88 -3.45 -0.75

U WN RP—

4.7 REML estimates

In order to find REML estimates for the variana&so? ando?, let K be a matrix such that
KX =0.

To that end, we use @R-decomposition foiX, namely writeX such that
X = QR

whereR is an upper triangular x p matrix andQ is an orthonormah x n matrix, meaning the columns
[91,-.-,0n] in Q form an orthonormal basis IR". Then it is known that

[qp+1, e ,Qn]TX = 0
Consequently we choo$e= [0p1,...,0n]" .
It is now easy to see that
§:= Ky~ A (0,KZ,KT)

whereZ, = 0%(ZGZ +R). The REML estimates can now be found by findifaf,0Z,02,) which
maximizes the log-likelihood function of((0, KZyK').

We use R to approximate this maxima. In order to use the optigfunctions in R we must specify a
starting point. A sensible choice is using our estimate28).(We get the REML estimates

62=0.924 62=22858 and 62, =13.90933

4.8 LRT of hypothesis

We can test hypothesis (18), (19) and (20) with a likelihcattbrtest, which done by comparing the full
model with the following models respectively

reduced : yijk = H+ bj + (ab)ij + &k
reduced : Yijk = U+ ai + (ab)ij + &ij
reduceds: yijk = U+ Qi+ bj + &ijk
The likelihood ratio test statistic is given by
D = —2(log(Lreduced — 10g(Lull)) -

This statistic follows approximately@-distribution with one degree of freedom. The followinglab
shows theD-values for each model respectively and correspongimglues.

Thus we reject all the null hypothesis, just like we did eaniith theF-test.
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Hoa Hos Ho(as)
D 19.475 6.681 68.288
p-value 59-10°°> 0.009 14.1016

4.9 Estimates with all effects fixed
We assume all the effects, excegt, in the model
Yijk = U+ ai +bj + (ab)ij + &jk (24)

are fixed. The corresponding matrix formulation becomes

y=Xa+¢
where
11 0010 01 00O0OO0OTPO 0\
11 0010 01 00O0OO0OTPO 0
11 0010 01 00O0OO0OTPO 0
11 0010 0O 01 00 O OO 0
)2:
110000 100O0O0OO0ODT11O0°T"0
1 01 010 O 000 O OTU OOO1 0
1 001 00 1 000 0 0 O0O ],)
and

u*

az

as

b1

b €111

: €112

| €113

5 bg _
a= , €=\ ¢

((Xb)ll 1.21

: €

(ab)is 363

((Xb)zl

(ab)ss

Because of linear dependence between columiXsiire cannot estimate all the effectsfnUsing the
same restrictions as R we will exclude the effects of the firathine and the first worker, namely by
removing columns 4,10 to 15, 16 and 22 from the maXrix\Ve get the following estimates

4.10 The SS-formulas in the ANOVA tables

Using the same method to partition the sum of squares aseébefoget a similar table; the only differ-
ence is the expected mean square since we are using fixetseffec
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o 52.63
2 10.27
oz 14.57
by -0.07
b3 6.90
bs -1.40
bg -1.27
bse -5.83
(Op)22  -3.27
(Gb)zg -1.77
(Gb)24 1.23
(Gb)25 3.43
(ap)2s  -13.43
(ap)z2  -5.30
(Gb)33 -3.30
(Gb)34 -1.03
(Gb)35 5.80
(dp)ss  -0.07
Source SS DF MSS E[MSS]
Machine SSA  1-1 SSA g2 gKI%
2
Workers ssB J-1 ssB @24k
2
Machine:Worker| SSAB (I —1)(J—1) ?(S%?) o+ K%
Residuals SSE  1J(K-1) Ty O
Total SST 1JK-1 e

We can check whether the machine, worker and the interaeffents are significant by calculating the
ratios

MSB  MSB _ . MSAB

MSE’ MSE MSE
respectively and comparing them to corresponding quarftiten theF-distribution. Using the results
from table 4.10 we get the values in table 4.10. There we lgisae that all the effects are significant.

