
crypto251.0 Cryptocurrency and the Smileycoin

Gunnar Stefansson (editor)

29. nóvember 2020

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1

Efnisyfirlit

1 Introduction to cryptocurrencies 8
1.1 Introduction to the course .. . 8

1.1.1 Handout . 8
1.2 Enrollment, credits and Smileycoin rewards 9
1.3 Reading material . 9

1.3.1 Handout . 9
1.4 Cryptocurrencies . 10
1.5 Behind the scenes (in Icelandic) 10
1.6 A useful allegory . 11
1.7 The user side . 11
1.8 Overview . 11

1.8.1 Handout . 11

2 Bitcoin and Smileycoin basics 12
2.1 Operating a wallet . 12
2.2 The block and block explorers .. 12
2.3 The transaction . 12
2.4 Where we come from (a): the tutor-web 13

2.4.1 Handout . 13
2.5 Where we come from (b): Education in a Suitcase 13

2.5.1 Handout . 13
2.6 Where we come from (c): SMLY . 14

2.6.1 Handout . 14
2.7 Overview . 14

2.7.1 Handout . 14
2.7.2 References . 14

3 Picking up and using a wallet 17
3.1 Single-coin vs multi-coin wallets 17

3.1.1 Handout . 17
3.2 Smileycoin wallets . 17

3.2.1 Handout . 17
3.3 The configuration file . 18

3.3.1 Handout . 18
3.4 Overview . 18

3.4.1 Handout . 19

4 Compiling the wallet 20
4.1 The Linux steps . 20
4.2 Get a computer running Linux .20
4.3 Linux: Use git to download the SMLY wallet source 20
4.4 Linux: Run the tools to compile the code 20
4.5 Linux: Install the wallet where you want it 20

4.5.1 Handout . 20
4.6 Windows: Compiling the wallet .. 21
4.7 Mac OSX: Compiling the wallet .21
4.8 Overview . 21

4.8.1 Handout . 21

2

5 Introduction to the SMLY command line 22
5.1 The SMLY command line . 22

5.1.1 Handout . 22
5.1.2 Examples . 22

6 Basic cryptocurrency economics 23
6.1 Background . 23
6.2 The issues . 23
6.3 The coinbase, difficulty and mining strategy 23

6.3.1 Handout . 23
6.4 Mining: The tragedy of the commons 24
6.5 Mining development . 24
6.6 Basic economics . 24

6.6.1 Handout . 24
6.7 Investment and speculation .. . 25

6.7.1 Handout . 25
6.8 The airdrop fallacy . 27
6.9 Setting up use cases . 27
6.10 Donations . 27

6.10.1 Handout . 28
6.11 Divident payments . 28
6.12 The SmileyCoin economy . 29

6.12.1 Handout . 29
6.13 Cryptocurrencies as a Universal Basic Income 29
6.14 Solving UBI implementation issues: delivery and demand 30

6.14.1 Examples . 30
6.15 Keeping or avoiding developer anonymity 32

7 The transaction 34
7.1 Background . 34
7.2 A typical transaction .34
7.3 Inside the transaction: The output 34
7.4 Inside the transaction: The input 35
7.5 The UTXO . 35

7.5.1 Handout . 35
7.6 Keys . 36

7.6.1 Handout . 36
7.7 Spending the UTXO . 37

7.7.1 Handout . 37
7.8 The transaction on the command line 37

7.8.1 Handout . 37
7.9 The UTXO set . 38

7.9.1 Handout . 38
7.10 The transaction fee .38

7.10.1 Examples . 38
7.11 Manual transaction example - maintaining a fund 38

7.11.1 Examples . 39

3

8 The block, the blockchain and the network 40
8.1 The block and the chain . 40
8.2 The hash and the nonce . 40

8.2.1 Handout . 40
8.2.2 Examples . 40

8.3 The network . 41
8.3.1 Handout . 41

9 Cryptocurrency mining 42
9.1 Mining, hashes and the cryptography puzzle 42
9.2 Mining from a wallet . 42

9.2.1 Handout . 42
9.3 GPU mining . 43

9.3.1 Handout . 43
9.4 Mining using specialised hardware (ASIC mining) 43

9.4.1 Handout . 43
9.5 Mining using a small ASIC . 44

9.5.1 Handout . 44
9.6 Which hashes and how . 44

9.6.1 Handout . 44
9.7 The mining algorithm . 45

9.7.1 Handout . 45
9.8 Mining, energy and other uses .. 45

10 Cryptography and cryptocurrencies 46
10.1 Cryptography use by cryptocurrencies 46

11 Hash function introduction 47

12 Elliptic curves 48

13 The trilogy: tutor-web, Smileycoin and Education in a Suitcase 49
13.1 This is just a placeholder!! 49
13.2 Where we come from . 50
13.3 The tutor-web system .51
13.4 sl03030 . 53
13.5 sl03040 . 55
13.6 sl03050 . 56
13.7 sl03055 . 56
13.8 sl03060 . 56
13.9 sl03070 . 57

14 The SmileyCoin Fund 58
14.1 Premining a cryptocurrency 58

14.1.1 Handout . 58
14.2 The SmileyCoin premine .58

14.2.1 Handout . 58
14.3 Setting up a cryptocurrency fund: The SmileyCoin Fund 58

14.3.1 Handout . 58

4

15 Splitting the coinbase: No longer just a miner’s fee 60
15.1 Alternatives to premines and funds 60

15.1.1 Handout . 60
15.2 Splitting the coinbase: Why? 60

15.2.1 Handout . 60
15.3 The SmileyCoin coinbase split 61

15.3.1 Handout . 61
15.4 Effects of the coinbase split 61

15.4.1 Handout . 61

16 Staking and proof-of-stake 62
16.1 Staking . 62
16.2 Proof of stake . 62

17 The tutor-web as a faucet 63
17.1 Cryptocurrency faucets .. . 63

18 The command line from a Linux script 64
18.1 The Linux shell . 64
18.2 Startup files . 64
18.3 Betzy . 64

18.3.1 Handout . 64
18.4 The command script . 65

19 Building slightly more complex transactions on the command line 66
19.1 A simple transaction .66

19.1.1 Handout . 66
19.2 Maintaining a single address 66

19.2.1 Example . 67
19.3 Making a non standard transaction using P2SH 67

19.3.1 Handout . 67

20 Cryptocurrency exchanges 69
20.1 Smileycoin exchanges .. 69
20.2 The honeypot problem . 69
20.3 Tracking stolen goods .. 69
20.4 An inside job . 69

21 API access to exchanges 70
21.1 Automating access to cryptocurrency exchanges 70

22 Automation on the blockchain (stores, ATM, gambling etc) 71
22.1 Doing stuff on the blockchain 71
22.2 So how do you do stuff? . 71
22.3 Gambling on the blockchain .. 71
22.4 Messages on the blockchain .. 71
22.5 A very simple ATM on the blockchain 72
22.6 A more elaborate ATM on the blockchain 72
22.7 Traditional data .72

22.7.1 Examples . 72
22.8 API access to the blockchain .. . 72

22.8.1 Handout . 73

5

23 The Bitcoin programming language 74
23.1 From input to output . 74
23.2 The assembler . 74

23.2.1 Handout . 74
23.3 Simple example . 75

23.3.1 Example . 75
23.4 spending . 76

23.4.1 Handout . 76
23.5 A more detailed look inside the spending transaction 76

23.5.1 Example . 76
23.6 A more detailed look at P2SH .79

23.6.1 Handout . 79
23.6.2 Example . 79

24 Fun and games with Bitcoin and SmileyCoin 84
24.1 Puzzles, poetry, bounties etc etc 84
24.2 Sticking data into the blockchain: the data field 84

24.2.1 Examples . 84
24.3 Blockchain elections .. 85

24.3.1 Handout . 85
24.4 Bounties: Reporting hash collisions 85

24.4.1 Example . 85

25 The SmileyCoin Fund revisited 87
25.1 Background . 87
25.2 Purpose of the Fund . 87
25.3 The Board of the SmileyCoin Fund .. . 87

25.3.1 Handout . 87
25.4 The Mandate . 87

25.4.1 Handout . 87
25.5 The multisig address for the Fund 87

25.5.1 Handout . 87
25.6 Creating, signing and broadcasting a multisig transaction 87
25.7 Signing the Mandate electronically 88
25.8 Storing the signatures in public 88

25.8.1 Handout . 88
25.9 Validating data from the blockchain 91

25.9.1 Handout . 92
25.10Open accounting on the blockchain 93

25.10.1 Handout . 93

26 Atomic swaps 94
26.1 Background . 94
26.2 timeouts . 94

26.2.1 Examples . 94
26.2.2 Handout . 94

26.3 an atomic swap algorithm .. 95
26.3.1 Handout . 95

26.4 Alternatives . 95
26.5 The missing link: Information flow 96
26.6 Announcing the atomic swap .. 96

6

26.7 Atomic swaps between chains: Litecoin and Bitcoin 97
26.7.1 Handout . 97

27 More on atomic swaps and smart contracts 102
27.1 The smart contract . 102
27.2 Smart contracts: Misunderstandings 102
27.3 Tools for atomic swaps .103
27.4 Which coins are ready? .103
27.5 Lightning . 103

7

1 Introduction to cryptocurrencies

1.1 Introduction to the course

These slides and all the tutor-web content can be found underthe two links

• https://tutor-web.net/omp/rypto251.0

• https://beta.tutor-web.net/

• Videos in English:https://www.youtube.om/playlist?list=PLzTQKBiNWB3E7nh5egXI_PaHW1MLnXy8&disable_polymer=true
• Videos in Icelandic: See the Canvas course page

This content forms the basis for an on-line cryptocurrency course as well as a course,
“Rafmyntir (STÆ 532M)” at the University of Iceland.
Only the beta version of tutor-web will be used in the actual course. Only work done
in the beta version will count towards completion of the course.
The slides and content areopen so they are freely available and accessible to anyone,
anywhere.
To receiveacademic credit for working through the material, a student needs to be
registeredat a university which approves this course. Initially that is only the University
of Iceland.
For the UI course, announcements are sent out by email and anyadditional explanations
are stored in the UI Canvas web.

1.1.1 Handout

Handout for Rafmyntir (STÆ 532M) at the University of Icelan d
The following describes the setup of the course in fall 2020,the third time it is given, in the
year of COVID-19.
There are no in-class lectures!
Attempts will be made to record each lecture (most likely in Icelandic).
Attempts will be made to make very short weekly videos, in English, of the most important
topics covered during the week.
The final grade will mainly be based on homework during the semester.
Homework will consist of

• work undertaken only in the tutor-web system (writing/reviewing exercises/drills
plus practicing drills) and

• various other tasks listed in Canvas, normally reported in the tutor-web (but check
the text of each task).

Note that some (most) of the output from the homework done outside the tutor-web will
still be reported within the tutor-web system (the beta version).
Homework inside the tutor-web will range from simple documentation (writing examples)
through reporting solutions to exercises to reporting output of tasks/projects using the Smi-
leycoin to test new features of cryptocurrencies. In adddition, students will review and
grade each other’s submissions to the tutor-web. Each component will count towards the
final grade (submissions, projects, reviews).
Thetextbook by Antonopouloscontains all the important background and main concepts
used in the course. TheSmileycoin paper in Ledgercontains all the information needed
on the Smileycoin and how it deviates from Bitcoin.
Video describing how to return homework:https://bit.ly/32fTtrb
Other topics will be covered in class or assigned reading, some is available as Steemit
articles but other material can be discovered by on-line searching.

8

https://tutor-web.net/comp/crypto251.0
https://beta.tutor-web.net/
https://www.youtube.com/playlist?list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8&disable_polymer=true
https://bit.ly/32fTtrb

1.2 Enrollment, credits and Smileycoin rewards

To obtain credits for the course, a student needs to be registered at a university which
provides that kind of accreditation.
However any student, anywhere, is free to take the open tutor-web version of the course,
as a self-study course, with or without any association withan instructor or institution.
Students should note: If you are formally enrolled in a school anywhere, you should
ask your instructor to contact any admin of the tutor-web to make the class a formal
class in the tutor-web. This will ensure that the students inthe class receive much higher
Smileycoin rewards when completing tasks in the system. Students are free to use the
system without being enrolled anywhere, but will then receive fewer SMLY.
For further information, see handouts and examples in the PDF version of these tutorial
notes.
Video corresponding to this introduction:https://bit.ly/3aPyIqj

1.3 Reading material

The book

The SMLY paper (aka the Ledger article)
http://ledgerjournal.org/ojs/index.php/ledger/artile/view/103/84

The paper Satoshi Nakamoto Bitcoin: A Peer-to-Peer ElectronicCash System
https://bitoin.org/bitoin.pdf

1.3.1 Handout

The primary text is Antonopoulos’ textbook on Bitcoin. Thisis a fundamental text on
cryptocurrencies and any student of cryptocurrency or blockchain should have a copy of
this text.
The Bitcoin paper by Satoshi Nakomoto is the foundational paper on Bitcoin.
Since the SmileyCoin is used as an example throughout this course, the SMLY article in
Ledger forms a basis to describe the internals of SMLY. Note that this article is from 2017
and the SMLY has been extended considerably since then.
Other articles and papers will be mentioned throughout thisdocument and by your instructor
if you are taking this as a real-world course.

9

https://bit.ly/3aPyIqj
http://ledgerjournal.org/ojs/index.php/ledger/article/view/103/84
https://bitcoin.org/bitcoin.pdf

1.4 Cryptocurrencies

A cryptocurrency is an electronic solution to the task of securely storing and exchanging
units of value without any need for trusted intermediaries such as banks or backing by
physical objects such as gold, coins or notes.
By taking this course the student will study in detail the technical aspects of cryptocur-
rencies, including how transfer of value is conducted and how they are made secure.
There are many, many cryptocurrencies:

• Bitcoin
• Litecoin
• Dogecoin
• Etherium
• Auroracoin
• . . .
• Smileycoin (Broskallar) :-)

This course will use the Smileycoin as an example throughout
Seehttps://oinmarketap.om/all/views/all/

1.5 Behind the scenes (in Icelandic)

• Bálkakeðja (Færslukeðja/Bunkakeðja – blockchain)
• Færslur (og grunnhugtakið, UTXO – transactions)
• Námugröftur (– mining)
• Satoshi Nakamoto

(Hjálmtýr Hafsteinsson, Vísindavefurinn)

10

https://coinmarketcap.com/all/views/all/

1.6 A useful allegory

• The chain is like an old-fashioned ledger

• Each block is like a page in the ledger

• Each transaction is just like a traditional transaction “Alice pays/lends
Bob 10 cents”

• The miner is the accountant:

– collects transactions
– records them into a new block - a page in the book
– gets paid for doing this work

A short video describing the same concepts:
https://www.youtube.om/wath?v=LpBlXHOZo&index=3&list=PLzTQKBiNWB3E7nh5egXI_PaHW1MLnXy8

1.7 The user side

• Download a “wallet” (a computer program/app) to a computer (e.g.
desktop, laptop, tablet or phone)

• Receivecryptocurrency “to the wallet”
• Sendto others

MEMO Nothing actually gets sent anywhere :-)

1.8 Overview

This section has given a quick overview of the cryptocurrency course and basic concepts.
Your instructor will give more detail. At UI more detailed definitions of work are/will
be given in Canvas.
This would be a good time to read chapter 1 of Mastering Bitcoin by Andreas Ant-
onopoulos.

1.8.1 Handout

Homework: Add some material to any single subsection of thissection.
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

11

https://www.youtube.com/watch?v=LcpBlXHOZoc&index=3&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8

2 Bitcoin and Smileycoin basics

2.1 Operating a wallet

A wallet is a computer program (or app) which handles the user’s funds.
From the user’s side, the basics of operating a wallet are made extremely simple.
With a click of a button the user can

• Request funds
• Send funds

Transmissions of funds are sent out astransactions.
If Alice wants to send a transaction to Bob, her wallet needs information on where to
send the transaction.
If Alice requests funds from Bob then Alice’s wallet will typically show a QR-code
which Bob’s wallet can scan to set up the required transaction.
A short video introduction is available.

2.2 The block and block explorers

A simple block (SMLY block 361698)

Contains two transactions.
Seehttps://hainz.ryptoid.info/smly/
andhttps://bloks.smileyo.in/
Video demonstration:
https://www.youtube.om/wath?v=a7EhHyWCrU4&index=4&list=PLzTQKBiNWB3E7nh5egXI_PaHW1MLnXy8

2.3 The transaction

The transactions

12

https://www.youtube.com/watch?v=a7EhHyWCrU4&index=4&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8
https://chainz.cryptoid.info/smly/
https://blocks.smileyco.in/
https://www.youtube.com/watch?v=a7EhHyWCrU4&index=4&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8

2.4 Where we come from (a): the tutor-web

The tutor-web is an educational resource, mainly developedat the University of Iceland.

The SmileyCoin was originally developed to experiment withrewards in the tutor-web.
A short video introduction is available, giving an overviewof the tutor-web SmileyCoin
and Education in a Suitcase.

2.4.1 Handout

Development of the tutor-web started around the year 2000, but it has been redesigned
several times.
The tutor-web is used for research on education and technology. Typically, parameters
control the behaviour of the system and these are set to different values to see how to
improve learning.
The references at the end of this section give some examples of this research.

2.5 Where we come from (b): Education in a Suitcase

eias

Non-profit organisation, registered in Iceland asStyrktarfélagið Broskallar
Purpose: Raise funds to donate educational tech to low-income regions

2.5.1 Handout

Education in a Suitcase (EIAS) is a project led by a non-profitorganisation, Styrktarfélagið
Broskallar (SB), registered as such in Iceland.
SB applies for grants for EIAS, which is organised in cooperation with several other non-
profit entities.
SB has an income in SMLY.

13

https://tutor-web.net/
https://www.youtube.com/watch?v=z_JQX5GbAvA&index=6&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8/

The EIAS project has donated tablets and servers running tutor-web to hundreds of students
and schools in several locations in Kenya: Takawiri PrimarySchool, Shivanga Secondary
School, Maseno University, Naivasha Maximum Security Prison.
Most of these areas have unstable electricity, no WiFi and poor to no Internet connections.
The server setup therefore provides the WiFi and serve the tutor-web to students. In additi-
on, the servers provide the content of the Khan Academy, the entire Wikipedia in English
and the Gutenberg Library of ofer 60 thousand titles.
New implementation methods are tested each year. Currentlyunder development is a
library model whereby a library receives the tablets from EIAS but the students can
purchase the tablet once they have earned enough SLMY in the tutor-web system.

2.6 Where we come from (c): SMLY

smly

Primary purpose: Rewarding students in the tutor-web system
Long term goal: Provide $1/day for low-income students

2.6.1 Handout

The SmileyCoin was originally developed to test the effectsof cryptocurrency rewards in
the tutor-web system.
Since the tutor-web system is completely open, this also gives open access to anyone want-
ing to earn SMLY for their studies.
A stated long-term goal is to extend the use of tutor-web and SmileyCoin through Education
in a Suitcase so students in low-income regions can earn the equivalent of $1 per day
through studying in the system.

2.7 Overview
The handout lists homework.
Your instructor will give more detail.

2.7.1 Handout

Homework: Add some material to any single subsection of thissection.

2.7.2 References

Some publications on tutor-web, SmileyCoin and Education in a Suitcase.

