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1 The development of a year-class

1.1 Background to the stock and catch equations

We will derive an equation to describe how a
specified cohort develops across time.

Development of a cod cohort, as seen by the
number of cod caught in groundfish surveys in
Icelandic waters. Average on log-scale across
several years.

1.1.1 Details

If recruitment in a stock is variable and if the species is long-lived, it is necessary to in-
vestigate how year-classes in the stock develop. It is not enough to view the stock as an
entity or to view the stock by length classes. In fact such information can be highly mislea-
ding if no consideration is given to changes in year-class strength and the age composition.
In this section the development of a year- class in numbers and weight will be considered.

It should be fairly clear that the age composition of catchesand the number of fish by age
groups per towing mile gives considerable information about changes in stock size.

The remainder of this section is devoted to deriving an equation which describes how the
number of individuals in a yearclass may change across time.

Note 1.1. An equation which follows a cohort across time and describesthe changes in
population size is referred to as a stock equation.

The most common methods to estimate stock size are based on the assumption that within a
specific time period there is constant fishing pressure and constant natural mortality. From
its birth, a specific year-class can only decrease in numbersand with constant pressure
each fish in the year-class will have a constant probability of death from fishing or natural
causes during a short period of time. It is convenient to think of the full time period under
consideration as one year, and the timet therefore is in the interval from zero to one. It can
then be expected that the proportional decrease of a specificyear-class is even throughout
the year.

1.1.2 Examples

Example 1.1. The figure above shows the number of fish as an index by age groups in a
groundfish survey in the Icelandic economic zone. The cod is used as an example here
and it is clear that the number of fish decreases as a function of age. This is natural since
it is quite obvious that unless there is considerable immigration into the area the fish must
get fewer as they get older. In the graph, a logarithmic scaleis used on the y-axis. The
remainder of the section clarifies why this is a natural choice.
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1.2 Symbols

Notation Numbers at year start and end, respectively :N0,N1

Number at specified time,t: Nt

Short time interval:(t1, t2)
Length of interval:∆t
Change in stock size during interval:∆N

1.2.1 Details

Definition 1.1. Notation for stock and catch equations:
Nt = Number of fish in a year-class at timet, wheret is 0≤ t ≤ 1
N0=Number of fish at the start of the year
N1=Number of fish at the end of the year
(t1, t2)=Time interval such thatt1 is the start of the time interval andt2 is the end of the
time interval
∆t=Change in time betweent1 andt2
∆N=Change in stock size betweent1 andt2

1.2.2 Examples

Example 1.2. The following table lists the averages from indices of different year-
classes for cod from 1985-1993:

Age 2 3 4 5 6 7 8 9 10 Ave 5-10
Index 904.0 659.2 370.8 121.9 57.0 16.3 5.4 3.0 1.2

Log 6.81 6.49 5.92 4.80 4.04 2.79 1.69 1.09 0.21
Diff. 0.32 0.58 1.11 0.76 1.25 1.10 0.59 0.88 0.95

The conclusion that might be drawn from this is that the totalmortality of cod had been
about 0.6-1.2 during the period in question. As will be indicated later, there are, however,
reasons for checking thoroughly whether the summations of these compilations are valid
and whether a sensible average is being estimated. The reason, among other things, is
that two strong year-classes appear in some of these numbersbut not all of them and
have a distorting effect on the overall picture. There is also immigration from Greenland
during this period. Therefore, the composition of the year-classes needs to be considered
in addition to the age composition.

1.3 Yearclass development during short time interval

Proportion which dies during a time interval =Probability of fish dying

∆N
N

=−Z∆t
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1.3.1 Details

A natural assumption about the change in the number of fish in acohort is that the numbers
should be reduced proportionately, i.e. each fish should have some probability of dying
(due to fishing or natural causes) and the overall effect on the yearclass would be that the
fraction which dies is fixed.

Further, it is also natural to assume that if the time interval is short enough, the fraction
which dies should be proportional to the time interval. Obviously this assumption can not
be true if the time interval is long, but for time intervals short enough it should hold.

In summary, therefore, the proportional change in numbers in a short time period,∆t ,
should be in proportion to the length of the time period.