Effects Ratio F-test F-Value
Machines 948.79 > Fp36=3.26
Workers 268.52 > F536=2.478

Machine:Worker 46.11 > Fyp36=2.106
Residuals

Table 17: ANOVA table

4.11 SS computed by 'hand’

Calculating the sums of squares in the ANOVA table (4.5) bgn'di yields the following results by
using the formulation in (21).
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Y. (h-y.)?

N | —

52.36 53.22

60.32 0.45

3 66.27 43.85

Total 178.950 97.515

SSA 1755.27

j Vi (Vj-Y.)?

1 60.91 1.59

2 57.99 2.76

3 66.12 41.89

4 59.58 0.01

5 62.72 9.44

6 50.58 82.31

Total 357.90 137.9883

SSB 1241.895
i yi Ya. Va. Vi. —Yi— Yi-Y.)?

i=1 i=2 i=3
1 5263 6290 67.20 0967 1.734 0.111
2 5257 5957 6183 3505 0.820 7.71
3 59,53 68.03 70.80 0.498 1535 3.781
4 5123 62.73 64.77 1.102 6.1669 2.054
5 51.37 65.07 71.73 16.493 2.796 5.707
6 46.80 43.63 61.30 12.367 58.014 16.810
Total 34932 71.065 36.179
SSAB 426.53

4,12 Maximum likelihood estimates

The ML estimates foa are the same as before. We may find the MLEd®mwith

1 1 J K
62 = —_ AR o 2
o= IJK—1i;glk;(yuk Yiik)

whereyijjx are the fitted values from the fixed effect model 24. With gelittelp from R we ge6? =
0.6164

4.13 Compare variance and SS estimates

In the mixed effect model we got the following estimates fa fixed effects

Ty 52.36
a=| ar | =| 797
s 13.92

and in the fixed effect models we got the following estimatagtie fixed effects
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Te 5263

(o} 10.27
a3 1457
by —0.07
b3 6.90
bs -1.40
bg —-1.27
bg —5.83
a _ (Gb)22 _ -3.27
(Otp )23 -177
(Op)24 1.23
(0p)2s 343
(Gb)26 —-1343
(Gb)gz —-5.30
(ap)s3 -3.30
(0p)3a -1.03
(0p)3s 5.80
(Gb)gs —-0.07

We note that estimates foi* are the same in the mixed and fixed effect models. And the asggrfor
oz andag are differ only slightly in the mixed and fixed effects models

4.14 Compare variance and SS estimates

In the mixed effect model, the estimates of the variancessinyguthe ANOVA table were

62=0.925 62=27495 and 62, = 13.909
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The REML estimates however were
62=0.924 672=22858 and 62, =13.90933

We see that the estimates fof ando?, are nearly identical and the estimatesdgdiffer slightly.

In the fixed effect model, the ANOVA estimate fof is found with the same method as in the mixed
effect model, yielding the estimate
62 =0.925

The ML estimate foo? is however
6% =0.6164

We see that the ML estimate is slightly lower that the ANOVAiresate.

Compare results from assuming fixed vs random effectin the mixed effect model we saw that the
fixed effect terms were significant, and we rejected the rydbttheses thatg =0 andcréb =0. Meaning
that all the proposed effects in model 17 should be includeskshey appear to have a significant effect
on the overall productivity score.

In the fixed effect model we saw that all the effects were $iggmt and thus should not be excluded
from model 24.

We also note that the ANOVA estimate of for both models are the same but there is slight difference
between the REML estimate for the mixed effect model and theebtimate for the fixed effect model.