14

Constantinescu, D. and Stefansson, G. 2010. On building a web-based university. US-
China Educational Review, 7(12), 89-97.
Everson et al. 2013. “Teaching Online on a Budget.”JSM Proceedings, Statistical Educati-
on Section, Alexandria, VA: American Statistical Association.
Jonsdottir 2015. Development and testing of an open learning environment to enhance
statistics and mathematics education. PhD thesis.
Jonsdottir et al. 2015. Development and use of an adaptive learning environment to rese-
arch on-line study behaviour. Educ. Tech. & Society, 18 (1),132–144.
Jonsdottir and Stefansson 2014. Using an Online Learning Environment to Teach an Und-
ergraduate Statistics Course: the tutor-web. EDULEARN13http://arxiv.org/abs/1407.0308

Jonsdottir and Stefansson 2014. From evaluation to learning: Some aspects of designing a
cyber-university. Computers&Education 78, 344-351
Jonsdottir et al. 2013. Könnunarpróf nýnema í stærðfræði við Háskóla Íslands. Niðurstöð-
ur og forspárgildi. Timarit um menntarannsoknir 10: 11-28.
Jonsdottir and Stefansson 2011. Enhanced Learning with Web-Assisted Education. In JSM
Proceedings, pp. 3964 -3795. See Arxiv:1310.4667.
Jonsdottir et al. 2017. Difference in learning among students doing pen-and-paper homework
compared to web-based homework. J. Statistics Education.
Jonsdottir et al. 2019. Learning Wherever, Whenever: Education in a Suitcase. EDULE-
ARN19
Lentin et al. 2014. A mobile web for enhancing statistics andmathematics education.
Presented at icots9. Seehttp://arxiv.org/abs/1406.5004
Njurai et al. 2017. Initial reflections on teaching and learning mathematics using tablet in
a prison education centre. SIMC 2017
Olafsdottir, E. I., Hreinsdottir, F., Stefansson, G. and Oskarsdottir, M. 2009. Mathematics
electives by gender in a secondary school in Iceland (In Icelandic: Námsval stúlkna með
tilliti til stærðfræði í Menntaskólanum við Hamrahlíð). Science Institute technical report
RH-12-2009.
Sigurdardottir and Stefansson 2009. Greining á framförum nemenda innan vefkerfis sem
býður upp á gagnvirk krossapróf. Timarit um raunvisindi og stærðfræði, 6 (1): 23-32.
Stefansson, G. and Sigurdardottir, A. J. 2009. Interactivequizzes for continuous learning
and evaluation. In Joint Statistical Meetings (JSM) proceedings 4577-4591.
Stefansson et al. 2017. Evidence-based technology to enhance mathematics education
from Iceland to Kenya.https://library.iated.org/view/STEFANSSON2017EVI
Stefansson and Lentin 2017. From smileys to Smileycoins: Using a cryptocurrency for
rewards in education. Ledger vol. 2, 38-54http://ledgerjournal.org/ojs/index.php/ledger/artile/view/103/84

Stefansson and Jonsdottir 2015. Design and analysis of experiments linking on-line drilling
methods to improvements in knowledge. J. of Statist. Sci, and Applic. 3(5-6), 63-73.
Stefansson, G. and Sigurdardottir, A. J. 2011. Web-assisted education: From evaluation to
learning. J. Instr. Psych. 38(1): 47-60.
Stefansson and Constantinescu 2009. The tutor-web, a step towards building an active web
based university. Proc 5th Internat Sci Conf “eLearning andSoftware for Education”, pp
273-280.
Stefansson, G. 2004. The tutor-web: An educational system for class-room presentation,
evaluation and self-study. Computers&Education, 43 (4): 315-343.
Stefansson, G. 2003. Gagnvirkur kennsluvefur (in Icelandic). Timarit um raunvisindi og
stærðfræði, 2: 115-116.
Medium and Steemit publications, and publications in popular media:
Fundi, 2u18:https://medium.om/�fundimaxwell/tehnology-hoped-to-improve-aademi-exellene-2daf35a1974d
Mbugua, 2018:https://medium.om/�kamaumbugua/smileyoin-5385a3b046ed
Stefansson, 2019:https://medium.om/�gunnarstefansson/a-oin-for-eduation-and-philanthropy-reeives-offiial-baking-e25ee49d37

15

http://arxiv.org/abs/1407.0308
http://arxiv.org/abs/1406.5004
https://library.iated.org/view/STEFANSSON2017EVI
http://ledgerjournal.org/ojs/index.php/ledger/article/view/103/84
https://medium.com/@fundimaxwell/technology-hoped-to-improve-academic-excellence-2daf35a1974d
https://medium.com/@kamaumbugua/smileycoin-5385a3b046ed
https://medium.com/@gunnarstefansson/a-coin-for-education-and-philanthropy-receives-official-backing-e25ece49cd37

Stefansson, 2017:https://steemit.om/kenya/�gstefans/takawiri-island-primary-shool-with-eduation-in-a-suitase
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

16

https://steemit.com/kenya/@gstefans/takawiri-island-primary-school-with-education-in-a-suitcase

3 Picking up and using a wallet

3.1 Single-coin vs multi-coin wallets

Most cryptocurrency wallets are designed to handle asingle coin.
Multi-coin wallets are used to handlemultiple currencies.
A multi-coin wallet may assist the user in converting from one currency to another.
The usual single-coin wallets store the user’s keys and addresses and keep track of the
coins associated with each address.
Video explanations are available

3.1.1 Handout

A popular multicoin wallet is the Coinomi wallet.
All coins also have dedicated wallets for desktop/laptop computer.
Some coins have HTML5-wallets. This is code which implements the wallet as a web-page
in a browser.
All of the above are implemented for SmileyCoin.

3.2 Smileycoin wallets

The reference (core) wallet for Smileycoin is available for

• Linux (as source code)
• Windows (as binary)
• OS X (as binary, for Mac)

from https://tutor-web.info/smileyoin/download

Tablet users can pick either the Coinomi wallet (App/Play store) or the HTML5 wallet
athttps://wallet.smileyo.in
(for detail, see handout)

3.2.1 Handout

The reference (core) wallet for Smileycoin is available forseveral operating systems.

• Linux: This is only made available as source code. It should be ready to
compile and install for Ubuntu. Components may need to be installed for
other Linux versions.

• Windows: Only a binary version is made available. This is typically a bit
behind the Linux version.

• OSX: A binary version is available. This is typically a bit behind the
Linux version.

Directions on where to pick these up can be found athttps://tutor-web.info/smileyoin/download

An HTML5 wallet is also available athttps://wallet.smileyo.in and runs directly
in the browser. Be specially careful to store the passphrase. This can be used for several
experimental testing projects. This wallet is also used forgeneral feature development and
testing.
For tablets and phones a Coinomi wallet is available (Android and iOS). Searching for
Coinomi in the appropriate store should work. This is a stable wallet and appropriate for

17

https://www.youtube.com/watch?v=gpyV7_zGarg&index=7&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8
https://tutor-web.info/smileycoin/download
https://wallet.smileyco.in
https://tutor-web.info/smileycoin/download
https://wallet.smileyco.in

users not wanting any extra features developed specificallyon the SMLY chain (such as
on-chain services, voting or traceability).
Warning: The core walletneedsto be used for most projects in the course which refer to
the BASE address. Any of the versions (Linux, Mac, Windows) can in principle be used.

3.3 The configuration file

Thecore wallet (Linux/Mac/Win) has a configuration file (the web wallet doesnot)
Name of file:smileyoin.onf
Needs to contain a user and a password. Setup is automatic forQt wallets, not so for
command-line-only wallets (Linux).
The configuration file must include a rpcpassword - if not, theserver terminates with an
error.
Just follow the directions given in the error message. It is fine to use the password in the
message (not the one given above).

3.3.1 Handout

On a Linux machine the user needs to set up a configuration file in their home directory.
Start by running the smileycoin daemon to get the error message:smileyoind --server

It will terminate with an error message which includes linessuch as the following:

/home/user/.smileyoin/smileyoin.onf

It is reommended you use the following random password:

rpuser=smileyoinrp

rppassword=EAUbvD7ddK7eiS1izojpb9ZgMdqVsb36dL8KAjDKyzL

Just copy the two important lines (rpuser=... andrppassword=...) and insert them
into thesmileyoin.onf file:
If you already started the server once, then the folder should already exist:

d

mkdir .smileyoin # should return an error

ls .smileyoin # should show some files

d .smileyoin

at >> smileyoin.onf # append to the file .smileyoin.onf

#paste in the two lines from the error message above:

rpuser=smileyoinrp

ppassword=EA...

trl-D # hold ontrol while presing D

The configuration file can be used to control the behaviour of the server in various ways,
connect to specific nodes on the network and so forth. The above two lines are the only
ones which are always needed.
For more information see e.g.https://github.om/bitoin/bitoin/blob/master/share/examples/bitoin.onf

3.4 Overview

Homework: Pick up a wallet to use (WIN, MAC, Linux)
UI: First Sweep and later Import the private key issued as a part of the course
See the handout for the homework task

18

https://github.com/bitcoin/bitcoin/blob/master/share/examples/bitcoin.conf

3.4.1 Handout

The first thing to do is to obtain a wallet and start experimenting with it. The primary wallet
should be one for Windows, Mac OSX or Linux. The secondary is the HTML5 wallet. You
will need to use both.
Students enrolled in the cryptocurrency course at the University of Iceland will receive an
address and a corresponding private key (keys are explainedlater).
As a part of different exercises this private key should be

• swept into the HTML5 wallet
• imported into the primary wallet.

These functions are not the same. The playlist includes a video on how to sweep and import
keys.
Several of the exercises will refer to this private key or corresponding address.
UI students: Exercises are listed in Canvas. Some are also listed individually in handouts
such as this one. If there are conflict between descriptions of exercises/homework, Canvas
is correct.
Task 0: Solve some exercises somewhere in the tutor-web to earn someSMLY&have them
sent to the base address (UI students: see also the Google doc). This task will be listed as
solvedonce the base address has received funds from the tutor-web wallet.
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

19

4 Compiling the wallet

4.1 The Linux steps

• Get a computer running Linux
• Use git to download the SMLY wallet source
• Run the tools to compile the code
• Install the wallet where you want it

Quick video commenting on these slides

4.2 Get a computer running Linux

Any Linux machine will do.
Some favourites:

• NUC
• Raspberry pi
• Any PC

Caveat: An old computer will do, but if it isvery small (low on memory/disc space/slow)
then it may be difficult to compile or run the wallet.

4.3 Linux: Use git to download the SMLY wallet source

Simple:
git clone http://github.com/tutor-web/smileyCoin
Gives a new folder, smileyCoin

4.4 Linux: Run the tools to compile the code

• ./autogen.sh
• ./configure
• make

Caveat: May need to modify src/Makefile on a Raspberry pi.

4.5 Linux: Install the wallet where you want it

Typical

• cd
• mkdir bin
• cd smileyCoin/src
• mv smileycoind smileycoin-cli $HOME/bin

4.5.1 Handout

What the commands mean...
missing

20

https://www.youtube.com/watch?v=3QekhlN0Xyo&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8&index=8

4.6 Windows: Compiling the wallet

missing...

4.7 Mac OSX: Compiling the wallet

missing...

4.8 Overview

This section has given an overview of how to pick up a Smileycoin wallet
The Handout subsection describes some homework. Your instructor will give more
detail.

4.8.1 Handout

Homework: Add some material to any single subsection of thissection.
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

21

5 Introduction to the SMLY command line

5.1 The SMLY command line

The core wallets have acommand linewhich can be used to access information as well
as send and receive coins
Example:

• Linux shell: smileycoin-cli getinfo
• Windows/MAC: open the debug window and type “getinfo”

Example:

• sendtoaddress BEtZyyYqDXqmRJJ45nnL15cuASfiXg9Yik 5

A video explanation is available

5.1.1 Handout

Under Linux the wallet comes in the form of two programs,smileyoin andsmileyoin-li.
The former runs in background and the latter is thecommand line interface, used to give
commands from the Linux command line.
Anything which can be done on the command line can also be given in the GUI command
window, so the following are equivalent.

• Linux shell:smileyoin-li getinfo

• Windows/MAC: open the debug window and typegetinfo

5.1.2 Examples

Some useful commands
* “sendtoaddress BEtZyyYqDXqmRJJ45nnL15cuASfiXg9Yik 5“
* “help“
* “getinfo“
* “help getinfo“
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

22

https://www.youtube.com/watch?v=tu9eU-XjsKo&index=9&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8

6 Basic cryptocurrency economics

6.1 Background

Prices of cryptocurrencies have fluctuated wildly
Prices of several cryptocurrencies have started or risen tovery high level before plum-
meting
What are the driving factors behind these fluctuations?

6.2 The issues

The main issues which drive the price of cryptocurrencies appear to be

• supply and demand
• coinbase (mining)
• difficulty
• pump and dump
• hype and fud
• airdrop
• lack of - or increase in use cases
• speculation vs investment
• change (increase) in public interest

These relate tosupply and demand. Other economic aspects include

• Donations
• Divident payments
• Universal Basic Income (UBI)

6.3 The coinbase, difficulty and mining strategy

Each coin has a built-in plan for the generation of new blocksand new coins
Bitcoin:

• A new block should be made every 10 minutes
• The coinbase for Bitcoin is currently 12.5 Satoshi
• The coinbase is also the miner’s fee
• The miner receives 12.5 BTC for mining a new block

Smileycoin:

• Same principle but 10,000 SMLY and one block per 3 minutes
• Coinbase is halved approximately every 7 years
• Miner receives only 10% of the coinbase

The strategy: The “hash” of the block must decrease (difficulty increases) if the blocks
are generated too fast.

6.3.1 Handout

The student should do some research into hash functions.

23

See for example Example: Bitcoinhttp://bit.ly/2PXIpYR.
and Example: Litecoinhttp://bit.ly/2oCpdTZ.

6.4 Mining: The tragedy of the commons

Blok Hash

5000 000000004d78d2a8a93a1d20a24d721268690bebd2b51f7e80657d57e226eef9

10000 0000000099744455f58e66e98b671e1bf7f37346bfd4f5d0274ad8ee660b

25000 00000000ae4b125eb183e689b7231eafa8992d5b8952d9f3d30a79a788ddf

50000 000000001aeae195809d120b5d66a3983eb48792e068f8ea1fea19d84a4278a

100000 000000000003ba27aa200b1eaad478d2b004323463f1f3986da1afd33e506

200000 000000000000034a7dedef4a161fa058a2d67a173a90155f3a2fe6f132e0ebf

300000 000000000000000082f8f15575d40b21edabb18d2d691fbf87118ba7254

518367 000000000000000000164a8a0f61d8157b0920d13b53b7d47610bde077898

This would be called the “tragedy of the commons” in fisheries: The problem is that
there is open access to a new resource and the fee for entry (zero) is not high enough.

6.5 Mining development

• Bitcoin: Currently only large companies (“data centres”)
• Originally on desktop computer, then using GPSs, followed by ASICs
• Other coins: Commonly “mining pool” (grafarahópar?), but similar

development
• SMLY: Still mostly “solo” mining (coinbase-split is difficult for pools

to implement)

Example:http://prohashing.om/.

6.6 Basic economics
Supply and demand drive the price of almost anything.
The supply and demand of a cryptocurrency can be influenced by

• mining to generate new, the coinbase
• airdrop
• lack of - or increase in use cases

Increased difficulty will make mining more expensive but will NOT directly affect the
price over any period of time: The increased difficulty may mean that some miners will
stop mining or technological development will lead to better ASICs being used.
An airdrop is used to hand out large amounts of a cryptocurrency to groups of users.
Auroracoin is such an example.
Examples ofpump and dump or hype and fud abound. These are techniques used by
groups and individuals who intend to affect the prices of cryptocurrencies.

6.6.1 Handout

Q: Why do the SMLY have a value?
A: Limited supply and there is some utility
Anything which has some utility and a limited supply will inevitably have some value.

24

http://bit.ly/2PXIpYR
http://bit.ly/2PXIpYR
http://bit.ly/2oCpdTZ
http://bit.ly/2oCpdTZ
http://prohashing.com/
http://prohashing.com/

In the case of SmileyCoin the direct utility is obtained by setting up a handful of cases such
as smly.is etc
But like any other possible investment, there will be several other factors. Any investor will
set up an investment strategy which involves several factors:

• Distribution of risk (portfolio investment)
• Most investors will think about the collapse probability (50% of cryptocur-

rencies in 2014 were lost by 2018)
• SMLY is a part of several international research projects
• New: Investing in a “good cause” (cf Quote Magazine)

6.7 Investment and speculation

• speculation vs investment
• change (increase) in public interest
• like any asset, cryptocurrencies can be used for investments

See handout athttps://tutor-web.net/omp/rypto251.0/le01200/sl01240
for Bitcoin price development
Example of analysis, seehttps://hakernoon.om/https-medium-om-zvnowman-building-a-ryptourreny-portfolio-for-a-10-year-holding-period-e7ed407a9754

6.7.1 Handout

Bólur og svindl
https://oinmarketap.om/all/views/all/

Skrýtin verðþróun, en verð á gulli og demöntum ræðst líka af framboði og eftirspurn (þ.m.t.
væntingum og spákaupmennsku)
Bitcoin verðþróun . . .

Bóla? Sprungin?
Bitcoin verðþróun út 2013

Bóla? Sprungin?

25

https://tutor-web.net/comp/crypto251.0/lec01200/sl01240
https://hackernoon.com/https-medium-com-zvnowman-building-a-cryptocurrency-portfolio-for-a-10-year-holding-period-e7ed407a9754
https://coinmarketcap.com/all/views/all/

Bitcoin verðþróun til 2015

Bóla? Sprungin?
Bitcoin verðþróun inn í 2017

Bóla? Sprungin?
Bitcoin verðþróun út 2017

Bóla? Sprungin?
Bitcoin verðþróun út 2018

Bóla? Sprungin?
Bitcoin verðþróun árið 2018

26

Bóla? Sprungin?
Example of analysis, seehttps://hakernoon.om/https-medium-om-zvnowman-building-a-ryptourreny-portfolio-for-a-10-year-holding-period-e7ed407a9754

6.8 The airdrop fallacy

• airdrop

Airdrop: Giving money to everyone
Airdrop without incentive to invest or methods to spend: Useless :-)

6.9 Setting up use cases

The only way for a cryptocurrency to have a value in the long term is for it to have a use
case
The use case might simply be investment:

• Bitcoin is a classic case
• Cryptocurrencies appear to be used as investment portfolios

Use cases can also consist of companies accepting a cryptocurrency as a payment (Bitco-
in in particular, but also Auroracoin)
Selling donated coupons is a common method used by non-profitorganisations.
Coupons can easily be sold for crypto (http://smly.is)
In the early days of Auroracoin there were too few use cases tosupport holding or using
the coin.
Note: Groupscould agree that all members of a crypto group should put somethingup
for sale and thus be ready to accept payments in the cryptocurrency.

6.10 Donations

Several cryptocurrencies encourage

• donations in the currency

The effect on price would normally be none, unless the coinbase is used as a donation
which goes directly into circulation.
An interesting twist on donations is to use

• investment in the currency as a means to support a cause financed by the currency
(Education in a Suitcase)

(see handout)

27

https://hackernoon.com/https-medium-com-zvnowman-building-a-cryptocurrency-portfolio-for-a-10-year-holding-period-e7ed407a9754
http://smly.is

6.10.1 Handout

Quote

(The miracle of SmileyCoin: getting rich with donations)
Seehttp://www.quotenet.nl/Nieuws/Het-wonder-van-SmileyCoin-rijk-worden-met-donaties-209798
The effect of a single article. . .

6.11 Divident payments

Reasoning:

• Reduce dumping
• Increase investment incentive

Smileycoin approach:

• Fixed portion, 45%, of coinbase goes to dividends
• Recipient group: Addresses with at least 25 M SMLY
• Method: Oldest untouched address receives entire next payment

Key figures:

• Amount: 4500 SMLY per block
• Frequency: 480 payments per day
• Rich list: https://hainz.ryptoid.info/smly/#!rich
• 180 addresses as of Sept 7, 2018

28

http://www.quotenet.nl/Nieuws/Het-wonder-van-SmileyCoin-rijk-worden-met-donaties-209798
https://chainz.cryptoid.info/smly/

6.12 The SmileyCoin economy

6.12.1 Handout

The SmileyCoin economy: Miners earn a few SMLY from mining but the coinbase is
mostly (i) donated in 10 income streams to the Smiley Charity(fully automatic and decentralised)
or (ii) paid as dividends to over 200 large supporters (also fully automatic and decentralised).
Donors can also donate fiat directly to the Smiley Charity. The SmileyCoin Fund supp-
orting the tutor-web will support other projects. Studentsearn SMLY while studying in
the tutor-web. Any holders of SMLY can sell SmileyCoin on cryptocurrency exchanges.
Vendors supporting the projects provide various discount coupons for sale on smly.is wh-
ere students and other can purchase them for SMLY. Students may redeem or donate their
hard-earned SMLY; and non-redeemed SMLY are eventually donated to the Smiley Cha-
rity.
Missing from the graphic is how the Smiley Charity pays forward the SmileyCoin income
streams to include other charities as recipients. The forward payments are automatic and
transparent.

6.13 Cryptocurrencies as a Universal Basic Income

Universal Basic Income (UBI) is a popular term and commonly linked to technological
developments which may eventually lead to mass unemployment.
A cryptocurrency could in principle be used as for UBI through a number of means:

• airdrop
• splitting the coinbase
• splitting the transaction fee

but all of these only increase supply, not demand. Hence, none of these will work unless
there is simultaneously a setup which provides demand for the coin.
An airdrop could be implemented through a premine, but experience to date suggests
that this is not a very good idea (Auroracoin, Smileycoin) and it would be better to use
the coinbase+fees for this purpose.
Several cryptocurrency-based UBI projects are listed at
https://bitointalk.org/index.php?topi=3242065.0

29

https://bitcointalk.org/index.php?topic=3242065.0

6.14 Solving UBI implementation issues: delivery and demand

In addition to problems with a premine, the coinbase alone isunlikely to be enough
(exercise: test the increase in supply and demand needed to make this work for Iceland
with e.g. 100,000 recipients of a UBI equivalent of 100,000 ISK per month).
If a coin is set up such that the UBI recipient are active partsof the community through

• sending the UBI to other addresses (generating a fee)
• putting a service or object up for sale

then a UBI might be feasible.
Supply would mostly be through the transaction fees.
Demand would be generated by the users themselves.