Definition 1.2. Proportional change in population size:

∆N
N

=−Z∆t,

whereZ is some number. The change is negative since the yearclass isdiminishing in
numbers.

1.4 The differential equation

Differential equation:
dN
dt

=−ZN

1.4.1 Details

When the previous equation is rewritten and the time interval shortened (formally, we let
∆t → 0), this leads immediately to a simple differential equation:

dN
dt

=−ZN

Even without any knowledge of differential equations, it should be noted that the logic
behind this equation implies that if a short time interval corresponds to halving of the num-
bers, then twice this time interval will lead to a further 50%reduction and so on. Hence the
reduction in numbers will be 1/2 to the power of the number of such time intervals.

Since this is true for any short time interval, it also becomes clear that the solution to this
differential equation must be some sort of power function intime, i.e. of the format for
some numbera.

Although the form of the solution is intuitively obvious, formal derivation is required to
obtain the correct functional form. This is done using well-known methods of calculus but
will not be detailed further here.
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1.5 The stock equation

Solution to differential equation:

Nt = e−ZtN0

Describes numbers at timet as compared to initial
numbers.
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1.5.1 Details

The solution to the previous differential equation is the exponential growth function where
the size of the year-class at timet (within a year) decreases as an exponential function of
time, from the stock size in the beginning (of the year).

Definition 1.3. Single-year stock equation:

Nt = e−ZtN0

whereZ is the total mortality rate ande−Z is the survival rate

Although it is most common to consider changes within a year,this is not a requirement. In
particular it is quite feasible to consider shorter time intervals such as monthly time steps.
However, it is not advisable to assume that the stock equation is valid for many years.
Thus, the stock equation is most commonly used to connect theyearclass numbers at the
beginning of the year (t=0) and the end of the year (t=1).

1.5.2 Examples

Example 1.3. The figure above indicates the development of a yearclass with Z = 0.5,
from initial numbers ofN = 1000 in the beginning of the first year.

The form of the curve is typical for stock-reduction curves.Notably, whenZ is large, the
decline in numbers is quite quick from the initial size to negligible values.

It must be recalled, however, that the decline in numbers is only a part of the story, since
the individuals grow and the biomass trend is thus somewhat different from the trend in
numbers.

The figure can be generated using R using the following code:

http://tutor-web.net/fish/fish5102stockcatch/lecture10/stock-equation.r
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1.6 Development of stock

Na+1,y+1 = e−ZayNay

1.6.1 Details

The basic equation is only valid for a single year-class and therefore the equation needs to
be modified in such a fashion that the age groups and the years are easily identified.

Naturally the number of fish at the end of the year is the same asthe number of fish in the
same cohort (year-class) at the beginning of the following year.

Definition 1.4. Stock equation notation:
Nay=Number of fish of agea in the sea at the begining of yeary Na+1,y+1=Number of fish
at the end of the year, i.e. beginning of the following year

Definition 1.5. Across-year stock equation:

Na+1,y+1 = e−ZayNay.

1.7 Mortalities work in sequence

SupposeZ = F +M...

N1 = e−ZN0 = e−(F+M)N0 = e−F−MN0 = e−F e−MN0

1.7.1 Details

Definition 1.6. Mortality equation :

Z = F +M

F=Fishing mortality
M=Natural mortality

It should be noted that the different mortalities, as set up here, work naturally in sequence.
Thus, the same final yearclass size results whether natural mortality is applied before or
after fishing mortality.

This is a consequence of writing the initial mortality process as a differential equation, rat-
her than applying discrete proportional mortalities as is acommon method when computing
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interest rates.

The mortality resulting from repeated applications of individual mortalities becomes a
direct sum of the individual mortalities.

In particular, if the total mortality,Z, can be written as a sum of two mortalities,Z = F +M
then

N1 = e−ZN0 = e−(F+M)N0 = e−F−MN0 = e−Fe−MN0

and hence it is irrelevant which mortality is applied first - the outcome in terms of the
number of survivors is the same.

1.7.2 Examples

Example 1.4. Suppose we start with 1000 fish and kill 50% each year, resulting in the
following development of a yearclass:

1 1000

2 500

3 250

4 125

5 63

Of course this is done by simply multiplying by 0.5 at each stage. Note thate−0.693= 0.5
so this corresponds to using a total mortality rate ofZ = 0.693.