5 Rall
5.1 The Data

Boxplot of the data

|

travel
60

40

Rail

Figure 4: Boxplot of the data

The data (Rail) are from an experiment in nondestructiviintig$or longitudinal stress in railway. Six
rails where chosen at random and tested three times each &yunrgg the time it took for a cer-
tain type of ultrasonic wave to travel the length of the rallhe following table contains the data
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Rail | Travel
1 A 55
2 | A 53
3 | A 54
4 | B 26
5 | B 37
6 | B 32
7 | C 78
8 | C 91
9 | C 85
10| D 92
11| D 100
12| D 96
13| E 49
14| E 51
15| E 50
16 | F 80
17 | F 85
18| F 83

We can see in the boxplot that there is more variability beetwgroups than within groups.

5.2 The Model and Hypothesis

The model that is proposed is

Vi = U+ Bi+ &
whereB;i ~ n(0,0%), &j ~ n(0,02) andp ande are independent. Hegeis the mean travel time across
the population of rails being sampled afdis the random variable that represents the deviation from
the population mean of the mean travel time for the ith rgjl.is a random variable representing the
deviation in travel time for observation j on rail i from theean travel time for rail i.
The null hypothesis is

HoZO',ZAZO

5.3 Matrix formulation

We can set up the model with the matrix formulatdr= X+ Zp + €. Here doe contain the fixed
effects andZ the random effects.
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V11 1 1 0 0 0 0O €11
Y12 1 1 0 0 00O €12
Y13 1 1 0 0 00O €13
Y14 1 01 0 00O €14
Y15 1 010000 €15
Y16 1 010000 €16
Y21 1 0 01 00O [31 €21
Y22 1 0 01 00O [32 €22
Y23 1 001 00O [33 €23
voa =120 001 0 0||ps|T| em
Y25 1 0 00100 [35 €25
Y26 1 0 00100 [36 €26
Y31 1 000010 €31
Y32 1 000010 €32
V33 1 0O 00O 1O €33
V34 1 0O 00 00 1 €34
Y35 1 000O0TO 01 €35
L Y36 | | 1] |0 0 0 0 0 1] | €36 |

5.4 Anova tables, tests and estimates of variance component

The anova table is almost the same as it were for the fixedteffedel, that is

Source df | SS MS E{MS} F

Between groupg I-1 | SSA=Y ni(yi. —y-)? MSA=SSA/(I-1) | 02+ noi | MSAIMSE
Whithin group | n-l1 | SSES S(yij —V.)> | MSE=SSE/(n-l) | 02
Total n-1| SSTOT= 3 (Vij —V..)

When we calculate these sums we get

df | SS MSE F* F

A 5 | 9319.5| 1862.1| 115.18]| 3.11
Error | 12 | 194 16.2
Total | 17 | 9504.5

Here we can see th&t* > F so we can reject the hypothesis tbﬁt: 0.
From the anova table we can calculate the variances of congispuhat is6° = MSE = 16.2 and
62 = MSA-MSE _ g153

nj .

5.5 Estimating equations (for mu and beta) and solutions.

When we estimatg andf3, we can use the equations
= (X"(R+2GZ")X)"IXT(zGZ +R) 1y

B=(Z'R1Z+G H HZTR - ZTR X(XT(R+2GZ") X)X (R+2GZ") Yy

wf2]-[3

where we have that
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That isG = 04/0%l¢ andR= | 15. Then we have everything to calculqu:aﬁdﬁ (we useo? ando? from
slide 25). We then obtain

(1=665
and
—12.39125
—34.53029
18.00862
29.24335
—16.35645
16.02602

gob
I

5.6 REML estimates (of variances).

We can use the REML method to estimate the variances. At fesieed to find a matrix K such that
KX=0

We can find that matrix with the QR-decomposition. We get

X = QR: [Q1,QZ,~~~7Qpa~~~7Qn]R
Hereqs, g, form an orthonormal basis, Q is annmatrix and R is amxpmatrix. Then we have that
[qp+1, e ,Qn]/x = O

so we can choosK = [gp+1,...,0n]". Now we know thatky = § ~ n(0,KZyK’) so the likelihood
function ofy’is

e 1/27KEKY
L(6) = (2T[)n/Z|KZyK’|l/2

Then we find® = (63,62) which solves maxin(L(8)).