6.14.1 Examples

Consider 100,000 recipients of a UBI equivalent of 100,000 ISK per month and suppose
this has to come out of the coinbase.
The coinbase of 10,000 new coins are generated in each block,every 3 minutes. With 20
blocks per hour, 480 blocks are generated per day, or 14,400 blocks per month. The total
coinbase is therefore 144 million SMLY per month.
For the above UBI, this coinbase of 144 million SMLY has to be worth 10,000 million ISK
per month, so each SMLY needs to be worth 10000/144 or 69 ISK.
There are currently almost 30 bn SMLY in circulation (30 10ˆ9) so for the above to work,
the market value of all SmileyCoin in circulation needs to beover 2 thousand billion ISK
(2 10ˆ12). For comparison, the amount of money in Iceland (asmeasured by M0) is about
40 bn. Even taking into account money in savings accounts etc(M3), the market value of
SMLY needs to be far too high compared to a typical economy, ifthe UBI is to be generated
from the coinbase alone.
Of course in a typical economy, wages are not paid by printingmoney. Once paid, wages
are first used to pay income taxes and then purchase goods, resulting in sales taxes. These
taxes are subsequently used to pay wages again. A crypto-based UBI needs to mimic this
circular behaviour of wages and taxes.

30

31

6.15 Keeping or avoiding developer anonymity

Svindl og svínarí?Ýmsar leiðir, t.d. proof of developer . . .

En Baldur og Satoshi geta líka búið til sína mynt - nafnlaust.
Mörg dæmi um mynt til að hafa fé af fjárfestum. . .
Tilraunaverkefni (rannsóknaverkefni)

• Tengsl umbunar og vinnu/einkunna nemenda - fjölvalsspurningar
• Notkun umbunar fyrir verkefnaskil (t.d. semja texta)
• Gera tutor-web sjálfbært (umbuna fyrir þróun)
• Lengri tíma: Áhrif í Kenýa – t.d. 1 USD/dag?

Flæði Broskalla

Tilraunaverkefni (kennsluverkefni) • Bestun: Verslun með rafmyntir (þ.m.t.
arbitrage)

• Viðskiptavakt
• Veðmál á keðjunni (sendtoaddress BCJW4iZw7PechFHgtqqSdHmymjnFA6LjNJ

10)
• Skilaboð eftir keðjunni
• Sjálfvirk myntskipti
• Frumskipti (atomic swap)
• o.s.frv.

Sjá ýmsar Steemit greinar
Meira

http://ledgerjournal.org/ojs/index.php/ledger/artile/view/103/84

https://bitoin.org/bitoin.pdf

32

http://ledgerjournal.org/ojs/index.php/ledger/article/view/103/84
https://bitcoin.org/bitcoin.pdf

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

33

7 The transaction

7.1 Background

The concept of a transaction as a description of transfer of funds is simple but not enough
How does one guarantee that the funds are not sent twice?
How does one ensure that the sender is authorised to spend thefunds?
To see how this is done we need to look inside the transactionsand study their structure

7.2 A typical transaction

Consider a specific SMLY transaction, ege870614afe3b9fde97566b024a72f11d22e08dbd89a971655b15f71d6e203b
which can be seen in block 332353, at
https://hainz.ryptoid.info/smly/blok.dws?33e1da4929afa4bf2deb28f4695179e67077a9642a69e2e3bfe590e1a.htm

A summary of the transaction is given at
https://hainz.ryptoid.info/smly/tx.dws?e870614afe3b9fde97566b024a72f11d22e08dbd89a971655b15f71d6e203b.htm

but we want to see some of the detail.

7.3 Inside the transaction: The output

Consider the outputs from transaction e870614afe3cb9fde97566b024a72f11d22ce08dbd89a971655b15f71d6e203b

The outputs form two UTXOs: “n”=0 og “n”=1
These can later be referenced, e.g. as UTXO n=0 from
Tx=e870614afe3cb9fde97566b024a72f11d22ce08dbd89a971655b15f71d6e203b

34

https://chainz.cryptoid.info/smly/block.dws?33e1da4929acfa4cbf2dceb28f469c5179e67077a9642a6c9e2e3bfe590cce1a.htm
https://chainz.cryptoid.info/smly/tx.dws?e870614afe3cb9fde97566b024a72f11d22ce08dbd89a971655b15f71d6e203b.htm

7.4 Inside the transaction: The input

TxId: e870614afe3cb9fde97566b024a72f11d22ce08dbd89a971655b15f71d6e203b

The input is only defined as an older output, which has not beenspent, UTXO, as the
following components:

• Start of input description: vin
• The input transaction refers to an older transaction: TxId
• “vout” refers to a numbered output (“n”) in that transaction
• NB: The amount is not listed!
• NB: The address is not listed!

So the input to our transaction is output number 0 from transaction
cc3b743938e485578315b2f6848c1a416c917585ea2f75d5d3e09f21a95008b0
We can verify by looking up that UTXO.

7.5 The UTXO

We have seen that

• the input to transaction e870614afe3cb9fde97566b024a72f11d22ce08dbd89a971655b15f71d6e203b
is

• the UTXO from transaction cc3b743938e485578315b2f6848c1a416c917585ea2f75d5d3e09f21a95008b

To verify this we can look up that UTXO as seen in the handout.

7.5.1 Handout

To verify this we can look up that UTXO and we find

or specifically

35

7.6 Keys

Cryptocurrencies use cryptographic keys
For example, ownership is demonstrated using a combinationof keys and addresses

• public-private key pairs
• Private key -> public key -> address

This will be explained in more detail later.

• An address can be freely distributed
• The private key is never disclosed
• A transaction can be signed using the private key
• A signature can beverified using the public key
• The public key is only disclosed when a transaction is spent

A spending transactionpublishes the public key and a signature.

7.6.1 Handout

A private key is just a string of random numbers.
A public key is generated from the private key.
An addressis generated from the public key.
A good description of the process is available:
https://en.bitoin.it/wiki/Tehnial_bakground_of_version_1_Bitoin_addresses

36

https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses

7.7 Spending the UTXO

The permission to spend the UTXO is determined by the programming code written into
the transaction.
Will be described later in the course, but a short code snippet is seen in every transaction.
It is an incomplete snippet, usually with components of the form

• OP_DUP
• OP_HASH160
• a4d6b6e2e262e97590564a24b523d993765525fb
• OP_EQUALVERIFY
• OP_CHECKSIG

To spend this UTXO the spending transaction needs to prependto this another snippet
so the combined code can be run and will return “TRUE” and nothing else.
Completion of this particular snippet is done with

• signature
• public key

7.7.1 Handout

Seehttps://en.bitoin.it/wiki/Sript for a description of the codes involved.
Note thatOP_HASH160 involves two operations: The input is hashed twice: first with
SHA-256 and then with RIPEMD-160

7.8 The transaction on the command line
Step-by-step example of how to generate, sign, check, announce and inspect a transacti-
on - to be done in detail in class

• listunspent

• reaterawtransation '[{"txid": "fbd60d37afb30eba7153db741de7d1ebf710ee0e8802fba29e865402ba8f",

"vout": 1}℄' '{"B79tjNk8oZktdd7DLnznKXu9UA67GMWP9g": 2000,

"BHgx5rehx2Wkx4wME2DXwZAHL7KskUjXmK": 2499}'

• signrawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb0100000000ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

• deoderawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb010000006b483045022100815d96306bffb6d00a4b92a72f25067b2f389334b2e735a1d06929f02200526f4b2d90f0221354b73974f194e6bb507f85dd8a055616eafd2994fb980121030b71e1d6d9f28e1111b9b5fa75a0476a8e9925e4a62e1668f01a8bdebe765ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a0000000001000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb0100000000ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

• sendrawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb010000006b483045022100815d96306bffb6d00a4b92a72f25067b2f389334b2e735a1d06929f02200526f4b2d90f0221354b73974f194e6bb507f85dd8a055616eafd2994fb980121030b71e1d6d9f28e1111b9b5fa75a0476a8e9925e4a62e1668f01a8bdebe765ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a0000000001000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb0100000000ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

• getrawtransation e98b533f3290fa5823074aa0b1e273e25e4756321155e7ad165f2d3ed61760

• deoderawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb010000006b483045022100815d96306bffb6d00a4b92a72f25067b2f389334b2e735a1d06929f02200526f4b2d90f0221354b73974f194e6bb507f85dd8a055616eafd2994fb980121030b71e1d6d9f28e1111b9b5fa75a0476a8e9925e4a62e1668f01a8bdebe765ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

This is just thehow-to. The next few lectures will go into what is actually going on!

7.8.1 Handout

Example of how to generate, sign, check, announce and inspect a transaction

• listunspent

• reaterawtransation '[{"txid": "fbd60d37afb30eba7153db741de7d1ebf710ee0e8802fba29e865402ba8f",

"vout": 1}℄' '{"B79tjNk8oZktdd7DLnznKXu9UA67GMWP9g": 2000, "BHgx5rehx2Wkx4wME2DXwZAHL7KskUjXmK":

2499}'

37

https://en.bitcoin.it/wiki/Script

• signrawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb0100000000ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

• deoderawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb010000006b483045022100815d96306bffb6d00a4b92a72f25067b2f389334b2e735a1d06929f02200526f4b2d90f0221354b73974f194e6bb507f85dd8a055616eafd2994fb980121030b71e1d6d9f28e1111b9b5fa75a0476a8e9925e4a62e1668f01a8bdebe765ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a0000000001000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb0100000000ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

• sendrawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb010000006b483045022100815d96306bffb6d00a4b92a72f25067b2f389334b2e735a1d06929f02200526f4b2d90f0221354b73974f194e6bb507f85dd8a055616eafd2994fb980121030b71e1d6d9f28e1111b9b5fa75a0476a8e9925e4a62e1668f01a8bdebe765ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a0000000001000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb0100000000ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

• getrawtransation e98b533f3290fa5823074aa0b1e273e25e4756321155e7ad165f2d3ed61760

• deoderawtransation 01000000018fba0254869ea2fb0288ee00e1f7ebd1e7d41b73d15a7eb30fba370dd6fb010000006b483045022100815d96306bffb6d00a4b92a72f25067b2f389334b2e735a1d06929f02200526f4b2d90f0221354b73974f194e6bb507f85dd8a055616eafd2994fb980121030b71e1d6d9f28e1111b9b5fa75a0476a8e9925e4a62e1668f01a8bdebe765ffffffff0200d0ed902e0000001976a9141da838326eaf3755f4606e60f27e9af2252d1488a0063332f3a0000001976a91491392bd50321d222d702d1bb75a3b8512088a00000000

7.9 The UTXO set
The UTXO set has a tendency to increase in size.
For Bitcoin (fromhttps://www.blokhain.om/harts/utxo-ount?timespan=all):

7.9.1 Handout

The UTXO is one of the basic concepts in Bitcoin and other cryptocurrencies. Each unspent
transaction output represents a unit which the holder of a private key can spend.
Each transaction results in one or more UTXO and only theseunspentoutputs can be used
as inputs in a subsequent transaction.
A full node verifies transactions and every full node therefore needs to keep track of the
entire UTXO set.

7.10 The transaction fee

Most transactions include a transaction fee
The fee is simply the difference between the inputs and the outputs
The fee is not explicitly specified

7.10.1 Examples

Most transactions include a transaction fee, but you can explicitly define a transaction with
no transaction fee.
The fee is simply the difference between the inputs and the outputs

7.11 Manual transaction example - maintaining a fund

If a wallet is asked to send x SMLY it will just find some unspenttransactions and
aggregate them as input, send x to the destination and make a new address for the change,
after taking some for the transaction fee.
There are many instances when one wants to do things differently. For example one may
want to maintain all the funds under a single address for transparency.
This is how the Pineapple Fund worked and this is how the SmileyCoin Fund works.
https://www.blokhain.om/bt/tx/081f68e146922f23039bf67a5bdaa53365b311b9dba5d8016367e050e5e36

38

https://www.blockchain.com/charts/utxo-count?timespan=all
https://www.blockchain.com/btc/tx/081f68e146922f23039bf67a5bdaa53365b311b9dba5d80163c6c7ce050e5e36

7.11.1 Examples

Homework: Send 100 SMLY to an address A.
Use createrawtransaction to send 10 SMLY from A to C and 89 back to A in a single
transaction, leaving 1 SMLY for the miner.
This is how the Pineapple Fund worked:
https://www.blokhain.om/bt/tx/081f68e146922f23039bf67a5bdaa53365b311b9dba5d8016367e050e5e36

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

39

https://www.blockchain.com/btc/tx/081f68e146922f23039bf67a5bdaa53365b311b9dba5d80163c6c7ce050e5e36

8 The block, the blockchain and the network

8.1 The block and the chain

• Alice and Bob havewallets
• A transaction is generated by Alice’s wallet when Alice sends Bob Smileycoins
• Alice’s walletsbroadcast the new transaction to the network
• The transaction then enters themempool
• Any wallet on the network can examine the transaction
• A miner aggregates these transactions into ablock
• A miner may simply be a wallet set tomine
• The block islinked to the previous blocks in achain
• The miner broadcasts the block to the network
• A block needs to satisfy certaindifficulty criteria

(more later)

8.2 The hash and the nonce

See https://en.bitoin.it/wiki/Blok_hashing_algorithm to see the code
below and a description of the composition of the header

8.2.1 Handout

The block hashing algorithm produces a sha256d hash of 256 bits (32 bytes) based on the
following 640 bit input:

(from https://en.bitoin.it/wiki/Blok_hashing_algorithm)

8.2.2 Examples

Example python code:

>>> import hashlib

>>> header_hex = ("01000000" +

"81d02ab7e569e8bd9317e2fe99f2de44d49ab2b8851ba4a308000000000000" +

"e320b62fff8d750423db8b1eb942ae710e951ed797f7aff8892b0f1f122b" +

"7f5d74d" +

"f2b9441a" +

"42a14695")

>>> header_bin = header_hex.deode('hex')

>>> hash = hashlib.sha256(hashlib.sha256(header_bin).digest()).digest()

>>> hash.enode('hex_ode')

'1dbd981fe6985776b644b173a4d0385dd1aa2a829688d1e0000000000000000'

>>> hash[::-1℄.enode('hex_ode')

'00000000000000001e8d6829a8a21ad5d38d0a473b144b6765798e61f98bd1d'

40

https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Block_hashing_algorithm

(from https://en.bitoin.it/wiki/Blok_hashing_algorithm)

8.3 The network

The full (core)wallets are really just computer programs which “talk” together across
the Internet, forming “points” which are connected using a protocol.
Each such point is called anode.
The collection of SmileCoin nodes forms the SmileyCoin network. This network can be
studied in several ways and some of the block explorers do so:
https://hainz.ryptoid.info/smly/#!network
When a node sees a transaction, this is sent across the network. This collection is called
themempool.
A miner picks up transactions in the mempool and puts them into a block. Note that
different miners may have seen different transaction so they may no all be mining the
same content into a block.
See the handout to look at commands to link to other computersand view the mempool.

8.3.1 Handout

The commandgetrawmempooldisplays the transactions in the mempool. This command
is particularly useful if mining is slow, just to verify thatthe transaction is being sent across
the network.
When the wallet starts up, it has a hard-wired IP address (thednsseed) which it connects
to. That computer gives the wallet the addresses of other computers on the network.
It is possible to enhance connectivity by connecting to morenodes or just to specific nodes.
This is done using theaddnode command:
addnode 191.121.45.21 add

Lists of nodes can be obtained from block explorers, e.g. thenode listathttps://hainz.ryptoid.info/smly/
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

41

https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://chainz.cryptoid.info/smly/
https://chainz.cryptoid.info/smly/

9 Cryptocurrency mining

9.1 Mining, hashes and the cryptography puzzle

Bitcoin mining uses the hashcash proof of work function; thehashcash algorithm
requires the following parameters: a service string, a nonce, and a counter.
See for example Example: Bitcoinhttp://bit.ly/2PXIpYR.
and Example: Litecoinhttp://bit.ly/2oCpdTZ.
(more later)

9.2 Mining from a wallet

Desktop mining is not reasonable for Bitcoin, Litecoin or other heavily mined coins.
It is, however, quite feasible for SmileyCoin (in 2019).
Most coins have gone through phases where mining is initially done using a computer’s
CPU, then a graphics card followed by specialised hardware.In-between, mining pools
are typically set up, where miners cooperate on mining a coinand share block rewards
and transaction fees.
Mining outside mining pools is calledsolo mining.
SmileyCoin is typically still mined by individual computers (in 2019).

9.2.1 Handout

Under Linux one can start the SmileyCoin daemon from the command line using

smileyoind -algo=qubit -gen -genprolimit=1 --server

Thegen command-lin option sets the coin generation to true andgenprolimit sets the
number of cores to be used.
Alternatively, the options can be put into smileycoin.conf

algo=qubit

genprolimit=4

With this configuration file, the actual mining must then be turned on after the daemon is
started, using either the command line

smileyoin-li setgenerate true 1

or a similar command,setgenerate true 1 from within the wallet command window.
The numeral1 here refers to the number of cores to be used for mining.
For laptops it isessentialto set a bound on the number of cores used by the wallet to avoid
overheating the computer.
Under Linux the default configuration options are read in from the file

.smileyoin/smileyoin.onf

under the user’s home directory.
On the Mac OSX this file is stored as

Library/Appliation Support/Smileyoin/smileyoin.onf

(beware of the space in the directory name).

42

http://bit.ly/2PXIpYR
http://bit.ly/2oCpdTZ

9.3 GPU mining

Screen displays on desktop computers are handled by graphics chips with considerable
computing power.
Graphics cards are dedicated cards, inserted into the computer, to handle complex grap-
hics.
These graphics cards are much more powerful for mining than is the typical central
processing units (CPU) of a computer.
Generic software is freely available to mine arbitrary coins using such graphics cards.

9.3.1 Handout

One popular miner isbfgminer, available athttp://bfgminer.org// or, on Ubuntu:

apt-get install bfgminer

9.4 Mining using specialised hardware (ASIC mining)

SmileyCoin can be mined using e.g. thebfgminer with a scrypt ASIC.

9.4.1 Handout

For SMLY mining using a Scrypt ASIC, the following has been tested.
There are 1 or 2 machines involved. The following assumes the(Linux/Win/OSX) wallet
runs on one machine and the miner (bfgminer) on another, where the ASIC is hooked up.
First the wallet machine. In the config file, usually

~/.smileyoin/smileyoin.onf

on a Linux machine, make sure that you have the two lines

rpuser=<your-user-for-RPC>

rppassword=<your-password-for-RPC>

where normally one just uses the user and password provided when you set up the wallet.
You will need these later, when you connect bfgminer to the wallet.
Next, you’ll want lines of the following form:

server=1

rpport=14242

rpallowip=127.0.0.1

rpallowip=<the-IP-of-the-mining-omputer>

so for example, if your (bfg)miner is on the local area network with IP 192.168.1.57 then
that is what you insert here so the wallet accepts incoming calls from that machine.
Also, make a note of the name or IP of the wallet computer.
Once you have this set up, make sure the wallet is running. Under Linux it’ll be something
like:

smileyoind --server &

43

http://bfgminer.org//

Next, the machine where bfgminer runs (where the ASIC is connected). Here it should be
enough to just run bfgminer off the command line. The settings for bfgminer are highly
dependent on the ASIC you are using. The following are the settings for a particular Scrypt
ASIC (entire command should go on one line):

bfgminer --srypt

-o http://<walletmahine>:14242

-u <your-user-for-RPC>

-p <your-password-for-RPC>

-S ALL

--set MLD:lok=600

where <your-user-for-RPC> is usually set to “smileycoinrpc” by default for the SMLY
wallet and <your-password-for-RPC> is usually set to a longstring generated at startup.
You may have replaced both so make sure to check how the walletis set up (smileycoin.conf
above).
Similarly, <walletmachine> needs to be replaced by whatever you call the computer where
you run the wallet.
The port here is 14242. The number is largely irrelevant, butit needs to be the same in the
wallet config file as on the bfgminer command line (or the bfgminer config file). It should
probably be a high number so that it does not interfere with system ports or priviliges.
This particular setup was tested on a small USB-stick miner,the Futurebit Moonlander 2.0,
obtained in 2017 fromhttps://asipuppy.om/magentoPuppy/index.php/fbmoonlander.html
For that hardware you may or may not need a specias version of bfgminer:https://bitointalk.org/index.php?topi=2420357.0
The above text is slightly updated fromhttps://bitointalk.org/index.php?topi=845761.msg30195287

9.5 Mining using a small ASIC

This is for the Futurebit Moonlander 2

9.5.1 Handout

One may need to install additional Futurebit software, in addition to bfgminer and the
SMLY wallet.