Reduction from 1000 at 1 to 250 at 3 is 75%, i.e. by 0.5*0.5=0.25. It must be noted that
the effect is of course not additive (since a doubling of 50% reduction would then be to
zero).

But if we use Z=0.693 twice withe−0.693= 0.5 then the reduction corresponds to the sum
0.693+0.693=1.386 where the mortality rates simply add up (e−0.693= 0.5 ande−1.386=
0.75).

1.8 Rates and proportions...

Logarithms or not –

1− e−0.2 = 0.18

Rates and proportions
Mortality rate = 0.2 means 18% die...
Note that Z can be greater than 1!

1.8.1 Details

There is a considerable difference in the interpretation ofmortality rates and survival
proportion or proportions which die.
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Definition 1.7. Survival proportion :

e−Z

Proportion of deaths:
1− e−Z

The proportion which survives the year ise−Z . The mortality rate itself can be arbitrarily
large (i.e.Z can be greater than 1). However, asZ increases, the fraction which survives,
e−Z , goes to zero and the fraction which dies, 1− e−Z, goes to one.

1.8.2 Examples

Example 1.5. Since 1− e−0.2 = 0.18, a total mortality rate of 0.2 means that 18% of
the yearclass dies during a year. In particular, assuming the natural mortality rate to be
M = 0.2 and no fishing takes place, then 18% die due to natural causesper year.

If the mortality rate is 0.8, thene−0.8 = 0.449, so 44.9% of the yearclass survive the
year, i.e. 55.1% die.

Finally, if Z = 1.2, thene−Z = 0.301 so 69.9% die.

Thus, for low mortality rates, the rate and fraction which die are similar, but as the rate
increases, the difference becomes greater (this can also beseen by considering the Taylor
series expansion for the exponential function).

1.9 Mortality as log-change

lnNa+1,y+1 = lnNay −Zay

1.9.1 Details

It should be noted, that on a logarithmic scale there is a convenient relationship between
the mortality rate and the changes in stock size:

lnNa+1,y+1 = lnNay −Zay.

Thus, the mortality rate simply denotes the reduction in thestock size on a logarithmic
scale. This will become very useful later, when it will be seen that this equation can be used
to estimate mortality rates using simple techniques, if some samples on age composition
are available, either from surveys or catches.
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1.10 Development of yearclass biomass

Given the stock equation and data on weight and
mortality, it is easy to predict the development of
biomass.

Notice the maximum biomass at age 8. This would
be the harvest if a single cohort was raised in
aquaculture.
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1.10.1 Details

It is of interest to take a specific year-class and investigate how its biomass develops as
the year-class grows older. Such an analysis gives an indication of rational utilization of
the year-class. Such computations are very simple when the above results are utilized. If,
for example, the year-class contains 1000 individuals at the outset, then it will decrease in
numbers according to the equation:

Na+1 = e−ZaNa.

If there are no catches from the year-class, then the mortality coefficientZa simply denotes
natural mortality and is usually writtenMa. Given the weight at agewa this can be used to
obtain biomass by age.

Definition 1.8. Yearclass biomass equation:
B = N0×wa

1.10.2 Examples

Example 1.6. The table below contains the mean weight of Icelandic saithe(kg) by age
group. It is assumed that natural mortality is M=0.2 and that1000 individuals enter the
stock as 3 year old fish.
http://tutor-web.net/fish/fish5102stockcatch/lecture10/icelandic-saithe.dat

Given this, one can compute how many fish survive to the following year and thus an
estimate is obtained of how many fish from this year-class will be alive at each moment
in time. Those counts can then be multiplied by the mean weight at age to obtain the
biomass at age. The following figure shows how that biomass changes in total as the
individuals grow older.

In this way it is simple to test several different assumptions on natural mortality and
mean weights at age in order to investigate whether conclusions on utilization change to
a great extent as the assumptions are modified.