By programing this in R we can obtain the following estimales (6%,6%) = (6157253014.92307).
These estimates are similar to those that the built in fondiner gives us but not exactly the same
(although it uses the REML method). Those estimate$6t8311 16.167).

5.7 LRT of hypothesis

We can use likelihood ratio test to compare the fit of two meaéiere one is nested in the other. We
can compare our random effect model

Yij = W+ Bi + &j
to the model
Yij = U+ &

Lets call the likelihood function for the more complex motgbnd the likelihood function for the other
onelg. We need to calculate the likelihood ratio test statistia is

D = —2(log(Lo) — log(L1))

The distribution of this test statistic is approximately squared with degrees of freedom equal to
the difference in the dimension of the two parameters spadéth calculation in R we get thdd =
28.30046 and we get the p-valueDB8714— 07. The p value is well below 5% so we can reject the
null hypothesigo : 04 = 0.
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5.8 Estimates with all effects fixed

If we assume that all the effects are fixed we get the model
Yij = K+ Bi + &

wherep; are constantg3y = 0) ande ~ n(0,0?). The matrix form of the model ig= X+ € (now there
isno Z). Thatis

Y11 1 0 0 0 0O €11
Y12 1 0 0 0O 0O €12
Y13 1 0 0 0O 0O €13
Y14 1 1 0 0 0 O €14
Y15 110000 €15
Y16 110000 €16
Y21 101000 1 €1
Y22 101000 B2 €22
Y3 | |1 01000 B3 €23
oo | "1 00 10 0| B |T] e
Y25 100100 Bs €25
Y26 100100 Be €26
Y31 1 0 0 010 €31
Y32 1 0 0 010 €32
ya3 100010 €33
Y34 1 0 0 0 0 1 €34
Y35 1 0 0 0 0 1 €35
L Y36 | L 1 0 0 0O 1_ L €36 ]

Now it is easy to estimatp. We use simple linear regression methods (OLS and MLE gieeséime
estimate), that is

54.00000
—22.33333
30.66667
42.00000
—4.00000
28.66667

B=(X"X)XTy=

5.9 The SS - formulas in the ANOVA table

The anova table is almost the same as the one for the randeaot efddel. The only difference is in the
E{MS}.

Source df | SS MS E{MS} F

Between groups I-1 | SSA=S ni(yi —y.)2 | MSA=SSA/(I-1) | 02+ ZE-BS | MsA/MSE
Whithin group | n-1 | SSEZ S(yij —¥%i.)2 | MSE=SSE/(n-l) | ¢?
Total n-1| SSTOT= 5 (vij —V.)

5.10 SS computed "by hand"

Now we can compute
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Factor| i | yin. Y2, ¥is | 3j¥ij | Vi zj 1 — %)% [ nGi- —y-)
A 1| 55,5354 | 162 | 54 468.75
B 2(26,37,32 | 95 | 31.67 60.67 3640.083
C 3|78,91,85 | 254 | 84.67| 84.67 990.083
D 4| 92,100,96| 288 | 96 | 32 2610.75
E 5|49,51,50 | 150 |50 |2 816.75
F 6| 80,85,83 | 248 | 82.67| 12.67 784.083
b3 1197 194 9310.5

where we have that. = 13 = 66.5. We also know that = 18,1 = 6 andn; = 3. Now we can fill in

the anova table

df | SS MSE F* F

A 5 | 9319.5| 1862.1| 115.18| 3.11
Error | 12 | 194 16.2
Total | 17 | 9504.5

Here we can see th&t" > F so we can reject the hypothesis tBat 0 From the anova table we get the
following estimated? = MSE= 16.2.