9.6 Which hashes and how

9.6.1 Handout

Hash functions are used in several places, from inside the script programming language
through solving cryptographic puzzles as proof-of-work tolinking the blocks.
The best-known use of hashing is in the cryptographic puzzlewhich is solved as proof-of-
work to generate a valid block.
The transactions in a block are summarised into a single hashusingmerkle trees, combined
with anonceandhashed.
The most common hash function issha256d, described in detail inhttps://sr.nist.gov/publiations/detail/fips/180/4/final
Note that it is not essential for the same hash function to be used for proof-of-work as for
linking the blocks.
Several other hash functions are used for Bitcoin transactions and even more are used for
multi-algo coins such as SmileyCoin and Auroracoin.
more detail needed

44

https://asicpuppy.com/magentoPuppy/index.php/fbmoonlander.html
https://bitcointalk.org/index.php?topic=2420357.0
https://bitcointalk.org/index.php?topic=845761.msg30195287
https://www.futurebit.io/moonlander-2-support
https://csrc.nist.gov/publications/detail/fips/180/4/final

9.7 The mining algorithm

Thesha256dmining algorithm

9.7.1 Handout

Fromhttps://en.bitoin.it/wiki/Getwork

calculate:

hash = SHA256(SHA256(EndianFlipForEah32Bits(First80BytesOf(data))))

If that meets the difficulty, you win (generated a block or share)!
If not, increment the Nonce that is a number stored in portionof the data that starts 608 bits
in (bytes 76 to 79), and try again.

9.8 Mining, energy and other uses

As seen elsewhere in this document, mining Bitcoin requiresa tremendous amount of
computing power.
This generates heat which is commonly dissipated using fansor other methods.
Preferred locations include cool countries where it is easier to get rid of the heat.
A few use cases have taken the excess heat and used it for heating houses or other
facilities.

Farmers in Iceland
https://www.visir.is/g/2018181029655

https://www.wired.o.uk/artile/bitoin-mining-ieland-ryptourreny

If the facilities needed
mean that there is no
More recent international
https://news.bitoin.om/ukraine-hotmine-smart-bitoin-miner/

https://hotmine.io/en

https://www.qarnot.om/

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

45

https://en.bitcoin.it/wiki/Getwork
https://www.visir.is/g/2018181029655
https://www.wired.co.uk/article/bitcoin-mining-iceland-cryptocurrency
https://news.bitcoin.com/ukraine-hotmine-smart-bitcoin-miner/
https://hotmine.io/en
https://www.qarnot.com/

10 Cryptography and cryptocurrencies

10.1 Cryptography use by cryptocurrencies

Cryptocurrencies use cryptography for several tasks, including:

• signing transactions using a private key
• verifying ownership of an amount to be spent using a public key
• summarising a transaction into a hash
• summaring all transactions in a block into a hash
• summarising a block into a hash
• defining criteria for a block hash to satisfy for a block to be acceptable

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

46

11 Hash function introduction

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

47

12 Elliptic curves

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

48

13 The trilogy: tutor-web, Smileycoin and Education in a
Suitcase

13.1 This is just a placeholder!!

WARNING This is just a placeholder at the moment - don’t even bother reading it :-)
This whole section will become a double lecture on tw, EIAS and SMLY

• Bitcoin
• Litecoin
• Etherium
• Auroracoin
• Broskallar :-)

49

13.2 Where we come from

tutor-web

eias

smly

50

13.3 The tutor-web system

tutor-web kerfið

• tutor-web er kennslukerfi á netinu sem er opið öllum án endurgjalds:
http://tutor-web.net

• Rannsóknar- og þróunarverkefni hóps sem tengist VoN
• Allur hugbúnaður sem kerfið notar er opinn (open source) og getur

hver sem er notað og jafnvel breytt kennsluefninu (CreativeCommons
License)

• Styrkt af HÍ, Rannís, ESB, ráðuneytum, UNU FTP o.s.frv.

tutor-web

• Í tutor-web eru eru yfir 6000 fjölvalsæfingar í stærðfræði og tölfræði á
framhalds- og háskólastigi

• Æfingarnar eru ekki til að prófa kunnáttu nemenda heldur til að þeir
læri af því að svara þeim

• Nemendur geta svarað eins mörgum spurningum og þá lystir eins lengi
og þeir vilja

• Nemendur og kennarar geta fylgst með hvernig gengur
• Eftir að nemandi svarar fær hann að sjá hvaða svarmöguleiki var sá

rétti og útskýringu á rétta svarinu

Árangur rannsakaður

Nemendur stóðu sig betur á stöðumötum efir að hafa notað tutor-web.

51

http://tutor-web.net

52

13.4 sl03030

Kenya

Education in a suitcase
Í Kenía

• er óalgengt að fólk hafi aðgang að tölvum
• ekki sjálfgefið að komast í netsamband
• getur rafmagn verið óstöðugt
• . . .

Lausn: Education in a suitcase
Education in a suitcase

Dæmigerð Keníaferð

• Fangelsi í Naivasha
• Grunnskóli á Takawirieyju í Victoríuvatni
• Háskóli í Maseno
• Shivanga framhaldsskólinn í Kakamega sýslu

Broskallar - Smileycoin • Notaðir til að verðlauna fyrir góða frammistöðu í tutor-
web

• Mest til skemmtunar en eru rafmynt!
• Rannsóknir á áhrifum þess að greiða nemendum í rafmynt í kennslukerfinu
• Geta keypt kaffi, flugmiða, bíómiða, . . .

53

54

13.5 sl03040

http://smly.is/

Hlið notandans • Hlaða niður veski (forriti) á tölvu (t.d. spjald eða síma)
• Fá “senda” rafmynt
• “Senda” öðrum rafmynt

Á bakvið töldin • Færslukeðja/Bunkakeðja (blockchain)
• Færslur
• Grunnhugtakið: UTXO
• Námugröftur
• Satoshi Nakamoto

(Hjálmtýr Hafsteinsson, Vísindavefurinn)

Leikmannaskýring • Keðjan er eins og færslubók
• Hver blokk er eins og síða í færslubókinni
• Hver færsla er eins og hefðbundin færsla “Jón sendir Gunnu 10kr”
• Námugrafarinn er bókarinn
• Keðjan er eins og færslubók
• sér um að taka saman færslur
• skráir þær í nýja blokk - síðu í bókinni
• fær umbun fyrir

55

http://smly.is/

13.6 sl03050

Færslurnar

Inntakið

Úttakið

Leyfið til að eyða UTXO
Munum eftir scriptPubKey:

• OP-DUP
• OP-HASH160
• a4d6b6e2e262e97590564a24b523d993765525fb
• OP-EQUALVERIFY
• OP-CHECKSIG

Þegar eyða skal þessu UTXO þarf að bæta framan við forritið stubbi þannig að samsetta
forritið skili “TRUE” og engu öðru:

• undirskrift
• dreifilykill

Veskin Veski fyrir Linux, Windows, Mac o.s.frv. leyfa notanda að gefa skipanir, skoða
færslur og smíða sérhæfðar færslur.
Veskin geta séð um námugröft.

13.7 sl03055

x

13.8 sl03060

xx

56

13.9 sl03070

Myntskoðarar (blockchain explorers)
Hægt að skoða

• Blokkir
• Færslur
• Addressur
• Ríka lista
• o.m.fl.

Dæmi:http://hainz.ryptoid.info/smly.
Kauphallir

• Viðskipti með rafmyntir
• Rafmyntir fyrir fiat (og öfugt)

Dæmi:https://isx.is/.
Dæmi:https://tradesatoshi.om/Exhange/?market=SMLY_LTC.
Dæmigerð kauphöll býður marga markaði með rafmyntir.
Verðmyndun
Í upphafi var Bitcoin verðlaust

• 2 pizzur á 10 000 BTC
• Nú 1 BTC ca 1 M ISK

Í dag: Fleiri notendur að BTC en að ISK?
Grundvallaratriði:
Takmarkað framboð og hefur notagildi => verð > 0

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

57

http://chainz.cryptoid.info/smly
http://chainz.cryptoid.info/smly
https://isx.is/
https://isx.is/
https://tradesatoshi.com/Exchange/?market=SMLY_LTC
https://tradesatoshi.com/Exchange/?market=SMLY_LTC

14 The SmileyCoin Fund

14.1 Premining a cryptocurrency

A premine is a process where originators of a new coin mine it before thechain is open
for general mining
A premine is generally not a good idea

14.1.1 Handout

A premine is a process where the originators of a new coin mine it beforethe chain is open
for general mining. This approach has been used for a number of coins, and for different
reasons. For example, Auroracoin was premined and the premine was mostly distributed
in anairdrop to Icelanders. In some cases this is easily justified.
However, a premine is generally not a good idea as it can be used to hide spending and
abnormally reward coin developers. Thus, even with the bestintentions, coin developers
will need to go to extreme lengths to explain why their coin has a premine.
If a premine is to be used, it needs to be implemented as openlyas possible.

14.2 The SmileyCoin premine

The SmileyCoin was originally premined
The purpose of the coin was to reward students in the tutor-web system
The premine was mostly used for this (but also for development and grants)
Other methodscould have been used instead of the premine (see chaptersplitting the
coinbase)

14.2.1 Handout

The SmileyCoin was originally premined: Of the 48 bn SMLY to be mined, 50% were
premined and kept for use in the tutor-web.
Planned and actual use of the SmileyCoin premine was discussed in a public forum and the
use was subsequently described, also in a public forum, as well as described on Twitter
In spite of openness, a premine will always face considerable criticism.
Better approaches are needed.

14.3 Setting up a cryptocurrency fund: The SmileyCoin Fund

The SmileyCoin premine has been changed to a formal cryptocurrency fund:The Smi-
leyCoin Fund
The SmileyCoin Fund has aBoard which accept applications for funding
The process of spending has moved to be open and transparent
This is explained in more detail in a later section

14.3.1 Handout

The remainder of the SmileyCoin premine was moved to a formalcryptocurrency fund:
The SmileyCoin Fund.
The SmileyCoin Fund has aBoard which accept applications for funding. The Board has
members from four different organisations, including the Rector’s office of the University
of Iceland, as described in a public announcement.

58

https://bitcointalk.org/index.php?topic=845761.0;all
https://tutor-web.info/smileycoin
https://twitter.com/SmileycoinNews/status/1090697739623694337
https://english.hi.is/news/supporting_smileycoin_reward_system

The Board has a formal mandate, and announcements of spending are sent out on Twitter.
The entire SmileyCoin Fund is stored inone multisig addresswhich corresponds to four
private keys. Two of these keys are needed to sign any transfer from the fund. Each Board
member holds exactly one of these private keys. All of the corresponding addresses are
publicly known and transfers can therefore be verified by anyone with Internet access.
The process of spending has thus moved to be open and transparent.
The details of the methods are given in a later chapter.
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

59

http://bit.ly/SMLYmandate
https://twitter.com/SmileycoinNews/status/1164017294567256064

15 Splitting the coinbase: No longer just a miner’s fee

15.1 Alternatives to premines and funds

A premine can be used to fund development or special projects
A better approach is to set up aformal fund for the same purpose
A still better approach is to formally program the mining process to donate to the projects
This uses thecoinbasefor more than just the block reward for the miner

15.1.1 Handout

Recall from the previous section that a premine can be used tofund development or special
projects. The premine is what the developers of a coin decideto mine before opening the
coin to general mining.
A better approach is to set up aformal fund for the same purpose as has been done in the
case of the SmileyCoin Fund. In the case of the SmileyCoin, the remainder of the premine
was moved to the Fund, but it could have been done at the outset.
A still better approach is to formally program the mining process to donate to the projects.
This implies using thecoinbasefor more than just a reward to the miner for finding the
block.

15.2 Splitting the coinbase: Why?

The coinbaseis a prespecified number of coins which the miners can generate when
they mine a new block
Usually miners can send the coinbase to an address of their own choosing
In this case thecoinbaseis the same as the (miner’s)block reward
A community can also decide to do something else with the coinbase
If the miner’s reward is too high then a large number of minerswill start to mine the coin
If a large pool starts to mine a small coin then the difficulty shoots up until the pool stops
mining

15.2.1 Handout

Thecoinbaseis a prespecified number of coins which the miners can generate when they
mine a new block. For SmileyCoin this is initially set to 10 thousand SMLY per block.
Usually miners can send the coinbase to an address of their own choosing. Thus a miner
will normally keep the coinbase and it becomes the (miner’s)block reward.
But a community can also decide to do something else with the coinbase: If all the wallets,
including the miners’ wallets, are set to only accept blockswhere the coinbase is used for
donations, then this use has been hardwired into the coin.
There can be many different reasons for choosing this path.

• If the miner’s reward is too high then a large number of minerswill start to mine the
coin

• If a large pool starts to mine a small coin then the difficulty shoots up until the pool
stops mining

60

15.3 The SmileyCoin coinbase split

• 10% Miner’s reward
• 45% Donations
• 40% Dividends

15.3.1 Handout

Since 2017, the SmileyCoin coinbase has been split three ways

• 10% Miner’s reward
• 45% Donations
• 40% Dividends

15.4 Effects of the coinbase split

• No large pools
• 1bn SMLY in donations over 1-2 years
• over 250 dividend-seekers

15.4.1 Handout

After the SmileyCoin coinbase was been split three ways, several changes were seen in the
behaviour of the SMLY blockchain.

• No large pools
• 1bn SMLY in donations over 1-2 years
• over 250 dividend-seekers

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

61

16 Staking and proof-of-stake

16.1 Staking

Staking refers to having astake in a venture
Staking in a cryptocurrency context implies owning some coins in the currency

16.2 Proof of stake
Proof-of-stake (PoS) is an alternative method to Proof-of-Work to maintain a blockchain.
In a PoS network the holders of coins may take turns in generating the next block.
This replaces the competition for mining by a method where only allowing those who
have demonstrated a stake to participate.
An obvious advantage is the reduction in mining costs.
An obvious disadvantage is the reduction in competition andpossibility of monopoly.
The implementations may vary, ranging from a simple weighted lottery for who gets
the next block to setting a minimum stake to enter the pool of miners (or individuals
permitted to generate blocks).

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

62

17 The tutor-web as a faucet

17.1 Cryptocurrency faucets

Faucets are...
Examples of faucets:
* x * y

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

63

18 The command line from a Linux script

18.1 The Linux shell

The bash shell accepts commands such as

• ls
• cd

Output can be redirected into other programs or into a file

• ls | sort
• ls > delete.me

Most commands are just programs. Commands may take command-line options.

• smileycoin-cli getinfo
• smileycoin-cli listunspent

18.2 Startup files

Many programs use a startup file if it exists somewhere

• .smileycoin/smileycoin.conf

The Smileycoin/Bitcoin/Litecoin config files change the behaviour of the wallets
Example:

• walletnotify=/home/user/bin/readIncoming %s

specifies a command to be run every time an incoming transaction is observer
The scriptreadInoming must exist and be executable. It should assume that there is
one argument, the transaction id. Commonly this is ashell sript, which is just a
collection of shell commands.

18.3 Betzy

Betzyyy is an example of a Linux script which is called to handle incoming transactions.
See
https://steemit.om/blokhain/�gstefans/double-or-nothing-on-the-blokhain

– thoughBEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik is more commonly used as the
recipient address

18.3.1 Handout

Check the scriptATMDoubleOrNothing to see exactly how this works, based on just adding
the command

walletnotify=/home/gstefans/atm/ATMDoubleOrNothing %s

to smileyoin.onf. Note that the script is available on github.
Note also that there is a difference between the notificationcommands

64

https://steemit.com/blockchain/@gstefans/double-or-nothing-on-the-blockchain/
https://steemit.com/blockchain/@gstefans/double-or-nothing-on-the-blockchain
https://github.com/gstefans/ATM

walletnotify=/home/.../sript1 %s

bloknotify=/home/.../sript1 %s

18.4 The command script

Upon startup, a typicalreadInoming sript will call the wallet to inspect the incom-
ing transaction:

• txId=$1
• smileycoin-cli gettransaction $txId
• tx=‘smileycoin-cli getrawtransaction $txId‘
• stuff=‘smileycoin-cli decoderawtransaction $tx‘

and then inspect the elements ofstuff to extract whatever data is needed.
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

65

19 Building slightly more complex transactions on the command
line

19.1 A simple transaction

Recall how to create a simple transaction, with just one input and one output Use
smileyoin-li listunspentto find an UTXO
Suppose this includes the output lines:
"txid": "f808b1f38fdaa4930b0bdf0ad71f970d253994d4571ad2fd08d3d793d",

"vout": 0,

"amount": 13493.00000000,

...

},

{

...

"address": "B69QTo216baA3SD2Da7Q9arThMy7Z8ayJ",

...

Then the following one-line Linux command will aggregate the two addresses:
smileyoin-li reaterawtransation '[{"txid":"f808b1f38fdaa4930b0bdf0ad71f970d253994d4571ad2fd08d3d793d","vout":0}℄'

'{"B69QTo216baA3SD2Da7Q9arThMy7Z8ayJ":13492.00000000}'

19.1.1 Handout

Create it
“smileycoin-cli createrawtransaction ’["txid":"cf808bcc1f38fdaa4930cb0bdf0ad71f970cd253994d4c571ad2fd08d
’"B69QTo216bcaA3SD2Da7Q9arThMy7Z8ayJ":13492.00000000’“‘
“01000000013d79cdd308fdd21a574c4d9953d20c971fd70adf0bcb3049aafd381fcc8b80cf0000000000ffffffff01003
Compare with the “listunspent“ output – we did account for the transaction fee.
Sign it
“smileycoin-cli signrawtransaction 01000000013d79cdd308fdd21a574c4d9953d20c971fd70adf0bcb3049aafd381fcc8b80cf0000000
““ “ "hex":“ “"01000000013d79cdd308fdd21a574c4d9953d20c971fd70adf0bcb3049aafd381fcc8b80cf00000000
“ "complete": true“ ““
Then just send it:
“smileycoin-cli sendrawtransaction“ “01000000013d79cdd308fdd21a574c4d9953d20c971fd70adf0bcb3049aafd3
“5cc83b9728ec3eead163ce8640b7d65076ad43534734da47706d008f8db862ee“

19.2 Maintaining a single address

It is often useful to maintain a single main address.
Example: Anonymous user ‘Pine’ used3P3QsMVK89JBNqZQv5zMAKG8FK3kJM4rjt
as the Bitcoin address for a fund of 5104 Bitcoin, as described at
https://pineapplefund.org/

A typical transaction is Bitcoin transactionf0650bbede00d3fb56d1dd704fb8e85e706f7d22ee5e554136d452697331
where Pineapplefund transfers 300 BTC to a destination address and
sends the entire remainder of the fund back to the original address,
3P3QsMVK89JBNqZQv5zMAKG8FK3kJM4rjt.
This transaction is seen inhttps://www.blokhain.om/bt/tx/f0650bbede00d3fb56d1dd704fb8e85e706f7d22ee5e554136d452697331
Such transactions are very easy to generate on the command line.
Keeping the entire fund at a single address makes it extremely easy to publicly verify
the development of the fund as grants are dispensed to recipients.