The R code to generate the figure is given below:
http://tutor-web.net/fish/fish5102stockcatch/lecture10/saithe-stock-equation.r

11



2 Catch curve analysis.

2.1 Introduction

2.1.1 Details

This chapter will deal with the estimation of the mortality of fish in the sea, based on in-
formation on the age-composition of the catches.

Obviously using age-composition to estimate mortality is only a very rough approximation.
This is especially true for species such as cod which change their behavior after maturity.
Similarly, cod have experienced considerable changes in their fishing effort through out the
North Atlantic. As a result of their behavioral changes and the alteration to their fishing
effort the year-class strength is highly variable and thus,estimating mortality from this
data is not always reliable. However, it is still worth whileverifying what this method can
indicate concerning the mortality of the stock.

2.2 I-Cod catch in nos at age

1983 1984 1985 1986 1987
3 3.6 6.8 6.5 20.6 11.0
4 10.9 31.6 24.6 20.3 62.1
5 24.3 19.4 35.4 26.6 27.2
6 18.9 15.3 18.3 30.8 15.1
7 17.4 8.1 8.7 11.4 15.7
8 8.4 7.3 4.2 4.4 4.2

A diagonal line in the above table represents a yearclass.

2.2.1 Details

If death rates are stable for a few years it is possible to estimate total mortality almost
without any assumptions on natural mortality, since it is usually possible to assume that
mortality does not change after a certain age. These assumptions together mean that fis-
hing and natural mortality are constant in time for certain (older) age groups. Care must be
exercised before these methods are used, as will be illustrated later.

For simplicity we only consider those age groups where the mortality can be taken to
be constant and thus we can simplify the equations, fishing mortality and total mortality
respectively, by writingF = Fay andZ = Zay.

Definition 2.1. Basic catch-curve equation:

Cay =
F
Z
(1− e−Z)Nay

Given a basic catch by age and year equation, i.e. basic catch-curve equation, the catch for
a particular year-class in the next year (y+1) is given by:

Ca+1,y+1 =
F
Z
(1− e−Z)Na+1,y+1

12



i.e.

Ca+1,y+1 =
F
Z
(1− e−Z)e−ZNa,y

Now, if the equations for the yearsy andy+1 are compared, it is seen that the only diff-
erence in the two right hand sides ise−Z .

Definition 2.2. Catch-curve equation fory+1:

Ca+1,y+1 = e−ZCa,y

2.3 Catch curve analysis (A) Start with some catch curves
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Catches in numbers at age for several cohorts of cod in Icelandic waters. Each curve
represents catches from a single cohort.

2.3.1 Details

For constant death rates, the catch equation for the following year for a specific year-class
can be written in the log-scale.

Definition 2.3. Log-transformed Catch-curve equation fory+1:

lnCa+1,y+1 = lnCa,y −Z

This means that the fixed death rate can be estimated using thefixed death rate equation.

Definition 2.4. Fixed death rate equation:

Z = lnCa,y − lnCa+1,y+1

2.3.2 Examples
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Example 2.1. Taking the year-classes of cod from 1974 to 1978, the catch atage in
numbers can be summarized as follows:

http://tutor-web.net/fish/fish5102stockcatch/lecture20/catch-at-age-cod.dat

Example R code:
http://tutor-web.net/fish/fish5102stockcatch/lecture20/catch-at-age-cod.r

2.4 Catch curve analysis (I-cod) (B) Log-scale (yearclasses 74-78)
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waters.

2.4.1 Details

It has been stated previously that more information can be obtained from catches at age by
log-transforming the data. Using the logarithmic scale when the effort is fixed allows the
numbers to reduce in a linear fashion.

2.4.2 Examples

Example 2.2. Taking again the yearclasses of cod in Icelandic waters, thelog-
transformed number become:
http://tutor-web.net/fish/fish5102stockcatch/lecture20/ln-catch-at-age-cod.dat

Example R code:

matplot(ages,mat,type='l',lty=1:5,
ol=1:5,lwd=2,xlab="Age",

ylab="Millions",main="Cat
h of 
ohorts, in numbers",log="y")

legend(10,20,74:78,lty=1:5,
ol=1:5,lwd=2)
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2.5 Catch curve analysis (C) Z-by age : ln(N1)-ln(N0)
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Differences on log-scale of catches in numbers at age for several cohorts of cod in
Icelandic waters. Note the erratic behaviour of the differences.