5.11 ML estimates

We have the likelihood function

1 1
L(B,0%) = 222 P | 202

Z Z Yij — (U+Bi))

T

Maximizing the likelihood function is equvalent to mininmg the sumy; ¥ ;(yij — (L+ Bi))? in the
exponent. The ith component of this sumQs= ¥ ;(yij — (M+ Bi))>. When we differentiate with

respect t@3;, we obtain d
B- 3 200~ b+B)

If we set the derivative equal to zero and isolgteve obtain the MLE estimator. That ﬁs: Vi — |
Becausd3; = 0 we obtainu = y;.. Then we get the estimate

54.00000
2233333

.| 3066667

Bi=1 4200000
—4.00000
2866667

Which is the same as we gotin slide 45.
The logarithm of the likelihood function is

10gL(B,0?) = 2 10g(210) ~ 55 3 ¥ (v — By’
T T

When we differentiate with respect ¢d we obtain



If we set the derivative equal to zero and isolafeve obtain the MLE estimator. That is

6% =

Sl

3> 0 —Bi)?
(]
Then we get the estimate

62 =194/18=1078
which is smaller than we got from the anova table. (The MLneate foro? is biased).

5.12 Compare estimates of fixed effects [sI30 vs sl60]

In the random effect model we got the following estimate Far tixed effect
B =665
and the estimate for the random effect was

—12.39125
—34.53029
18.00862
29.24335
—16.35645
16.02602

()
Il

In the fixed effect model we got the following estimates

54.00000
2233333
.| 3066667
B=1 4200000
—4.00000
2866667

We need to remember how the random effect model and the fixezllwadt up to understand how these
estimates are related. The models were shown in matrix forslides 20 and 45. It can be seen that

in the fixed effect model is related to— 31 in the random effect model, that is 54 should be not so far
from 665— 12.39=54.11, which is true.

5.13 Compare variance and SS estimates [sl25, sl 35, sI5B3!

The SS estimates are the same for both models, but thereffer@dce in the estimates for the variance.

Variance estimates for the random effect model were theviatig:
In slide 25 we got an estimate f6f andG3 from the anova table. That is

- . MSA—- MSE

62 = MSE=16.2 andd3 = ———— =6153

|
The MSE estimate foo? is the same one as in the fixed effect model. In slide 35 we use&REML
method to get an estimate f6f and&i. They were close to those we got in slide 25 but not exactly the
same. The estimate fa® was closer to the one we got fof on slide 25 than the estimate f6§. We
obtained
64 = 61572530 andb? = 14.92307
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Variance estimates for the fixed effect model were the fdow
When we used the anova table in slide 55 we got an estimatef@in the fixed effect model there is
no %)

62 =MSE=16.2

When we used the ML method in slide 60 we got another estintiadt éstimate is biased), which was
lower than the one from the anova table

62 =194/18=10.78

5.14 Compare results from assuming fixed vs random effects

In the fixed effect model all effects were assumed to be fixelll th& parameters in the model were
significant, and we estimated them with MLE. We also estishatewith two methods, both with an
anova table and maximum likelihood method. Those estimages quite different.

In the random effect model we assumed at n(0,0%), S0 we had to estimatei ando?. They where
estimated with to methods, REML and ANOVA. The estimatesofowere the same in both methods
and estimates fow? were similar in both cases, but not the same. The ANOVA eséirfax 02 was the
same as the one far® estimated with ANOVA in the fixed effect model. We rejected thypothesis
thatoZ = 0, so the parameters in the model were signifacant. Becaesejacted the hypothesis that
04 = 0 we assume that the random effect model is a better modettiedixed effect model.

5.15 Discussion

The random effect model that we started with was the model
Yij = W+ Bi + &j

We rejected the hypothesig = 0, so we did not reduced the model. Because we rejected thutegis
it was decided that the random effect model was better thafixtd effect model. The conclusion was
that the rail was a factor that had random effect on the trawel.
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