66

https://pineapplefund.org/
https://www.blockchain.com/btc/tx/f065cc0bbede00d3fb56d1dd704fb8e85e706f7d22cee5ec554136d452697331

19.2.1 Example

Consider the following output from alistunspent command

"txid": "faadd4f329234a9b22368fe36131252002ff295ab466b9fdf4b2d1eb13d38",

"vout": 0,

"address": "B69QTo216baA3SD2Da7Q9arThMy7Z8ayJ",

"aount": ,

"sriptPubKey": "76a91412987f0a5a71d66bd672d6be6f227a0e9895888a",

"amount": 1975796.00000000,

One can then send just 1000 SMLY to a destination address and keep the entire rest in the
original address using
smileyoin-li reaterawtransation '[{"txid":"faadd4f329234a9b22368fe36131252002ff295ab466b9fdf4b2d1eb13d38","vout":0}℄'

'{"BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik":1000,"B69QTo216baA3SD2Da7Q9arThMy7Z8ayJ":1974795}'

01000000018d313ebd1b2f4fdb966b45a29ff0220253161e38f36229b4a2329f3d4adfa0000000000ffffffff0200e87648170000001976a9147283560a1a0e4d5ba2868e3e7a7d986816d4e188a00ab72479bb300001976a91412987f0a5a71d66bd672d6be6f227a0e9895888a00000000

smileyoin-li signrawtransation 01000000018d313ebd1b2f4fdb966b45a29ff0220253161e38f36229b4a2329f3d4adfa0000000000ffffffff0200e87648170000001976a9147283560a1a0e4d5ba2868e3e7a7d986816d4e188a00ab72479bb300001976a91412987f0a5a71d66bd672d6be6f227a0e9895888a00000000

{

"hex": "01000000018d313ebd1b2f4fdb966b45a29ff0220253161e38f36229b4a2329f3d4adfa000000006b483045022100fb221e7530002f91e0ff9e2e7b6ef70216f66ff80313020f02a4eba17702200bde87d7da8e74f57712915569ef9f0565335251380daadd24b79a01454bd0121020b2242f11807f2d5404b0e17b63dedfd19600457d65552411b0da2b5b25e439ffffffff0200e87648170000001976a9147283560a1a0e4d5ba2868e3e7a7d986816d4e188a00ab72479bb300001976a91412987f0a5a71d66bd672d6be6f227a0e9895888a00000000",

"omplete": true

}

smileyoin-li sendrawtransation 01000000018d313ebd1b2f4fdb966b45a29ff0220253161e38f36229b4a2329f3d4adfa000000006b483045022100fb221e7530002f91e0ff9e2e7b6ef70216f66ff80313020f02a4eba17702200bde87d7da8e74f57712915569ef9f0565335251380daadd24b79a01454bd0121020b2242f11807f2d5404b0e17b63dedfd19600457d65552411b0da2b5b25e439ffffffff0200e87648170000001976a9147283560a1a0e4d5ba2868e3e7a7d986816d4e188a00ab72479bb300001976a91412987f0a5a71d66bd672d6be6f227a0e9895888a00000000

1fa1ebb69a361b56eeb283fb3adb870031ed88a8b9e539f3b33fd225a38

The output from the last command was the TxId and as always thetransaction can be
viewed in any block explorer, e.g.https://hainz.ryptoid.info/smly/tx.dws?1fa1ebb69a361b56eeb283fb3adb870031ed88a8b9e539f3b33fd225a38.htm

19.3 Making a non standard transaction using P2SH

19.3.1 Handout

by
Magnea Haraldsdóttir
The instructions that I followed are:

• Standard transaction:https://medium.om/�darosior/bitoin-raw-transations-the-hard-way-f139615f195b
• P2SH transaction:https://medium.om/�darosior/bitoin-raw-transations-part-2-p2sh-94df206fee8d

Using functions from these instructions I modified the code and functions and ended up
with a small python program I am using for this.
The functions that I am using arehash160() which is theripemd160(sha256()) frequ-
ently used in Smileycoin just like in Bitcoin
The next function is just a sizeof() which gets the size in bytes of an integer
Then we have the class Script() which represents a Smileycoin script and a function parse()
that takes in the opcode names as strings and returns them as the hex value of that opcode.
The last function is serialize() which takes in all elementsof a transaction and makes the
hex needed for the signrawtransaction in the smileycoin-cli.
The main steps are taken after we have got all of these functions working:

1. We need to get the previous hash which is the txid of the smlythat we want to spend,
called prev_hash

67

https://medium.com/@darosior/bitcoin-raw-transactions-the-hard-way-f139615f195b
https://medium.com/@darosior/bitcoin-raw-transactions-part-2-p2sh-94df206fee8d

prev_hash = binasii.unhexlify('7b1e1d86d0e8f614fad93f1ab592a1973b097aba0fd357aa3ad6d336432')

The next step is done when wanting to make a standard transaction, described in the first
link linked above 2A. We need the public key of the address we want to send to, a new
address can be obtained withgetnewaddress in the smileycoin command line and the
public key of that address is found by doingvalidateaddress <address>. After that
we get the address not encoded with base58

pubkey = b'02e0e45655eb4f1b7d76ea116f9d804b1df0602f2500ff7fd7e87528f8121'

address = hash160(binasii.unhexlify(pubkey))

Then we need to make the scriptPubKey:

sript = 'OP_DUP OP_HASH160 ' + address + ' OP_EQUALVERIFY OP_CHECKSIG

sriptPubKey = Sript(sript)

sriptPubKey= sriptPubKey.serialized

After this we go to step 3
Step 2B is done when wanting to make a non standard transaction using P2SH 2B.
Here we don’t need an address because the address will be the script we want to lock the
transaction with.
The script here is:

sript = 'OP_2 OP_ADD OP_4 OP_NUMEQUALVERIFY'

sriptPubKey = Sript(sript)

We then need to get the hash160 of the scriptPubKey as that is how P2SH works, then I
construct the lockingscript.

sriptPubKeyHash = hash160(sriptPubKey.serialized)

loksript = 'OP_HASH160 ' + spkhash + ' OP_EQUAL'

lokingSript = Sript(loksript)

lokingSript = lokingSript.serialized

3. This step is then the same for a standard transaction and a non standard transaction

#The pubkey of the previous output an be found in the vout['sriptpubkey'℄['hex'℄ entry from the getrawtransation ommand output from above : it's 76a..

sriptsig = binasii.unhexlify('76a914d7179ee7e6fa0039f68a279f1d7ad35741f88a')

#Amount to send (0.97)

value = int(97000000).to_bytes(8, 'little')

#The vout

index = b'\x00\x00\x00\x00'

Then the last step is to print what is needed for signing the transaction:

print("to sign:")

print(serialize(prev_hash, index, sriptsig, value, spk2))

The example can be seen here:

https://hainz.ryptoid.info/smly/tx.dws?322e02926d74f2baa2bea804b43a2aaf7a32f7e435fb0a63f7b6df26d53f3.htm

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

68

20 Cryptocurrency exchanges

20.1 Smileycoin exchanges

Smileycoin can be bought and sold at cryptocurrency exchanges, but through time
exchanges may close down temporarily or permanently.
Exchanges supporting SMLY include

• southxchange
• tradesatoshi

The steps involved are

• buy Bitcoin for fiat money (e.g.athttps://isx.is/)
• transfer Bitcoin to one of the above exchanges
• if appropriate, convert Bitcoin to Litecoin or Dogecoin
• convert to SmileyCoin

20.2 The honeypot problem

A cryptocurrency exchange typically holds a large number ofcoins in multiple wallets
This attracts illegal activity: hackers break in or employees run away with the stash
It is generally not a good idea to store large amounts for a long time on an exchange

20.3 Tracking stolen goods

An example of chasing down thieves:

https://www.youtube.om/wath?v=BDAiSeRgi6E&list=PLzTQKBiNWB3E7nh5egXI_PaHW1MLnXy8&index=29

20.4 An inside job

Sometime exchanges get hacked from the inside:
When CoinLim shut down, wallets were emptied and the admins closed down all comm-
unication routes to the outside
This looks very much like an inside job. . .

https://twitter.om/SmileyoinNews/status/1329227229180682242?s=20

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

69

https://isx.is/
https://www.youtube.com/watch?v=BDAiSeRgi6E&list=PLzTQcKBiNWB3E7nh5egXI_PaHW1MLnXy8&index=29
https://twitter.com/SmileycoinNews/status/1329227229180682242?s=20

21 API access to exchanges

21.1 Automating access to cryptocurrency exchanges

Most cryptocurrency exchanges allow some sort of programmed access.
This is usually called an application programming interface or API and is normally done
through a browser-style access (URL or URI).
For the user this implies that it is possible to write programs to monitor prices or even
automate buying and selling in different markets.
The programs can in principle be written in any programming language, but language
support for HTML varies quite a bit.

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

70

22 Automation on the blockchain (stores, ATM, gambling
etc)

22.1 Doing stuff on the blockchain

The blockchain can be used for a lot more than transactions:

• Sending data, using the data fields
• Coding data into the amounts
• Monitoring transactions
• Executing code as a response to transactions

22.2 So how do you do stuff?

Method 1: the config file. . .
option to monitor incoming transactions:
walletnotify=/home/user/bin/ommand %s

code everything into the transactions
Benefits: No changes to the wallets
Method 2: Change the wallet, add wallet commands
Benefits: No changes to the protocol
Method 3: Change the protocol

22.3 Gambling on the blockchain

basics. . .
sendtoaddress BCJW4iZw7PehFHgtqqSdHmymjnFA6LjNJ 10

etc
vanity address: Betzy. . .
sendtoaddress BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik 10

. . . needs to be written up
Seehttps://steemit.om/blokhain/�gstefans/double-or-nothing-on-the-blokhain

22.4 Messages on the blockchain

See github thread sendwithmessage for Smileycoin
Can send messages by coding it into the blockchain
smileyoin-li sendwithmessage BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik

1000 "Hello, Betzyy"

See transactiondaf75d1ae31877b51856b4dee931600a5a5db819f52a5d98627f8a070a72b723:
https://hainz.ryptoid.info/smly/searh.dws?q=daf75d1ae31877b51856b4dee931600a5a5db819f52a5d98627f8a070a72b723

Note how the coding uses ASCII characters 32-128 (0x20-0x7F), requiring 2 bytes per
character, seehttp://www.asiitable.om/ (subtracting 32 dec from each ASCII
code)

71

https://steemit.com/blockchain/@gstefans/double-or-nothing-on-the-blockchain
https://chainz.cryptoid.info/smly/search.dws?q=daf75d1ae31877b51856b4dee931600a5a5db819f52a5d98627f8a070a72b723
http://www.asciitable.com/

22.5 A very simple ATM on the blockchain

An Automatic Teller Machine, ATM, dispenses money when you put in a credit card.
An ATM could also dispense Euro when you put in USD.
A blockchain ATM could dispense SMLY when you put in LTC.
For this you need to use two chains, the LTC and SMLY chains.

• To “put in LTC” means to send LTC to an address.
• To “dispense SMLY” means to send SMLY to a SMLY address.

For this to work (1) the ATM needs to have a LTC address and (2) the ATM needs to be
told about a SMLY address.
This can be done by sending a SMLY address encoded in a LTC transaction.
For more info see
https://steemit.om/blokhain/�gstefans/more-messing-around-with-the-blokhain-an-atm-for-smly

22.6 A more elaborate ATM on the blockchain

for more info see
https://steemit.om/rypto/�gstefans/on-line-atm-looking-for-testers

22.7 Traditional data

Normal use is through the op return
usually limited to 80 characters, but see
https://bitoin.stakexhange.om/questions/78572/op-return-max-bytes-larifiation

and example below

22.7.1 Examples

Example of the use of the data field in a SmileyCoin transaction:

reaterawtransation

'[{"txid":"b99f638e3a2763f55dba9515382ba6a9f23f6789989660bb893047430335105",

"vout":0}℄'

'{"BQLegZNT2hid77hNXgyFK1vZJ1BU2AvdV":9,

"data":"31313131"}'

The reader should try to generate several such transactionsto see exactly what changes in
the hex code by including strings of different lengths.

22.8 API access to the blockchain
Some block explorers give API access
This means that arbitrary programs can access data from the blockchain
Example:
https://bloks.smileyo.in/api/tx/310528420804db1675128089a7a47ae5f829da64b82e3d8a7dbbfb13

gives a JSON string for a SMLY transaction

72

https://steemit.com/blockchain/@gstefans/more-messing-around-with-the-blockchain-an-atm-for-smly
https://steemit.com/crypto/@gstefans/on-line-atm-looking-for-testers
https://bitcoin.stackexchange.com/questions/78572/op-return-max-bytes-clarification
https://blocks.smileyco.in/api/tx/3105284208c04db1675c128089a7a47ae5f829dac64b82e3d8ca7cdccbbfcb13

22.8.1 Handout

Block explorers give information about the blockchain. This typically includes information
about individual blocks, transactions or addresses.
This means that arbitrary programs, written in almost any programming language, can
access data from the blockchain.
The websitehttps://bloks.smileyo.in is a block explorer for SMLY and this explor-
er includes an API.
Some use case examples include:

Get a JSON string for a transaction https://bloks.smileyo.in/api/tx/310528420804db1675128089a7a47ae5f829da64b82e3d8a7dbbfb13

Get a full block https://bloks.smileyo.in/api/blok/eee533e1b264db015d0a3bee5053236a197abad58bede08fb9ab9e35668983

Get the balance behind an addresshttps://bloks.smileyo.in/api/addr/BS5SyUXeCnJ5ERZEyHLi4Pm1XBV7E7ZVyA/balane

In the Linux shell, curl can be used to extract information and in R, read_json can be used:

read_json(“https://bloks.smileyo.in/api/blok/eee533e1b264db015d0a3bee5053236a197abad58bede08fb9ab9e35668983

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

73

https://blocks.smileyco.in
https://blocks.smileyco.in/api/tx/3105284208c04db1675c128089a7a47ae5f829dac64b82e3d8ca7cdccbbfcb13
https://blocks.smileyco.in/api/block/eece533e1b264db015d0a3bee5053236a197abacd58bede08fb9ab9e35668983
https://blocks.smileyco.in/api/addr/BS5SyUXeCnJ5ERZEyHLi4Pm1XBV7E7ZVyA/balance
https://blocks.smileyco.in/api/block/eece533e1b264db015d0a3bee5053236a197abacd58bede08fb9ab9e35668983

23 The Bitcoin programming language

23.1 From input to output

Tx cc3b743938e485578315b2f6848c1a416c917585ea2f75d5d3e09f21a95008b0 output
0

“asm:” “OP_DUP OP_HASH160df75ee5b514b5253979ed29524fde386482f05cf
OP_EQUALVERIFY OP_CHECKSIG”,
“hex:” “76a914df75ee5b514b5253979ed29524fde386482f05cf88ac”,
i.e.
hex:76 a914 df75ee5b514b5253979ed29524fde386482f05cf 88 ac

23.2 The assembler

where we see (fromhttps://en.bitoin.it/wiki/Sript) the meaning of the
sequence
OP_DUP OP_HASH160 OP_EQUALVERY OP_CHECKSIG OP_EQUAL OP_VERIFY

in the table in the handout.

23.2.1 Handout

code dec hex Input Output Description

OP_DUP 118 0x76
Duplicates the top stack
item.

OP_HASH160 169 0xa9 in hash
The input is hashed twice:
first with SHA-256 and
then with RIPEMD-160.

OP_EQUALVERIFY136 0x88
x1 x2 Nothing/failSame as OP_EQUAL, but

runs OP_VERIFY
afterward.

74

https://en.bitcoin.it/wiki/Script

code dec hex Input Output Description

OP_CHECKSIG172 0xac
sig
pubkey

True /
false

The entire transaction
outputs, inputs, and script
(from the most
recently-executed
OP_CODESEPARATOR
to the end) are hashed.
The signature used by
OP_CHECKSIG must be
a valid signature for this
hash and public key. If it
is, 1 is returned, 0
otherwise.

OP_EQUAL 135 0x87
x1 x2 True/false Returns 1 if the inputs are

exactly equal, 0
otherwise.

OP_VERIFY 105 0x69
True /
false

Nothing/
/ fail

Marks transaction as
invalid if top stack value
is not true. The top stack
value is removed.

20 0x14
push 20 bytes onto the
stack the following 160
bit hash

23.3 Simple example

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

23.3.1 Example

Consider how the following code would be executed
2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

2 2 goes on stack

7 2 2 on stack; 7 goes on stack

7 2 7 and 2 on stack

OP_ADD 7 2 + operator adds from stack

9 sum gets put on stack

3 9 3 goes on stack

3 9 3 and 9 on stack

OP_SUB 3 9 - operator

6 difference is put on stack

1 6 1 goes on stack

1 6 1 and 6 on stack

OP_ADD 1 6 + operator adds from stack

75

7 sum gets put on stack

7 7 new 7 to be put on stack

7 7

OP_EQUAL 7 7 = operator compares

TRUE result is TRUE

23.4 spending

Then the value gets used in
Tx e870614afe3cb9fde97566b024a72f11d22ce08dbd89a971655b15f71d6e203b
(see handout)

23.4.1 Handout

with
asm:

30450221009411566e0a7965f5b8a73a788a524f0d4f6eaf3089812e55 \

e7def52079502205d7db540851d650d80e9236efbe9a94ea0b17976255f \

2170259b652524d0b301

hex:

4830450221009411566e0a7965f5b8a73a788a524f0d4f6eaf3089812e55 \

e7def52079502205d7db540851d650d80e9236efbe9a94ea0b17976255f \

2170259b652524d0b3012102df1da839a9823016dbe56d11b11b1369b4567 \

4115bbd9a2a531e365a532b7``

23.5 A more detailed look inside the spending transaction

Looking at SMLY transactions
dee018b9be101519ad326581807581a4e46711f242b4878afa1d985f521e1

and
08a5430a667a700e7b913d189590856d035559d32a999a58d56f409f4d15

The former’s vout:0 gets spent in the latter.

23.5.1 Example

Consider SMLY transactionsdee018b9be101519ad326581807581a4e46711f242b4878afa1d985f521e1
and08a5430a667a700e7b913d189590856d035559d32a999a58d56f409f4d15
The former’svout:0 gets spent in the latter.
The output ofdee0...

"vout": [

{

"value": 61,

"n": 0,

"sriptPubKey": {

"asm": "OP_DUP OP_HASH160 52a79d832b31044faa63782ef252e7a4a34291 \

76

OP_EQUALVERIFY OP_CHECKSIG",

"hex": "76a91452a79d832b31044faa63782ef252e7a4a3429188a",

"reqSigs": 1,

"type": "pubkeyhash",

"addresses": [

"BBz82bHDLKC3CGMHhJtNPbwTAYFGrRT1o6"

℄

}

},

and the spending part in 08a5. . .

"vin": [

{

"txid": "dee018b9be101519ad326581807581a4e46711f242b4878afa1d985f521e1",

"vout": 0,

"sriptSig": {

"asm": "3044022050587d300d060b912526164f24b1e24897ed9822b1d23fe9a7103e16b3d2102202b42a536a82582 \

a264953a3f534add41aa2feede150e5f22fd0673992010218891a675464d2d475d4f0 \

1b8d60fe418d99142ed1e5f8e45a997080d5",

"hex": "473044022050587d300d060b912526164f24b1e24897ed9822b1d23fe9a7103e16b3d2102202b42a536a82 \

582a264953a3f534add41aa2feede150e5f22fd067399201210218891a675464d2d475d4f0 \

1b8d60fe418d99142ed1e5f8e45a997080d5"

},

"sequene": 4294967295

}

℄,

We want to understand the entire process.
First, to spend the UTXO you need to be the owner of the addres,so verify that:

validateaddress BBz82bHDLKC3CGMHhJtNPbwTAYFGrRT1o6

{

"isvalid" : true,

"address" : "BBz82bHDLKC3CGMHhJtNPbwTAYFGrRT1o6",

"ismine" : true,

"issript" : false,

"pubkey" : "0218891a675464d2d475d4f01b8d60fe418d99142ed1e5f8e45a997080d5",

"isompressed" : true

}

Note how the validateaddress command also shows the public key and this is the second part
in the “asm” string in the spending transaction. You can alsoverify that this address does
indeed correspond to this public key:https://en.bitoin.it/wiki/Base58Chek_enoding#Creating_a_Base58Chek_string

Next, validate the public key to hash transformation, ripemd160(sha256(publickey)) using
python:

>>> import hashlib

>>> publikey = '0218891a675464d2d475d4f01b8d60fe418d99142ed1e5f8e45a997080d5' \

.deode('hex')

>>> s = hashlib.new('sha256', publikey).digest()

>>> r = hashlib.new('ripemd160', s).digest()

77

https://en.bitcoin.it/wiki/Base58Check_encoding#Creating_a_Base58Check_string

>>> s.enode('hex')

'78edaf5fe994729e8903271fb5f0f34fdf3e4614db1890b298b3807964505'

>>> r.enode('hex')

'52a79d832b31044faa63782ef252e7a4a34291'

>>>

or in R, not so subtle:

> publi<-"0218891a675464d2d475d4f01b8d60fe418d99142ed1e5f8e45a997080d5"

> as.harater(ripemd160(sha256(as.raw(strtoi(sapply(seq(1, nhar(publi), by=2), \

funtion(x) substr(publi, x, x+1)), 16L)))))

[1℄ "52a79d832b31044faa63782ef252e7a4a34291"

The final action is to validate the signature, which was the first part of the “asm” string in
the spending transaction, i.e.