2.5.1 Details

The difference in the log-catch from one year to the next gives an indication of the total
mortality. However, the noise in the data makes it difficult to obtain annualZ values, as
tempting as it may be.

2.5.2 Examples

Example 2.3. The following table gives such an overview for cod in Icelandic waters:

http://tutor-web.net/fish/fish5102stockcatch/lecture20/z-catch-at-age-cod.dat

It therefore appears that the total mortality was 0.8-1.1 for the oldest fish when these
year-classes were 9-14 years old, i.e. during the period from 1984-1992. It is clear that
the youngest fish are not completely included in the fisheriesbecause total mortality can
not be lower than zero.

It is simplest to investigate the coherence of this analysisin a few simple plots. First, the
catch curves are plotted to investigate where they resemblestraight lines on a logarithmic
scale. Catch curves of this type are common and they are usually used to investigate
deviations from assumptions or simply whether the logarithm of a catch in numbers
drops roughly linearly.

The curves seem to be fairly close to straight lines after about age eight. Therefore theZ
is computed and plotted by age groups after the age of eight.

These curves appear at first sight to be reasonable and to varyabout a common mean. It
is clear, however, that there is considerable variation in the estimate ofZ for fish at age
11 or more, which makes sense since there are few fish of that age caught. An estimate of
Z could therefore be based on 8-10 year old fish, which givesZ an average of about 1.0.
These analyses have been based on year-classes 1974-1978, and therefore thisZ applies
to the oldest fish during the time period 1982-1988. Therefore the fishing mortality may
have been about 0.8 for the oldest fish during the years 1982-1988. As has already been
indicated, an increase in fishing effort will lead to an underestimate of total mortality.

Example R code:
http://tutor-web.net/fish/fish5102stockcatch/lecture20/catch-at-age-cod.r/
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2.6 Catch curve analysis log axis...
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Catches in numbers at age on log-scale for several individual cohorts of cod in Icelandic
waters. The age range is restricted to ages which correspondto a linear drop in log-numbers.

2.6.1 Details

Conducting a catch curve analysis on the log axis is usually done by going through the
following steps:

1. A specific year-class is selected.

2. The number of landed fish from this year-class ,Cay, is plotted against age.

3. The corresponding plot is done on a logarithmic scale, i.e. lnCay is plotted against
age.

4. Z is computed for each age group and plotted against age.

5. Visual inspection is used to verify at which ageZ has become stable and only older
fish is considered in what follows.

6. A regression is performed for older fish of lnCay againsta, The slope from this
regression gives an estimate ofZ.

7. It is checked, whether deviations exist from a linear relationship. Such deviations
would be an indication of, for example, a change in the selection pattern. This can
be investigated, for example, by plotting the deviations from the line against age.

WARNING: (1) If fish change their behavior at maturation it isvery likely that this method
will not work until after the fish has reached 100% maturity. (2) If effort steadily increases
over the time period this method will result in pure and utternonsense. In fact, an increase
in effort would result in a bigger catch in the following yearthan would be obtained with
a stable effort. This leads to the result that an estimate ofZ will be lower (the decrease
in catches is not as great) and thus an increasing effort leads to an underestimate of the
mortality rate with this method. (3) The method is sometimesused on an average (in
logarithms) of some years or year-classes. In this case, special care must be taken not to
include a differential number of ages from year-classes which are very strong or very weak,
for example if a strong year-class is only included for the first two youngest ages then this
may clearly give misleading results.
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2.6.2 Examples

Example 2.4. When considering a selection of ages, it appears that the log-catch from a
number of cohorts of cod in Icelandic waters drops linearly with age. The drop by age
appears not only linear, but to have the same slope for several age groups. In this case it
is justified to take the average of the log-catch across the cohorts.

Example R code:
http://tutor-web.net/fish/fish5102stockcatch/lecture20/log-catch-at-age-cod.r

2.7 Catch curve analysis (D) Z estimated as 1.04
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Average catches in numbers at age on log-scale for several individual cohorts of cod in
Icelandic waters. The age range is restricted to ages which correspond to a linear drop in log-numbers and an average of the logged
numbers is computed across the cohorts.