3044022050587d300d060b912526164f24b1e24897ed9822b1d23fe9a7103e16b3d2102202b42a536a8 \

2582a264953a3f534add41aa2feede150e5f22fd067399201

This is validated usingOP_CHECKSIG which is the last operation in the locking script.
This opcode takes the two values left on the stack, namely thesignature and the public
key, and validates the signature. The process is fairly involved but can be found here:
https://en.bitoin.it/wiki/OP_CHECKSIG

These various parts of the spending transaction can be reasonably easily found in the hex
output fromgetrawtransation as follows:

getrawtransation 08a5430a667a700e7b913d189590856d035559d32a999a58d56f409f4d15

0100000001e121f55981dfa8a87b442f21167e4a481758081526d39a51110beb918e0de \

000000006a473044022050587d300d060b912526164f24b1e24897ed9822b1d23fe9a710 \

3e16b3d2102202b42a536a82582a264953a3f534add41aa2feede150e5f22fd067 \

399201210218891a675464d2d475d4f01b8d60fe418d99142ed1e5f8e45a997080d5 \

ffffffff0200f2052a010000001976a91401227043367a947a0754e44f00da1971d929d \

88a00a9a3b000000001976a9147283560a1a0e4d5ba2868e3e7a7d986816d4e188a00000000

The signature part is seen in green and the public key is givenin blue.
As this is the spending transaction it will send outputs to new addresses. The corresponding
opcodes are highlighted in yellow: 76=OP_DUP, a9=OP_HASH160, 88=OP_EQUALVERIFY
and ac=OP_CHECKSIG. All of these can be found athttps://en.bitoin.it/wiki/Sript.
Right after each 0xa9, one can see 0x14 (=20 decimal) followed by 20 bytes of data, these
being the hashed public keys for the new recipients.
Finally, look carefully at the hex code again and you will findthe string 00f2052a01 which
contains the byte representation of the amount, inreverse byte order, so to evaluate the
amount, take the reversed hex notation, 0x012a05f200, and convert this to decimal (in R) :

78

https://en.bitcoin.it/wiki/OP_CHECKSIG
https://en.bitcoin.it/wiki/Script

0x012a05f200

[1℄ 5e+09

These amounts are given in units of 10−8 SMLY (Smile-oshi?), so these are 50 SMLY, as
can be seen by looking athttps://hainz.ryptoid.info/smly/tx.dws?08a5430a667a700e7b913d189590856d035559d32a999a58d56f409f4d15.htm
This can also be computed directly using the algorithm to go from base 16 to base 10:

0 1 2 a 0 5 f 2 0 0

> ((((((((0*16+1)16+2)16+10)16+0)16+5)16+15)16+2)16+0)16+0 [1] 5e+09

The other amount is coded as the string00a9a3b00000000 which amounts to0x3b9aa00
or 10 SMLY.

23.6 A more detailed look at P2SH

A case study in P2SH is given below in the form of using amultisig address
Several tutorials are available on this topic
https://www.soroushjp.om/2014/12/20/bitoin-multisig-the-hard-way-understanding-raw-multisignature-bitoin-transations/

23.6.1 Handout

A detailed explanation of using a multisig address, from setting up through generating the
address to deposits and spending.

23.6.2 Example

The addresses are generated on three Linux computers using the command
smileyoin-li getnewaddress

on each computer separately.
In this case study the following 3 addresses were obtained, belonging to wallets on 3 diff-
erent computers :

BTU58m57Jo61jU3WeWujPj2aZ9LEYLnpYd

BP6AsFWQHPggnXNYTLssykopsx6r3y2Qnh

B66UXukGkPCgasKp9nVTwb93K7XGMzvjTX

By runningvalidateaddress on each computer, the corresponding public key is also
shown.
For example, thevalidateaddress command on computer 1 resulted in the following
output: :

smileyoind validateaddress BTU58m57Jo61jU3WeWujPj2aZ9LEYLnpYd

{

"isvalid" : true,

"address" : "BTU58m57Jo61jU3WeWujPj2aZ9LEYLnpYd",

"ismine" : true,

"issript" : false,

"pubkey" : "03971fbd9625b61432efef07dbf69f93653ea8a14104d71700e787463646",

"isompressed" : true,

"aount" : ""

}

79

https://chainz.cryptoid.info/smly/tx.dws?08a5430a667a700e7b913d1895908c56d035559cd32a999a5c8cd56f409f4d15.htm
https://www.soroushjp.com/2014/12/20/bitcoin-multisig-the-hard-way-understanding-raw-multisignature-bitcoin-transactions/

Note that requesting this exactvalidateaddress on another computer will not give the
public key, which will be required later. Thus thevalidateaddress command needs to
be executed on each of the three computers.
In our example we obtain:

Address - Publi key

BTU58m57Jo61jU3WeWujPj2aZ9LEYLnpYd - 03971fbd9625b61432efef07dbf69f93653ea8a14104d71700e787463646

BP6AsFWQHPggnXNYTLssykopsx6r3y2Qnh - 02b4169888f209b4ddb96132685882932405641ba69ba3ae38dd21f619983

B66UXukGkPCgasKp9nVTwb93K7XGMzvjTX - 0380304a74398b04af944831a4e514109f29d4b25f6530976d46db3fee65df

Normally the process would involve three different individuals as it is usually of importance
that the three signatures be independent. Thus no one personshould know all private keys
nor have access to the three wallets.
At this stage we have all the information to set up amultisig address where two of the
three signatures are required for spending.
We have two methods for generating the address. The first and simpler isaddmultisigaddress:

smileyCoin/sr/smileyoin-li addmultisigaddress 2 \

'["0380304a74398b04af944831a4e514109f29d4b25f6530976d46db3fee65df",\

"02b4169888f209b4ddb96132685882932405641ba69ba3ae38dd21f619983",\

"03971fbd9625b61432efef07dbf69f93653ea8a14104d71700e787463646"℄'

3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp

The output from the command is the “multisig address” or “script hash”,3KZ98MnX4Uzv7hcQNyA5QfMaGCqLvbF3Sp
Note that the backslashes are not a part of the command, whichshould be all on one line.
Note also that all three public keys are used when generatingthe address, which is not a
traditional address but a hash which can receive payments just like a regular address.
The second method is to use thereatemultisig command. This is very similar:

smileyoin-li reatemultisig 2

'["0380304a74398b04af944831a4e514109f29d4b25f6530976d46db3fee65df",\

"02b4169888f209b4ddb96132685882932405641ba69ba3ae38dd21f619983",\

"03971fbd9625b61432efef07dbf69f93653ea8a14104d71700e787463646"℄'

but provides more output, which will be used later:

{

"address" : "3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp",

"redeemSript" : "52210380304a74398b04af944831a4e514109f29d4b25f6530976d46db\

3fee65df2102b4169888f209b4ddb96132685882932405641ba69ba3a\

e38dd21f6199832103971fbd9625b61432efef07dbf69f93653ea8a141\

04d71700e78746364653ae"

}

Note that theredeemSript is on one line but is merely printed here on multiple lines (as
indicated by the backslash, the continuation symbol).
The redeemScript will be used later, when we will find a way to spend from the address.
Also note that the multisig address is the same as before: If you use the same three public
keys and request the same number of signatures, then the sameaddress is generated.
Now, note that the address is valid on all machines, but it is only “mine” on machines which
know how it was generated, as seen in this session on another one of the three:

80

smileyoin-li validateaddress 3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp

{

"isvalid" : true,

"address" : "3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp",

"ismine" : false

}

Now we can send to this “address”:: smileyCoin/src/smileycoind sendtoaddress 3KZ98MnX4Uzv7hcQNyA5QfMaGCqLvbF3Sp
1000 f05d1c98d761f1b53727436c2b168bcb4f4e17e92779d065a8ca928f17089e60

The transaction Id can be viewed by usinggetrawtransation followed bydeoderawtransation
:

smileyCoin/sr/smileyoind deoderawtransation \

010000000113adb392276310901597edfdae180daa60f71bbe1148419e27b\

d6718bf20000000006a47304402204d1ffe11d6d03d03912e6e495ff1172\

61530e17402d436069a6afa33b0a0220036436af10d60af4973b07d5e548\

ad8830eb4686354e6d71a8e766975338012103a75b127db90966b99ae8951\

a83b6fb57752f80138125042d14afea8e0d1ffffffff0200e87648170000\

0017a9143f4f3243886b8ed77a9d4d464d27be55ae7000b8700ff0f270b0000\

001976a91462745ef11b10e42f05799d1ea6e1289537d52f388a00000000

{

"txid" : "f05d198d761f1b537274362b168bb4f4e17e92779d065a8a928f17089e60",

"version" : 1,

"loktime" : 0,

"vin" : [

{

"txid" : "20bf1867d7be2198414e1b1bf760aad80e1dadf7e5901093176292b3ad13",

"vout" : 0,

"sriptSig" : {

"asm" : "304402204d1ffe11d6d03d03912e6e495ff117261530e17402d436069a6\

afa33b0a0220036436af10d60af4973b07d5e548ad8830eb4686354e6d71a8e76697533801

03a75b127db90966b99ae8951a83b6fb57752f80138125042d14afea8e0d1",

"hex" : "47304402204d1ffe11d6d03d03912e6e495ff117261530e17402d436069\

a6afa33b0a0220036436af10d60af4973b07d5e548ad8830eb4686354e6d\

71a8e766975338012103a75b127db90966b99ae8951a83b6fb57752f801381\

25042d14afea8e0d1"

},

"sequene" : 4294967295

}

℄,

"vout" : [

{

"value" : 1000.00000000,

"n" : 0,

"sriptPubKey" : {

"asm" : "OP_HASH160 3f4f3243886b8ed77a9d4d464d27be55ae7000b OP_EQUAL",

"hex" : "a9143f4f3243886b8ed77a9d4d464d27be55ae7000b87",

"reqSigs" : 1,

"type" : "sripthash",

"addresses" : [

81

"3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp"

℄

}

},

{

"value" : 479.00000000,

"n" : 1,

"sriptPubKey" : {

"asm" : "OP_DUP OP_HASH160 62745ef11b10e42f05799d1ea6e1289537d52f3 OP_EQUALVERIFY OP_CHECKSIG",

"hex" : "76a91462745ef11b10e42f05799d1ea6e1289537d52f388a",

"reqSigs" : 1,

"type" : "pubkeyhash",

"addresses" : [

"BDRfF71aUNzBWdgw3f7W8Ai1pwF7DVPiC8"

℄

}

}

℄

}

Check the amount in the P2SH address:https://hainz.ryptoid.info/smly/address.dws?3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp.htm

Creating the raw transaction

Recall that the UTXO is:: vout: 0 txid: f05d1c98d761f1b53727436c2b168bcb4f4e17e92779d065a8ca928f17089

and this needs to be specified in the transaction.
Now we are all set to try to spend the funds:

reaterawtransation '[{"txid":"f05d198d761f1b537274362b168bb4f4e17e92779d065a8a928f17089e60","vout":0}℄' \

'{"BNVZ3mJ2jadZtEfT8wyw6ttHVuZFos9Vw3":100,"3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp":899}'

0100000001609e08178f92aa865d07927e9174e4fb8b162b6432737b5f161d79815df00000000000\

ffffffff0200e40b54020000001976a9145e9feb90ddd06bb538e87ab13643121b5131388a002375\

ee1400000017a9143f4f3243886b8ed77a9d4d464d27be55ae7000b8700000000

Alternatively we may be on a machine which does not know aboutthe redeemScript and
then we need to provide it, aka Gavin Andersen:

smileyoin-li reaterawtransation \

'[{"txid":"f05d198d761f1b537274362b168bb4f4e17e92779d065a8a928f17089e60",\

"vout":0,\

"sriptPubKey":"a9143f4f3243886b8ed77a9d4d464d27be55ae7000b87",\

"redeemSript":"52210380304a74398b04af944831a4e514109f29d4b\

25f6530976d46db3fee65df2102b4169888f209b4ddb\

96132685882932405641ba69ba3ae38dd21f619983210\

3971fbd9625b61432efef07dbf69f93653ea8a14104\

d71700e78746364653ae"}℄' \

'{"BNVZ3mJ2jadZtEfT8wyw6ttHVuZFos9Vw3":100,"3KZ98MnX4Uzv7hQNyA5QfMaGCqLvbF3Sp":899}'

and this gives a fully constructed transaction as before:

82

https://chainz.cryptoid.info/smly/address.dws?3KZ98MnX4Uzv7hcQNyA5QfMaGCqLvbF3Sp.htm

0100000001609e08178f92aa865d07927e9174e4fb8b162b6432737b5f161d\

79815df00000000000ffffffff0200e40b54020000001976a9145e9feb90dd\

d06bb538e87ab13643121b5131388a002375ee1400000017a9143f4f324388\

6b8ed77a9d4d464d27be55ae7000b8700000000

This transaction needs to be signed by at least two of the three address-holders.
User 1:

pi�raspberrypi ~ $ smileyCoin/sr/smileyoind signrawtransation

0100000001609e08178f92aa865d07927e9174e4fb8b162b6432737b5f161d79815df00000000000ffffffff0200e40b54020000001976a9145e9feb90ddd06bb538e87ab13643121b5131388a002375ee1400000017a9143f4f3243886b8ed77a9d4d464d27be55ae7000b8700000000

{

"hex" : "0100000001609e08178f92aa865d07927e9174e4fb8b162b6432737b5f161d79815df000000000b500483045022100ad97bd7a35043187a1972db1127f3fd74e63f5e3b2a1660bff29a62ffb786a02201853bddb9ff9296e5a09b442455b39234de898e03a851671743f0a6e71900146952210380304a74398b04af944831a4e514109f29d4b25f6530976d46db3fee65df2102b4169888f209b4ddb96132685882932405641ba69ba3ae38dd21f6199832103971fbd9625b61432efef07dbf69f93653ea8a14104d71700e78746364653aeffffffff0200e40b54020000001976a9145e9feb90ddd06bb538e87ab13643121b5131388a002375ee1400000017a9143f4f3243886b8ed77a9d4d464d27be55ae7000b8700000000",

"omplete" : false

}

User 2 :

signrawtransation

0100000001609e08178f92aa865d07927e9174e4fb8b162b6432737b5f161d79815df000000000b500483045022100ad97bd7a35043187a1972db1127f3fd74e63f5e3b2a1660bff29a62ffb786a02201853bddb9ff9296e5a09b442455b39234de898e03a851671743f0a6e71900146952210380304a74398b04af944831a4e514109f29d4b25f6530976d46db3fee65df2102b4169888f209b4ddb96132685882932405641ba69ba3ae38dd21f6199832103971fbd9625b61432efef07dbf69f93653ea8a14104d71700e78746364653aeffffffff0200e40b54020000001976a9145e9feb90ddd06bb538e87ab13643121b5131388a002375ee1400000017a9143f4f3243886b8ed77a9d4d464d27be55ae7000b8700000000

{

"hex" : "0100000001609e08178f92aa865d07927e9174e4fb8b162b6432737b5f161d79815df000000000fdfe0000483045022100b33d230fa677230b05f352a15481d4ad6792e579f2d559069563ad4123ebd022075f419d4a2a5fb242d840491b664ba69ae5fd2547adb790b79b1aa8ff34e801483045022100ad97bd7a35043187a1972db1127f3fd74e63f5e3b2a1660bff29a62ffb786a02201853bddb9ff9296e5a09b442455b39234de898e03a851671743f0a6e71900146952210380304a74398b04af944831a4e514109f29d4b25f6530976d46db3fee65df2102b4169888f209b4ddb96132685882932405641ba69ba3ae38dd21f6199832103971fbd9625b61432efef07dbf69f93653ea8a14104d71700e78746364653aeffffffff0200e40b54020000001976a9145e9feb90ddd06bb538e87ab13643121b5131388a002375ee1400000017a9143f4f3243886b8ed77a9d4d464d27be55ae7000b8700000000",

"omplete" : true

}

Note how the second signature generates a valid transaction(complete=true).
This transaction is seen as
https://hainz.ryptoid.info/smly/tx.dws?b781767195ae4ef0f0aa0da5505ed8fd90f6617b7ee8dd7beb2256e68.htm

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

83

https://chainz.cryptoid.info/smly/tx.dws?b781767195aec4ecf0f0aa0dca550c5ecd8fd90f6617b7eec8cdd7beb2256e68.htm

24 Fun and games with Bitcoin and SmileyCoin

24.1 Puzzles, poetry, bounties etc etc

The Bitcoin blockchain has been used for many things other than transferring funds.
Some examples of puzzles in the blockchain:
https://en.bitoin.it/wiki/Sript#Transation_puzzle

Poetry and other text has also been inserted into the chain
The blockchain also contains bounties: They are automatically paid out to anyone who
can solve a specified task. Similar to generic puzzles, a bounty can also serve a purpose.
See below for bounties to find sha collisions.

24.2 Sticking data into the blockchain: the data field

The OP_RETURN operator can be used to insert data into a transaction
This is done using the data field of the createrawtransactioncommand

24.2.1 Examples

Consider the text

:: Betzyy is the double or nothing game BEtZyyYqDXqmRJJ45nnL15cuASfiXg9Yik abcd-
efgh

which is 80 single-byte characters.
When encoded using 80 hexadecimal ASCII codes, this string becomes

4265747a79792069732074686520646f7562665206f \

72206e6f7468696e672067616d65204245745a797959 \

714458716d524a4a34356e6e4313563754153666958 \

673959696b206162636465666768

(all on one line, no spaces).

smileyoin-li reaterawtransation

'[{"txid":"b9d1f1b74ff14451dd6bfb1540d7d4f06080538edf99335b1a7ad4073a","vout":1}℄'

'{"BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik":6,

"data":"4265747a79792069732074686520646f7562665206f

72206e6f7468696e672067616d65204245745a797959

714458716d524a4a34356e6e4313563754153666958

673959696b206162636465666768"}'

The resulting hex string can then be signed and broadcast to the network.
In this case, the resulting transaction is

629a1d1e4680d2644726672d33022737d637f86a2a441b2217feba174e

which can be seen in a blockchain explorer or viewed using a data-enabled wallet.
:
01000000013a07d47a1abcc53399df8e5380c0064f7d0d54b1bfd61dcc4514ff741b1fcdb90100000000ffffffff0200

84

https://en.bitcoin.it/wiki/Script#Transaction_puzzle
https://chainz.cryptoid.info/smly/tx.dws?c629a1d1e4680d26c44726c672d33022737d637f8c6ca2a441b221c7feba174e.htm

24.3 Blockchain elections

A cryptocurrency can be used for elections
A voter receives a specialcolored coin as a ballot
The voter sends the coin to a preferred address corresponding to voting for that address
Special attention needs to be given to anonymity

24.3.1 Handout

A mechanism for blockchain-based voting has been set up for SmileyCoin.

For several simple examples, seehttp://explore.olorvote.org/

The central idea is for the voters to receive special coins,colored coins, which are marked
and only sent to voters. A candidate or survey option is associated with anaddress. Each
voter can then send to their address of choice.
The tricky part is not in the voting but in thevoter registration where anonymity needs to
be ensured. This is done by splitting the registration into two main components:

• The voter obtains an Anonymous Id from anAuthentication Server (AS)
• The voter uses the Anonymous Id to register an address in aVoting Registry (VR)

The AS and the VR need to be different entities. In SmileyCoincase studies in 2020 the
Authentication Server was based on a Canvas server at the University of Iceland, which
provides an official identification to a tutor-web server which randomlygenerates and
signsthe Anonymous Id. The signature uses a private key in a SmileyCoin wallet owned
by the tutor-web. The tutor-web does not store the Id but merely returns it to the user
through Canvas.
The signature serves as an anonymous proof of identity and issubmitted through a URL
to the Voting Registry, which validates the signature and stores the address. A user may
submit multiple addresses but only the last one is stored.
Once the addresses have been registered, theVoting Authority obtains the address list and
sends out a colored coin to each address. Since the address list is anonymized it can be
stored on a public web-page.

The software for the process is available athttps://github.om/Ingimarsson/olorvote

For a description of colored coins, seehttps://en.bitoin.it/wiki/Colored_Coins

24.4 Bounties: Reporting hash collisions

Taken fromhttps://en.bitoin.it/wiki/Sript#Inentivized_finding_of_hash_ollisions

24.4.1 Example

In 2013 Peter Todd created scripts that result in true if a hash collision is found. Bitcoin
addresses resulting from these scripts can have money sent to them. If someone finds a
hash collision they can spend the bitcoins on that address, so this setup acts as an incentive
for somebody to do so.
For example the SHA1 script:

• scriptPubKey:OP_2DUP OP_EQUAL OP_NOT OP_VERIFY OP_SHA1 OP_SWAP OP_SHA1

OP_EQUAL

85

http://explore.colorvote.org/
https://github.com/Ingimarsson/colorvote
https://en.bitcoin.it/wiki/Colored_Coins
https://en.bitcoin.it/wiki/Script#Incentivized_finding_of_hash_collisions

• scriptSig: <preimage1> <preimage2>

What this means:

OP_2DUP 110 0x6e x1 x2 x1 x2 x1 x2 Dupliates the top two stak items.

OP_EQUAL 135 0x87 x1 x2 True / false Returns 1 if the inputs are exatly equal, 0 otherwise.

OP_NOT 145 0x91 in out If the input is 0 or 1, it is flipped. Otherwise the output will be 0.

OP_VERIFY 105 0x69 True / false Nothing / fail Marks transation as invalid if top stak value is not true. The top stak value is removed.

OP_SHA1 167 0xa7 in hash The input is hashed using SHA-1.

OP_SWAP 124 0x7 x1 x2 x2 x1 The top two items on the stak are swapped.

OP_SHA1 167 0xa7 in hash The input is hashed using SHA-1.

OP_EQUAL 135 0x87 x1 x2 True / false Returns 1 if the inputs are exatly equal, 0 otherwise.

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

86

25 The SmileyCoin Fund revisited

25.1 Background

The SmileyCoin Fund has been briefly explained earlier

25.2 Purpose of the Fund

The SmileyCoin Fund is set up to support education, educational technologies and proj-
ects which enhance the use of tutor-web and SmileyCoin

25.3 The Board of the SmileyCoin Fund

A formal Fund needs to have a process to handle applications
The SmileyCoin Fund has 4 Board members, nominated by 4 different organisations

25.3.1 Handout

The SmileyCoin Fund has aBoard which accept applications for funding.
The Board has members from four different organisations, including the Rector’s office of
the University of Iceland, as described in a public announcement.

25.4 The Mandate

A formal Mandate has been written and signed by all parties tothe Board of the Smi-
leyCoin Fund.
The signed Mandate is publicly available.

25.4.1 Handout

The Board has a formal mandate.

25.5 The multisig address for the Fund

The entire SmileyCoin Fund is stored in
onemultisig address is available.
A technical document has been written to describe the details of how to operate the
address

25.5.1 Handout

The entire SmileyCoin Fund is stored in onemultisig address

3JT9LAzuMChCifVoQQK18BQV9z4BzpbQVH

This address can be viewed in a SmileyCoin block explorer .
A technical document has been written to describe the details of how to operate the address.

25.6 Creating, signing and broadcasting a multisig transaction

Some care is needed when sending from a multisig address

87

https://english.hi.is/news/supporting_smileycoin_reward_system
http://bit.ly/SMLYmandate
https://chainz.cryptoid.info/smly/address.dws?3JT9LAzuMChCifVoQQK18BQV9z4BzpbQVH.htm
https://chainz.cryptoid.info/smly/address.dws?3JT9LAzuMChCifVoQQK18BQV9z4BzpbQVH.htm

25.7 Signing the Mandate electronically

In addition to signing a piece of paper, a corresponding PDF file can be signed
electronically.

25.8 Storing the signatures in public

Once a document has been signed, the signatures can be made public
The SMLY blockchain is the obvious place to store SmileyCoin-related signatures

25.8.1 Handout

Step 1: Get the final document in shape, including official signatures and addresses and
scan it back in as PDF. This is in file mandate_signed.pdf
Step 2: Get the hash of the file

sha256sum < mandate_signed.pdf

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a -

Step 3: each party signs the message

UI:

signmessage BPbwDW2AWsE9KmFDRi1K6QrUdrHvkfbxfn

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

IOYu+G3MZibkoVJigY3VaveGWvFqkbWliiqkp5Q/AYC01u8Rffj3QypV6Pyb6yVLdTdlqIp5+H8y/pm/0dVMTNk=

EIAS:

signmessage BSZNAqFuQCH3hZTqwmrqv8LDYPJuEYWfyv

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

H5Wr/hJYWTgfZp2fPHAzh5wU7VFuARysMCXekIgOq7rwK9kArEURn9Zy9g430yFC4UyMwamwOVIu1HYPV9nxpq8=

STL:

signmessage BLE92S2zXshazZ8GrojAXp8yD54UGRHDk

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

IJ2pW06+guaTtmW6MdzWxafjviD6MUvRM0Wssfm3Hqtesap6gRFQ6U2VT85/aRs1AvUnTeQRuQQ+e1HhGbxz4=

AMI:

signmessage BMv1CU9d9ghzB5HdtahWYz9N6NGpFVpSVB

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

IMB3gDq/al4h9GsaEz7UtypHbCrD7daQ2qIi0s1SJhguYT0J0FVgLk4HrMU2Q6mCdbfVOvUlOt0WGh6gMw67Q=

Step 4: Verify all signatures
UI

verifymessage BPbwDW2AWsE9KmFDRi1K6QrUdrHvkfbxfn

'IOYu+G3MZibkoVJigY3VaveGWvFqkbWliiqkp5Q/AYC01u8Rffj3QypV6Pyb6yVLdTdlqIp5+H8y/pm/0dVMTNk='

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

EIAS

88

verifymessage BSZNAqFuQCH3hZTqwmrqv8LDYPJuEYWfyv

'H5Wr/hJYWTgfZp2fPHAzh5wU7VFuARysMCXekIgOq7rwK9kArEURn9Zy9g430yFC4UyMwamwOVIu1HYPV9nxpq8='

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

STL

verifymessage BLE92S2zXshazZ8GrojAXp8yD54UGRHDk

'IJ2pW06+guaTtmW6MdzWxafjviD6MUvRM0Wssfm3Hqtesap6gRFQ6U2VT85/aRs1AvUnTeQRuQQ+e1HhGbxz4='

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

AMI

verifymessage BMv1CU9d9ghzB5HdtahWYz9N6NGpFVpSVB

IMB3gDq/al4h9GsaEz7UtypHbCrD7daQ2qIi0s1SJhguYT0J0FVgLk4HrMU2Q6mCdbfVOvUlOt0WGh6gMw67Q=

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

Step 5: Convert all the signatures to hex

python3

>>> import base64
UI

base64.deodestring(b'IOYu+G3MZibkoVJigY3VaveGWvFqkbWliiqkp5Q/AYC01u8R

ffj3QypV6Pyb6yVLdTdlqIp5+H8y/pm/0dVMTNk=').hex()

'20e62ef86d6626e4a15262818dd56af7865af16a91b5a58a2aa4a7943f0180

b4d6ef117df8f7432a55e8f9beb254b753765a88a79f87f32fe99bfd1d544d9'

EIAS

base64.deodestring(b'H5Wr/hJYWTgfZp2fPHAzh5wU7VFuARysMCXekIgOq7rwK9kArE

URn9Zy9g430yFC4UyMwamwOVIu1HYPV9nxpq8=').hex()

'1f95abfe125859381f669d9f3703387914ed516e011a3025de90880eabbaf02bd

900a45119fd672f60e37d32142e1481a9b039522ed4760f57d9f1a6af'

STL

>>> base64.deodestring(b'IJ2pW06+guaTtmW6MdzWxafjviD6MUvRM0Wssfm3Hqtesap6gR

FQ6U2VT85/aRs1AvUnTeQRuQQ+e1HhGbxz4=').hex()

'209da95b4ebe82e694ed996e87735b171a7e3be20fa314bd13345ab1f9b71eab5eb1aa7a811

150e94d954fe7f691b3502f5274de411b9043e7b51e119b73e'

AMI

>>> base64.deodestring(b'IMB3gDq/al4h9GsaEz7UtypHbCrD7daQ2qIi0s1SJhguYT0J0FVgLk4HrMU

2Q6mCdbfVOvUlOt0WGh6gMw67Q=').hex()

'20077803a9fda97887d1a684fb52da91db0ab0fb75a436a888b4b35489860b984f427415580b9381e

b314d90ea609d6df54ebd494eb7458687a720330ebb4'

Step 6: Stick the signatures into a single block
Next we need to pick any 4 UTXOs and create 4 transactions, which spend those outputs
and send the signatures as data in these transactions, one per transaction. EIAS did this by
setting up 4 UTXOs to a new address:

89

gstefans�eias_master:~$ smileyoin-li sendtoaddress B9W6pvnb2WZpPWTA57Z9HZkbe7W3ZNvT1G 11

b86761387570529e2905ba50df5912410a4f9a6d52411e3060d7128e8e0

gstefans�eias_master:~$ smileyoin-li sendtoaddress B9W6pvnb2WZpPWTA57Z9HZkbe7W3ZNvT1G 11

22fdea0a96ede1680407dd96a821ff60989dfb245e51276403a21f20

gstefans�eias_master:~$ smileyoin-li sendtoaddress B9W6pvnb2WZpPWTA57Z9HZkbe7W3ZNvT1G 11

8235efa0a79b9fe42de292f51bf3860a25719e5a7e511953185a7bdb97f

gstefans�eias_master:~$ smileyoin-li sendtoaddress B9W6pvnb2WZpPWTA57Z9HZkbe7W3ZNvT1G 11

15daa264763a681b08ef8e50a53a8e202e638e1193a3e4f2e4065fa1

Check:

smileyoin-li deoderawtransation `smileyoin-li getrawtransation

b86761387570529e2905ba50df5912410a4f9a6d52411e3060d7128e8e0`

smileyoin-li deoderawtransation `smileyoin-li getrawtransation

22fdea0a96ede1680407dd96a821ff60989dfb245e51276403a21f20`

smileyoin-li deoderawtransation `smileyoin-li getrawtransation

8235efa0a79b9fe42de292f51bf3860a25719e5a7e511953185a7bdb97f`

smileyoin-li deoderawtransation `smileyoin-li getrawtransation

15daa264763a681b08ef8e50a53a8e202e638e1193a3e4f2e4065fa1`

It is seen that each has a vout=0 of 11 SMLY to B9W6pvnb2WZpPWTA57Z9HZkbe7W3ZNvT1G.
Next we set up the actual commands. Note that in each case we only transmit 10 SMLY
to the destination, leaving 1 SMLY for the transaction fee. We will simply use Betzyy, the
EIAS donation address, for the destination.
So the 4 signatures:
:

20e62ef86d6626e4a15262818dd56af7865af16a91b5a58a2aa4a7943f0180b4d6ef117df8f7432a55e8f9beb254b753765a88a79f87f32fe99bfd1d544d9

1f95abfe125859381f669d9f3703387914ed516e011a3025de90880eabbaf02bd900a45119fd672f60e37d32142e1481a9b039522ed4760f57d9f1a6af

209da95b4ebe82e694ed996e87735b171a7e3be20fa314bd13345ab1f9b71eab5eb1aa7a811150e94d954fe7f691b3502f5274de411b9043e7b51e119b73e

20077803a9fda97887d1a684fb52da91db0ab0fb75a436a888b4b35489860b984f427415580b9381eb314d90ea609d6df54ebd494eb7458687a720330ebb4

need to be paired with the 4 UTXOs

b86761387570529e2905ba50df5912410a4f9a6d52411e3060d7128e8e0

22fdea0a96ede1680407dd96a821ff60989dfb245e51276403a21f20

8235efa0a79b9fe42de292f51bf3860a25719e5a7e511953185a7bdb97f

15daa264763a681b08ef8e50a53a8e202e638e1193a3e4f2e4065fa1

in transactions, using the createrawtransaction command,i.e. using

smileyoin-li reaterawtransation "[{\"txid\":\"TTTTT\",\"vout\":0}℄" "

{"BEtZyyYqDXqmRJJ45nnL15cuASfiXg9Yik":10,"data":"SSSSS"}"

where TTTTT is the transaction Id for the UTXO and SSSSS is thehex representation of
the signature.

90

smileyoin-li reaterawtransation

"[{\"txid\":\"b86761387570529e2905ba50df5912410a4f9a6d52411e3060d7128e8e0\",

\"vout\":0}℄"

"{\"BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik\":10,

\"data\":\"20e62ef86d6626e4a15262818dd56af7865af16a91b5a58a2aa4a7943f01

80b4d6ef117df8f7432a55e8f9beb254b753765a88a79f87f32fe99bfd1d544d9\"}"

smileyoin-li reaterawtransation

"[{\"txid\":\"22fdea0a96ede1680407dd96a821ff60989dfb245e51276403a21f20\",

\"vout\":0}℄"

"{\"BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik\":10,

\"data\":\"1f95abfe125859381f669d9f3703387914ed516e011a3025de90880eabbaf02bd900a

45119fd672f60e37d32142e1481a9b039522ed4760f57d9f1a6af\"}"

smileyoin-li reaterawtransation

"[{\"txid\":\"8235efa0a79b9fe42de292f51bf3860a25719e5a7e511953185a7bdb97f\",

\"vout\":0}℄" "{\"BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik\":10,

\"data\":\"209da95b4ebe82e694ed996e87735b171a7e3be20fa314bd13345ab1f9b

71eab5eb1aa7a811150e94d954fe7f691b3502f5274de411b9043e7b51e119b73e\"}"

smileyoin-li reaterawtransation

"[{\"txid\":\"15daa264763a681b08ef8e50a53a8e202e638e1193a3e4f2e4065fa1\",

\"vout\":0}℄" "{\"BEtZyyYqDXqmRJJ45nnL15uASfiXg9Yik\":10,

\"data\":\"20077803a9fda97887d1a684fb52da91db0ab0fb75a436a888b4b35489860b

984f427415580b9381eb314d90ea609d6df54ebd494eb7458687a720330ebb4\"}"

Finally each is signed

smileyoin-li signrawtransation

0100000001e0e828710d6c301e41526d9acfa4102491c5dfc0a55b90e22905578713c667b80000000000ffff

smileycoin-cli signrawtransaction

0100000001201fa203642751ce45b2cf9d9860fc1f826a9cdd07c48016deecc6a9a0de2f2c0000000000ffffff

smileycoin-cli signrawtransaction

0100000001cf97bcbda7c5c8319511e5a7e519c7250a86f31bf592e22de49f9ba7a0ef35820000000000ffffffff0200ca9a3b0000
smileycoin-cli signrawtransaction

0100000001c1fa65402e4f3e3ac9118e632e208e3aa5508eef08cb81c63a7664c2cada15cc0000000000ffffff

and broadcast using sendrawtransaction
These transactions were mined into block 538357.

25.9 Validating data from the blockchain

To check data stored in the blockchain, the reverse of the insertion sequence needs to be
used.

91

25.9.1 Handout

It is not enough to be able to store data on the blockchain, as it needs to be possible to
verify the data and check any claims made.
First, look at the block. This is block 538357 and can be fetched directly using getblockhash
followed by getblock, or viewed using a blockchain explorer:

https://hainz.ryptoid.info/smly/searh.dws?q=538357

Pick one of these transactions, say a40d1b13ffb741d64e6630e0726ef82397d0930f93d639fa3126a519ea49b4af
to find the data which goes with the OP_RETURN operator:

6a4120e62ef86d6626e4a15262818dd56af7865af16a91b5a

58a2aa4a7943f0180b4d6ef117df8f7432a55e8f9beb254b75

3765a88a79f87f32fe99bfd1d544d9

(all on one line with no spaces).
As with other hex codes, each character is codes as a two-digit hexadecimal number.
The first two are 6a and 41 and the rest is the actual data string. The 6a is the code for
OP_RETURN (see this link).
The actual hex coding is therefore 130 hexadecimal numbers or 65 bytes and since 65 in
decimal is 41 hex (or 0x41), this explains the second code, 41, being the length of the data
field.
To decode the string, a few python3 commands are useful:

odes.enode(odes.deode('20077803a9fda97887d1a684fb52da91db0ab

0fb75a436a888b4b35489860b984f427415580b9381eb314d90ea609d6df54ebd494eb7458687a720330ebb4', 'hex'),

‘base64’).decode() ‘IMB3gDqc/al4h9GsaEz7UtypHbCrD7daQ2qIi0s1SJhguYT0J0FVgLk4HrMU2Q6mCd

The two newline characters need to be removed from this string, resulting in a signature of

'IMB3gDq/al4h9GsaEz7UtypHbCrD7daQ2qIi0s1SJhguYT0J0FVgLk4HrMU2Q6mCdbfVOvUlOt0WGh6gMw67Q='

Recall that the original hash to be signed was

09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a

and it was signed by 4 addresses:

BPbwDW2AWsE9KmFDRi1K6QrUdrHvkfbxfn

BSZNAqFuQCH3hZTqwmrqv8LDYPJuEYWfyv

BLE92S2zXshazZ8GrojAXp8yD54UGRHDk

BMv1CU9d9ghzB5HdtahWYz9N6NGpFVpSVB

One can now verify this signature using the appropriate address:

smileyoin-li verifymessage BMv1CU9d9ghzB5HdtahWYz9N6NGpFVpSVB

'IMB3gDq/al4h9GsaEz7UtypHbCrD7daQ2qIi0s1SJhguYT0J0FVgLk4HrMU2Q6mCdbfVOvUlOt0WGh6gMw67Q='

'09d3b7814390b0badfdf9550d848396f9ee7be202f861f6678d71169ba0f9a'

which returns true as it should.

92

https://en.bitcoin.it/wiki/Script/

25.10 Open accounting on the blockchain

Transparency is one part of good governance
It is important for formal funds to demonstrate where grant allocations go
This can be done using a cryptocurrency and announcing exactly what is being done
with the funds

25.10.1 Handout

Announcements of spending are sent out on Twitter.
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

93

https://twitter.com/SmileycoinNews/status/1164017294567256064

26 Atomic swaps

26.1 Background

• There is a considerable demand for exchanging coins
• This is mostly done on cryptocurrency exchanges
• An exchange is ahoneypotand hacks are common
• Some exchanges are nowdecentralised

In a truly decentralised exchange the exchange should not hold any user funds: The
transaction should be solely between users
The atomic swap is an important concept
Atomic swaps need timeout mechanisms to replace trust

26.2 timeouts
A timeout on a transaction implies that it can not be transmitted before the time limit A
timeout on a UTXO implies that it can not be spent before the time limit
CLTV is OP_CHECKLOCKTIMEVERIFY
See Handout and Example for more detail

26.2.1 Examples

Example of use (from here)
Using OP_CHECKLOCKTIMEVERIFY it is possible to make funds provably unspenda-
ble until a certain point in the future.

sriptPubKey: <expiry time> OP_CHECKLOCKTIMEVERIFY OP_DROP

OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY

OP_CHECKSIG

sriptSig: <sig> <pubKey>

26.2.2 Handout

There are several timeout features in the Bitcoin protocol,implemented as operators in
Bitcoin’s scrypt language.
Here we will consider OP_CHECKLOCKTIMEVERIFY, implemented as BIP: 65.
This description of OP_CHECKLOCKTIMEVERIFY, or CLTV is taken mostly from the
Bitcoin wiki and the initial CLTV proposal as an improvementto the Bitcoin protocol
BIP: 65.
CLTV marks a transaction as invalid if the top stack item is greater than the transaction’s
nLockTime field, otherwise script evaluation continues as though an OP_NOP was execu-
ted. Transaction is also invalid if

1. the stack is empty; or
2. the top stack item is negative; or
3. the top stack item is greater than or equal to 500000000 while the transaction’s

nLockTime field is less than 500000000, or vice versa; or
4. the input’s nSequence field is equal to 0xffffffff. The precise semantics are described

in BIP 0065.

94

https://en.bitcoin.it/wiki/Script#Freezing_funds_until_a_time_in_the_future
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

26.3 an atomic swap algorithm

by TierNolan
(see Handout)

26.3.1 Handout

more detail to come. . .

A piks a random number x

A reates TX1: "Pay w BTC to <B's publi key> if (x for H(x) known and signed by B) or (signed by A and B)"

A reates TX2: "Pay w BTC from TX1 to <A's publi key>, loked 48 hours in the future, signed by A"

A sends TX2 to B

B signs TX2 and returns to A

1) A submits TX1 to the network

B reates TX3: "Pay v alt-oins to <A-publi-key> if (x for H(x) known and signed by A) or (signed by A and B)"

B reates TX4: "Pay v alt-oins from TX3 to <B's publi key>, loked 24 hours in the future, signed by B"

B sends TX4 to A

A signs TX4 and sends bak to B

2) B submits TX3 to the network

3) A spends TX3 giving x

4) B spends TX1 using x

This is atomic (with timeout). If the process is halted, it can be reversed no matter when it
is stopped.

Before 1: Nothing publi has been broadast, so nothing happens

Between 1 and 2: A an use refund transation after 48 hours to get his money bak

Between 2 and 3: B an get refund after 24 hours. A has 24 more hours to get his refund

After 3: Transation an be ompleted by eah of the 2 parties

- A must spend his new oin within 24 hours or B an laim the refund and keep his oins

- B must spend his new oin within 48 hours or A an laim the refund and keep his oins

For safety, both should complete the process with lots of time until the deadlines.