2.7.1 Details

If there is an age range where the log-catches appear to be linear, when viewed as a function
of age, then this can be used as data in a linear regression. Notably, if log-catch is regressed
on age, the negative of the resulting slope is an estimate of total mortality,Z, i.e the slope=-
Z.

2.7.2 Examples

Example 2.5. To complete this example a line needs to be placed through allthe age
groups. This is done in the figure. The points in the figure are the averages of the
log-catch for the year-classes in question. It is clear thatthe points are almost exactly on a
straight line. The line is drawn by using ordinary linear regression which gives an estima-
ted slope of -1.04, which again corresponds to a total mortality estimate of Z=1.04. From
this it is clear that when the average of a few year-classes isused, considerably smoot-
her curves are obtained than when individual curves are considered as in previous figures.

This is clearly a very inaccurate method of estimation sinceit can only be used to view
the average of many years and year-classes. The time period of 1982-1988 is a long one
and there is little question that the mortality coefficient has changed during this period.
The above computations do, however, give a potential to provide the starting values for
further and more precise stock estimates. In order to investigate whether changes have
occurred during the period it is possible to use the data in the figure above to plot the
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averageZ value for each year.

Example R code:
http://tutor-web.net/fish/fish5102stockcatch/lecture20/ave-z-cod.r

2.8 Catch curve analysis

To compute average of log-catch by year-class the followingmust be met:

• Mortality must not increase by age

• Effort must not increase by time

• Averaging needs to be carefully implemented

• Catch needs to be proportional to stock size

2.8.1 Examples

Example 2.6. In the cod example, when more detailed analysis is applied itappears
that the total mortality reduced to some extent during the years after 1983, but then a
considerable increase appears to have a occurred in 1988. Therefore, it seems clear that
there is a potential for misleading results by computing a single mortality rate for the
whole time period.

2.9 I-cod, Yearclasses 1960-92.

2.9.1 Details

Although it is interesting to be able to estimate total mortality, this is not going to be
enough since it does not give information about stock size orstructure. In particular there
is no information about year-class size, which in most stocks is a primary driving force in
the population dynamics.

Note that the catch-curves alone does NOT give information about absolute biomass or
absolute numbers, but we need recruitment to estimate yieldetc.
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3 Natural mortality

3.1 The natural mortality rate

Fishing mortality and natural mortality need to be
untangled.

The equation for total mortality can be written such
that fishing and natural mortality are separate but lin-
ked:

Zay = Fay +May
Sources

of natural mortality include predation, disease etc.

3.1.1 Details

There are considerable difficulties in estimating natural mortality. In the worst cases this
can be based completely on guesswork and at best it is possible to obtain an estimate with
a high variance. For this reason it is necessary to test the effect of this coefficient in terms
of advice given on the utilization of the stock and in terms ofthe stock estimate. Thus,
the effect of a considerably incorrectM on advice is often tested, but within a reasona-
ble framework. In such cases, the tests are based on reasonable limits which include the
restriction thatM is not inconsistent with available data.

In some cases it is possible to look at time periods under little or no fishing. Here one can
use the total mortality as an estimate of natural mortality.

Note 3.1. In general, we would define natural and fishing mortalities asa decomposition
of the total mortality which we can estimate from the slope ofcatch curves.

3.1.2 Examples

Example 3.1. If natural mortality is 0.1 and there is no fishing from the stock, then the
stock is reduced through the year to the fraction

e−0.1 = 0.90

of the original size, or to 90% of the size at the beginning of the year. Thus a specific
year-class gets reduced by about 10% per year and in 10 years it gets reduced to

e−10∗0.1 = e−1 = 0.37

or to 37% of the original size. Thus, there is still a considerable proportion left of a big
year-class at the age of 10 years ifM is 0.1. If, on the other hand,M is 0.2, then there
are 14% left in 10 years and ifM is 0.3, there are only 5% alive in 10 years time. These
considerations put some bounds on what values of M are "reasonable"for a specific stock.