26.4 Alternatives

Several decentralised exchanges (DEXs) exist, but the definition of a DEX is not clear
Examples:
Barterdex:https://komodoplatform.om/deentralized-exhange/
Bit Square (bisq):https://bisq.network/
etc
Further reading on atomic swaps etc:
Vitalin Buterik: https://stati1.squarespae.om/stati/55f73743e4b051f0b02f/t/5886800ed0f68de303349b1/1485209617040/Chain+Interoperability.pdf
Kyle Samani:https://www.oindesk.om/opportunity-interoperable-hains-hains/
Adrian Mathieu/Viacoin:https://ethereumworldnews.om/viaoin-developers-suessfully-ompleted-atomi-swap-liteoin/

95

https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://komodoplatform.com/decentralized-exchange/
https://bisq.network/
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://www.coindesk.com/opportunity-interoperable-chains-chains/
https://ethereumworldnews.com/viacoin-developers-successfully-completed-atomic-swap-litecoin/

26.5 The missing link: Information flow

Recall the process:

• A creates TX1: “Pay w BTC to <B’s public key> if (x for H(x) known and signed
by B) or (signed by A and B)”

• B creates TX3: “Pay v alt-coins to <A-public-key> if (x for H(x) known and
signed by A) or (signed by A and B)”

Sobefore any exchange is set up,

• A needs to know that B wants to buy w BTC
• B needs to know that A will sell for v alt-coins

Then, to be able tostart the exchange

• A needs to know B’s BTC public key
• B needs to know A’s alt-coin public key

This information exchange needs to be done outside the transactions, as an MoU or
“announcement(s) of intent”. The info exchange does NOT need to be binding! The
info exchange should cost something to avoid spam.
During the exchangethe parties need to communicate:

• A sends TX2 to B
• B signs TX2 and returns to A
• B sends TX4 to A
• A signs TX4 and sends back to B

The entire process needs to be without trust and without knowing who the other
party is

26.6 Announcing the atomic swap

• Use a forum (telegram etc)?
• Use a specialised channel (BarterDex/Bisq)?
• Use an existing coin (mempool)?
• Alice should in principle be able to use the Smileycoin blockchain to announce

• SELL 1000 SMLY for 1 LTC

• and Bob could accept the offer by responding

• ACCEPT offer TxId‘

• etc.

Could be done through modifications of smileycoin-qt
A draft proposal:https://tutor-web.info/news-1/announing-intent-ross-hain-atomi-swap/
Dedicated wallets?https://atomiwallet.io/ (or scam?)

96

https://tutor-web.info/news-1/announcing-intent-cross-chain-atomic-swap/
https://atomicwallet.io/

26.7 Atomic swaps between chains: Litecoin and Bitcoin

One of the first ones:https://twitter.om/SatoshiLite/status/911328252928643072

10 LTC for 0.1137 BTC
The Litecoin side:https://insight.liteore.io/address/ML9CNJBtSPMABYCQV58P2t4M7MpPRJK95
The Bitcoin side:https://insight.bitpay.om/address/3HRWsfjpBHiJ7hC3jKJV5nbHMeBgoCPHDq
See alsohttps://github.om/topis/atomi-swap for many, many atomic swap
projects.

26.7.1 Handout

Bitcoin 0bb5a53a9c7e84e2c45d6a46a7b72afc2feffb8826b9aeb3848699c6fd856480
(note the locktime)
(takes the one below - 92d9c9. . . - as input)

{

"txid": "0bb5a53a97e84e245d6a46a7b72af2feffb8826b9aeb38486996fd856480",

"hash": "0bb5a53a97e84e245d6a46a7b72af2feffb8826b9aeb38486996fd856480",

"version": 2,

"size": 308,

"vsize": 308,

"weight": 1232,

"loktime": 1506182939,

"vin": [

{

"txid": "92d99d5d52618b32484032a22f16d084841ed29e1b010119425a4e76d24",

"vout": 1,

"sriptSig": {

"asm": "30440220748121e83bee8287a2506a65256f5bf6b305d6948aa334a063dd70472a50002204b42d5fd9d28a73f9e3f03f50e2583802a02883897a244854fd3225e9[ALL℄ 025d15dd393000f9f9b8adf06d27570959d13764db3a99d0f58361aba0d 6b7dba080648b0a9ed0a795ae167f5124703a17eba9a3d0f80162f0e330 1 63a61425b442dfd70ed65b990956844525527d9ab38876a9143aa29799bae62940f323558e0420359aa0fdf867041b87659b17576a91470d0975d5053b3291e0bad408d88e41d9ef5366888a",

"hex": "4730440220748121e83bee8287a2506a65256f5bf6b305d6948aa334a063dd70472a50002204b42d5fd9d28a73f9e3f03f50e2583802a02883897a244854fd3225e90121025d15dd393000f9f9b8adf06d27570959d13764db3a99d0f58361aba0d206b7dba080648b0a9ed0a795ae167f5124703a17eba9a3d0f80162f0e3305145163a61425b442dfd70ed65b990956844525527d9ab38876a9143aa29799bae62940f323558e0420359aa0fdf867041b87659b17576a91470d0975d5053b3291e0bad408d88e41d9ef5366888a"

},

"sequene": 4294967295

}

℄,

"vout": [

{

"value": 0.13336680,

"n": 0,

"sriptPubKey": {

"asm": "OP_DUP OP_HASH160 5d8023d65e36857265df8479206937b64264b9 OP_EQUALVERIFY OP_CHECKSIG",

"hex": "76a9145d8023d65e36857265df8479206937b64264b988a",

97

https://twitter.com/SatoshiLite/status/911328252928643072
https://insight.litecore.io/address/ML9CNJBtSPMABYcCQV58P2t4M7MpPRJK95
https://insight.bitpay.com/address/3HRWsfjpBHiJ7hC3jKJV5nbHMeBgoCPHDq
https://github.com/topics/atomic-swap

"reqSigs": 1,

"type": "pubkeyhash",

"addresses": [

"19XPM9tgB2Avj2nF1S5JSM9zJM6oGyH41w"

℄

}

}

℄

}

Bitcoin 92d9c9d5d52c618b32484032a22f16dc084841ed29ec1b01c0119425a4e76d24
(forms input to the one above)

{

"txid": "92d99d5d52618b32484032a22f16d084841ed29e1b010119425a4e76d24",

"hash": "92d99d5d52618b32484032a22f16d084841ed29e1b010119425a4e76d24",

"version": 2,

"size": 224,

"vsize": 224,

"weight": 896,

"loktime": 0,

"vin": [

{

"txid": "82ae3ad630957a022ef5648ee6bd1883793f34adb1273532feb842b90d07d7",

"vout": 1,

"sriptSig": {

"asm": "3045022100eabf4e2d7a45b54b951624e38aaed718598e5091ff3ebf2015db6aef9d702203ff1355dd037af3226250a1aa0e0b31eb829302fa6e60d179a51311486e9[ALL℄ 02fe470a170035bf78d9447629a6815e08501e9888a5a5db918186b8d4175",

"hex": "483045022100eabf4e2d7a45b54b951624e38aaed718598e5091ff3ebf2015db6aef9d702203ff1355dd037af3226250a1aa0e0b31eb829302fa6e60d179a51311486e9012102fe470a170035bf78d9447629a6815e08501e9888a5a5db918186b8d4175"

},

"sequene": 4294967294

}

℄,

"vout": [

{

"value": 0.01629776,

"n": 0,

"sriptPubKey": {

"asm": "OP_DUP OP_HASH160 462f9546ae2bf54107191b42d22419f928995e OP_EQUALVERIFY OP_CHECKSIG",

"hex": "76a914462f9546ae2bf54107191b42d22419f928995e88a",

"reqSigs": 1,

"type": "pubkeyhash",

"addresses": [

"17Q7JZsAn4iKotrjpfk7H5WzLnznRVyWSU"

℄

}

},

{

"value": 0.13370000,

"n": 1,

"sriptPubKey": {

"asm": "OP_HASH160 a938614bf4288b3e41385d49f0531d847551ff OP_EQUAL",

98

"hex": "a914a938614bf4288b3e41385d49f0531d847551ff87",

"reqSigs": 1,

"type": "sripthash",

"addresses": [

"3HRWsfjpBHiJ7hC3jKJV5nbHMeBgoCPHDq"

℄

}

}

℄

}

Litecoin 6c497ae07505f6237a810deb4fb366b9d73a2293ce8d8fba21e6203bf93854d2
(note the locktime)
(takes the one below - 75d0ab. . . - as input)

{

"txid": "6497ae07505f6237a810deb4fb366b9d73a2293e8d8fba21e6203bf93854d2",

"hash": "6497ae07505f6237a810deb4fb366b9d73a2293e8d8fba21e6203bf93854d2",

"size": 308,

"vsize": 308,

"version": 2,

"loktime": 1506204007,

"vin": [

{

"txid": "75d0ab5f6a9da86338da91b791a2864171234ea1bfbb30ee8eb7f07b70721",

"vout": 1,

"sriptSig": {

"asm": "304402203faa90d00b21be1079b402a201692e2b0ebb22bfb9476dd4a73e8969b2b702205a077a6eb15a9f98a6f61d3a5087618505742e4a48162a61b5e97ff8954[ALL℄ 026183a9fa40ae708459125e3d16b5412a3f4338b5698fd5bba49d795efe 6b7dba080648b0a9ed0a795ae167f5124703a17eba9a3d0f80162f0e330 1 63a61425b442dfd70ed65b990956844525527d9ab38876a91497f2d5d3d30d84b3aa09d68372d2533753b538670467d9659b17576a9149361870ae8767926f570de4f5761a58b6888a",

"hex": "47304402203faa90d00b21be1079b402a201692e2b0ebb22bfb9476dd4a73e8969b2b702205a077a6eb15a9f98a6f61d3a5087618505742e4a48162a61b5e97ff89540121026183a9fa40ae708459125e3d16b5412a3f4338b5698fd5bba49d795efe206b7dba080648b0a9ed0a795ae167f5124703a17eba9a3d0f80162f0e3305145163a61425b442dfd70ed65b990956844525527d9ab38876a91497f2d5d3d30d84b3aa09d68372d2533753b538670467d9659b17576a9149361870ae8767926f570de4f5761a58b6888a"

},

"sequene": 4294967295

}

℄,

"vout": [

{

"value": 9.99968600,

"n": 0,

"sriptPubKey": {

"asm": "OP_DUP OP_HASH160 ee3065dab61a1ed0020eb1456226600d44af3 OP_EQUALVERIFY OP_CHECKSIG",

"hex": "76a914ee3065dab61a1ed0020eb1456226600d44af388a",

"reqSigs": 1,

"type": "pubkeyhash",

"addresses": [

"LgwzUBhCr6XfEWaG4JA22Gi7fW5N38vM1"

℄

}

}

℄

}

Litecoin 75d0ab5f6a9da8633c8da91b791a28641c71234ea1bcfbb30ee8eb7f07b70721

99

{

"txid": "75d0ab5f6a9da86338da91b791a2864171234ea1bfbb30ee8eb7f07b70721",

"hash": "75d0ab5f6a9da86338da91b791a2864171234ea1bfbb30ee8eb7f07b70721",

"size": 223,

"vsize": 223,

"version": 2,

"loktime": 0,

"vin": [

{

"txid": "d06f0729fda1564b77480bd38d2a0524b82ae8930a1de554a26ff82ba146e80",

"vout": 0,

"sriptSig": {

"asm": "304402207325eba06b5a18fb9edadb2646ee50ffe8062dd64024488419665bf080bd9e0220635242020e26b537d1aa1eef45a0f0ff963756743a3093afed373b844a15380[ALL℄ 03025492162771fe8da874bf344fb2ff48172482afa2d2a8a9fd09aa0fe79e",

"hex": "47304402207325eba06b5a18fb9edadb2646ee50ffe8062dd64024488419665bf080bd9e0220635242020e26b537d1aa1eef45a0f0ff963756743a3093afed373b844a15380012103025492162771fe8da874bf344fb2ff48172482afa2d2a8a9fd09aa0fe79e"

},

"sequene": 4294967294

}

℄,

"vout": [

{

"value": 0.89955000,

"n": 0,

"sriptPubKey": {

"asm": "OP_DUP OP_HASH160 8b97fa16960b86f69db5d16da02147642aa91494 OP_EQUALVERIFY OP_CHECKSIG",

"hex": "76a9148b97fa16960b86f69db5d16da02147642aa9149488a",

"reqSigs": 1,

"type": "pubkeyhash",

"addresses": [

"LXx4FRCeEbZyRB5BNkVR9iNP9oUJzMmNSz"

℄

}

},

{

"value": 10.00000000,

"n": 1,

"sriptPubKey": {

"asm": "OP_HASH160 86491d98a99146ab22a066e0d8e6f3a403071af8 OP_EQUAL",

"hex": "a91486491d98a99146ab22a066e0d8e6f3a403071af887",

"reqSigs": 1,

"type": "sripthash",

"addresses": [

"ML9CNJBtSPMABYCQV58P2t4M7MpPRJK95"

℄

}

}

℄

}

Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a

100

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

101

27 More on atomic swaps and smart contracts

27.1 The smart contract

Back to Nick Szabo
(Copyright (c) 1994 by Nick Szabo)
“A smart contract is a computerized transaction protocol that executes the terms of a
contract.”
With objectives:
“The general objectives of smart contract design are to satisfy common contractual
conditions (such as payment terms, liens, confidentiality,and even enforcement), mini-
mize exceptions both malicious and accidental, and minimize the need for trusted in-
termediaries. Related economic goals include lowering fraud loss, arbitration and en-
forcement costs, and other transaction costs[1].”
and from Wikipedia:

27.2 Smart contracts: Misunderstandings

• Example of incorrect statement (more than one error here):

• ethereum replaces bitcoin’s more restrictive langua-
ge (a scripting language of a hundred or so
scripts) and replaces it with a language that
allows developers to write their own programs –
https://www.oindesk.om/information/ethereum-smart-ontrats-work/

• Note that

• The Bitcoin scripting languageis limited but so are all
programming languages.

• Developers can write their own programs in the Bitcoin
scripting language!!

• A more flexible language gives more flexibility :-)
• A more flexible language is often more error-prone and less

secure
• There isno limit to thenumber of scripts one can write in

the Bitcoin scripting language!!

102

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://en.wikipedia.org/wiki/Smart_contract
https://www.coindesk.com/information/ethereum-smart-contracts-work/

27.3 Tools for atomic swaps

Examples of tools and discussions

• Very good description with tool-box, Decred:
https://blog.dered.org/2017/09/20/On-Chain-Atomi-Swaps/

“These tools were built for those who . . . have . . . transaction script and OP_CLTV
support”

• Detailed example based on the Decred tools:
https://hakernoon.om/so-how-do-i-really-do-an-atomi-swap-f7978527639

And recall that“these tools do not address the issue of order book management”

• for which you need Lightning or other tool for announcementsof intent etc

27.4 Which coins are ready?

Nice overview:https://swapready.net/

27.5 Lightning

Seehttps://www.forbes.om/sites/ktorpey/2018/03/15/bitoins-highly-antiipated-lightning-network-goes-live-as-startup-raises-2-5-million/#60fe82bd7eb0
Copyright 2020, Gunnar Stefansson (editor)
This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

103

https://blog.decred.org/2017/09/20/On-Chain-Atomic-Swaps/
https://hackernoon.com/so-how-do-i-really-do-an-atomic-swap-f797852c7639
https://swapready.net/
https://www.forbes.com/sites/ktorpey/2018/03/15/bitcoins-highly-anticipated-lightning-network-goes-live-as-startup-raises-2-5-million/#60fe82bd7eb0

	Introduction to cryptocurrencies
	Introduction to the course
	Handout

	Enrollment, credits and Smileycoin rewards
	Reading material
	Handout

	Cryptocurrencies
	Behind the scenes (in Icelandic)
	A useful allegory
	The user side
	Overview
	Handout

	Bitcoin and Smileycoin basics
	Operating a wallet
	The block and block explorers
	The transaction
	Where we come from (a): the tutor-web
	Handout

	Where we come from (b): Education in a Suitcase
	Handout

	Where we come from (c): SMLY
	Handout

	Overview
	Handout
	References

	Picking up and using a wallet
	Single-coin vs multi-coin wallets
	Handout

	Smileycoin wallets
	Handout

	The configuration file
	Handout

	Overview
	Handout

	Compiling the wallet
	The Linux steps
	Get a computer running Linux
	Linux: Use git to download the SMLY wallet source
	Linux: Run the tools to compile the code
	Linux: Install the wallet where you want it
	Handout

	Windows: Compiling the wallet
	Mac OSX: Compiling the wallet
	Overview
	Handout

	Introduction to the SMLY command line
	The SMLY command line
	Handout
	Examples

	Basic cryptocurrency economics
	Background
	The issues
	The coinbase, difficulty and mining strategy
	Handout

	Mining: The tragedy of the commons
	Mining development
	Basic economics
	Handout

	Investment and speculation
	Handout

	The airdrop fallacy
	Setting up use cases
	Donations
	Handout

	Divident payments
	The SmileyCoin economy
	Handout

	Cryptocurrencies as a Universal Basic Income
	Solving UBI implementation issues: delivery and demand
	Examples

	Keeping or avoiding developer anonymity

	The transaction
	Background
	A typical transaction
	Inside the transaction: The output
	Inside the transaction: The input
	The UTXO
	Handout

	Keys
	Handout

	Spending the UTXO
	Handout

	The transaction on the command line
	Handout

	The UTXO set
	Handout

	The transaction fee
	Examples

	Manual transaction example - maintaining a fund
	Examples

	The block, the blockchain and the network
	The block and the chain
	The hash and the nonce
	Handout
	Examples

	The network
	Handout

	Cryptocurrency mining
	Mining, hashes and the cryptography puzzle
	Mining from a wallet
	Handout

	GPU mining
	Handout

	Mining using specialised hardware (ASIC mining)
	Handout

	Mining using a small ASIC
	Handout

	Which hashes and how
	Handout

	The mining algorithm
	Handout

	Mining, energy and other uses

	Cryptography and cryptocurrencies
	Cryptography use by cryptocurrencies

	Hash function introduction
	Elliptic curves
	The trilogy: tutor-web, Smileycoin and Education in a Suitcase
	This is just a placeholder!!
	Where we come from
	The tutor-web system
	sl03030
	sl03040
	sl03050
	sl03055
	sl03060
	sl03070

	The SmileyCoin Fund
	Premining a cryptocurrency
	Handout

	The SmileyCoin premine
	Handout

	Setting up a cryptocurrency fund: The SmileyCoin Fund
	Handout

	Splitting the coinbase: No longer just a miner's fee
	Alternatives to premines and funds
	Handout

	Splitting the coinbase: Why?
	Handout

	The SmileyCoin coinbase split
	Handout

	Effects of the coinbase split
	Handout

	Staking and proof-of-stake
	Staking
	Proof of stake

	The tutor-web as a faucet
	Cryptocurrency faucets

	The command line from a Linux script
	The Linux shell
	Startup files
	Betzy
	Handout

	The command script

	Building slightly more complex transactions on the command line
	A simple transaction
	Handout

	Maintaining a single address
	Example

	Making a non standard transaction using P2SH
	Handout

	Cryptocurrency exchanges
	Smileycoin exchanges
	The honeypot problem
	Tracking stolen goods
	An inside job

	API access to exchanges
	Automating access to cryptocurrency exchanges

	Automation on the blockchain (stores, ATM, gambling etc)
	Doing stuff on the blockchain
	So how do you do stuff?
	Gambling on the blockchain
	Messages on the blockchain
	A very simple ATM on the blockchain
	A more elaborate ATM on the blockchain
	Traditional data
	Examples

	API access to the blockchain
	Handout

	The Bitcoin programming language
	From input to output
	The assembler
	Handout

	Simple example
	Example

	spending
	Handout

	A more detailed look inside the spending transaction
	Example

	A more detailed look at P2SH
	Handout
	Example

	Fun and games with Bitcoin and SmileyCoin
	Puzzles, poetry, bounties etc etc
	Sticking data into the blockchain: the data field
	Examples

	Blockchain elections
	Handout

	Bounties: Reporting hash collisions
	Example

	The SmileyCoin Fund revisited
	Background
	Purpose of the Fund
	The Board of the SmileyCoin Fund
	Handout

	The Mandate
	Handout

	The multisig address for the Fund
	Handout

	Creating, signing and broadcasting a multisig transaction
	Signing the Mandate electronically
	Storing the signatures in public
	Handout

	Validating data from the blockchain
	Handout

	Open accounting on the blockchain
	Handout

	Atomic swaps
	Background
	timeouts
	Examples
	Handout

	an atomic swap algorithm
	Handout

	Alternatives
	The missing link: Information flow
	Announcing the atomic swap
	Atomic swaps between chains: Litecoin and Bitcoin
	Handout

	More on atomic swaps and smart contracts
	The smart contract
	Smart contracts: Misunderstandings
	Tools for atomic swaps
	Which coins are ready?
	Lightning