It should be noted that although usually a fixed natural mortality coefficient is used, this
does not mean that anyone considers such an assumption to be areasonable one nor is
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this an essential prerequisite for the computation to give the correct picture. For example,
it is well known that if natural mortality is variable about some mean then a fairly good
approximation is obtained by using this mean in place of the individual annual values
(Ulltang, 1976). Thus, a summation of the form "M is 0.2"is roughly equivalent to saying
"M is on average close to 0.2".

3.2 On natural mortality, M

3.2.1 Details

Natural mortality is of course an important component of many assessments and the pop-
ulation dynamics of a stock may depend heavily on natural mortality.

The figure above gives one approach to estimating natural mortality – simply rewrite 0.?
often enough that it changes to 0.2.Although it may be claimed that this approach has been
used in some situations, it is usually possible to do a littlebetter.

3.3 More on M

Z vs effort

3.3.1 Details

The above plot shows how natural mortality has been estimated by plotting total mortality
(obtained from a catch curve analysis) on the y-axis and an effort measure on the x-axis.
The figures effort measure could be the number of boat-days orton-days etc. The intercept
of the line with the y-axis provides an estimate of natural mortality.
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When applicable, this type of figure provides the potential to separate the total mortality
into that due to fishing and that due to natural causes. It mustbe noted, however, that the
natural mortality estimated in this fashion is only a long-term average across the years (and
ages) in question. Whether this is useful or not will depend on the species under consi-
deration.

It should also be noted that when a species has been heavily exploited for a long time, the
effort data on the x-axis will only be available as high values and no data will exist close
to the origin on the x-axes. It follows that any estimate of the intercept will be highly
uncertain andM is therefore a fairly poor estimate.

3.4 Additivity of mortalities

3.4.1 Details

Definition 3.1. Notation for natural death: Day

An equation can be derived to describe number of natural deaths by proceeding in the same
way as was done for the catch equation. Begin by assuming thatthe natural mortality in
numbers during a short time period is proportional to the stock size and the time interval.

Definition 3.2. Proportionality constant for natural moral ity notation : May

Given the natural death and proportionality constant for natural mortality, an equation can
be written to describe the number of deaths from "natural"causes.

Definition 3.3. Natural death equation:

Day =
May

Zay
(1− e−Zay)Nay

Note that it has not been assumed that thisM is related to the earlier definition of natural
mortality. From this equation it is clear that the fish that die during the year add up to

Cay +Day

.
If the equations which describe these quantities are added together, the following is obtained:

Cay +Day =
Fay
Zay

(1− e−Zay)Nay +
May
Zay

(1− e−Zay)Nay

=
Fay+May

Zay
(1− e−Zay)Nay

= (1− e−Zay)Nay
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where the final result is true if and only ifZ = F +M, i.e. if theM-value here has the same
meaning as before. This is in accordance with the survival probabilities and the proba-
bilities of dying which were derived above.

A fish which is alive at the beginning of this year will either be caught, die due to natural
causes, or survive the year. Now these equations can be addedup in order to check whether
the system of the equations is internally consistent:

Cay +Day +Na+1,y+1 = (1− e−Zay)Nay +Na+1,y+1

= (1− e−Zay)Nay + e−ZayNay = Nay

The various equations thus seem to match: The right hand sideindicates the number of fish
available at the beginning of the year but the left hand side is a summary of the possible
fate of the individual fish.

3.5 Effects of different mortality rates

3.5.1 Examples

Example 3.2. The effect of the different mortality types is illustrated in the following
table.

Total mortality 0.20 0.40 0.60 0.80 1.00 1.20
Natural mortality 0.20 0.20 0.20 0.20 0.20 0.20
Fishing mortality 0.00 0.20 0.40 0.60 0.80 1.00

Proportion surviving 0.82 0.67 0.55 0.45 0.37 0.30
Proportion killed 0.18 0.33 0.45 0.55 0.63 0.70

Natural deaths 0.18 0.16 0.15 0.14 0.13 0.12
Proportion caught 0.00 0.16 0.30 0.41 0.51 0.58

Natural deaths 0.18 0.16 0.15 0.14 0.13 0.12

4 Stock and catch equations

4.1 Deriving the catch equation

Need to derive an equation describing the catch in numbers inrelation to stock size.

4.1.1 Details

As before, we start by considering only a single cohort and developing a model to describe
how this year-class is fished. The figure shows how fishing starts from a typical year-class
of Icelandic cod at the age of 3 and the catch in numbers increases from the cohort until a
maximum is attained. After this there is a steady decrease innumbers from this year-class
in the catches.
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4.2 Development of catch from a cohort

Constant fishing intensity within a year or during short timeinterval needs to be
assumed to determine the amount of catch from a cohort.

Catch in proportion to stock and length of timestep:

∆C = FN∆t

4.2.1 Details

Assume that the fishing intensity is constant within the year. Then the catch from the
cohort during a short period should be proportional to the stock size and the length of the
time period.

Definition 4.1. Proportional change in catch equation:

∆C = FN∆t,

F= some number

4.3 Development of catch from a cohort

As before this leads to a simple differential equation:

dC
dt

= FN = Fe−ZtN0

where the previous results concerning the development of a stock within a year have
been used.

4.3.1 Details

As before this leads to a simple differential equation:

dC
dt

= FN.

Recall from the previous results concerning the development of a stock within a year that
the stock equation links the numbers,N (or Nt), at timet to the numbers at the beginning
of the year,N0 via

N = e−ZtN0.

This equation can be substituted into the equation describing the catches to obtain a descripti-
on of the change in catches per unit time.

Definition 4.2. Change in catches per unit time equation:

dC
dt

= Fe−ZtN0.
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Although the earlier descriptions of stock development ledto a differential equation which
needed to be solved, the catch description is much simpler since the stock equation has
already been solved. Thus, this is now an equation which has afully defined function on
the right-hand side, and this function can simply be integrated to obtain the catch.

4.4 Deriving the catch equation

Integrating gives the annual catch in numbers from that cohort

C =

1∫

0

Fe−ZtN0dt =
F
Z
(1− e−Z)N0

4.4.1 Details

By integrating the equation for the derivative of the catches, a formula is obtained for the
total catch in numbers from that cohort in a single year.

Definition 4.3. Total cohort catch in a year equation:

C =

1∫

0

Fe−ZtN0dt =
F
Z
(1− e−Z)N0

This result will form a cornerstone for all methods which utilize information on the catches
in numbers obtained from individual cohorts.

4.5 The catch equation

The catch equation:

C =
F
Z
(1− e−Z)N0

4.5.1 Details

The catch equation is an extremely important concept and is used in most modern assess-
ment methods.

It should be noted that the catch equationC = F
Z (1− e−Z)N0 can be read in terms of the

survival fraction, fraction which dies and fraction harvested of fraction which dies.
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Recall thate−ZN0 is the number which survives the year and thereforee−Z is the fraction
which survives. It follows that the fraction which dies during the year is(1−e−Z). Finally,
the ratioF

Z is that fraction of those who die which gets caught.

The form of this equation does not indicate the possibility of several age groups and years.
Rather, the equation describes how a single age group gets caught during a single year.
Thus, it is customary to omit any subscripts since they are not needed.

4.6 Change in yearclass size during a year

N1 = e−ZN0

4.6.1 Details

Definition 4.4. Equation for annual change in population size:

N1 = e−ZN0

F=fishing mortality rate
Z=total mortality rate

Remember that the catch is a fraction (F/Z) of what dies.

The fishing mortality rate is a measure of what proportion of the stock is killed due to
fishing, but the mortality rate itself is not a proportion andcan be greater than 1. These
coefficients are variable from year to year due to changes in effort.

The coefficients are also variable by age. Firstly, the fishing gear does not catch all age
groups equally. For example, the smallest fish will escape through the mesh and further,
shoaling behavior during spawning may have the effect that the largest fish can be either
more or less catchable than the average size fish.

It is therefore necessary to work with an entire table of fishing mortality rates,Fay.

4.7 The catch equation for many age groups and years

Catch equation for many yearclasses

Cay =
Fay

Zay
(1− e−Zay)Nay

4.7.1 Details

During any given year there will be many cohorts in the catches. Several years will also
be considered at the same time and therefore the notation must be extended to indicate the
different years and ages.
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Definition 4.5. Catch equation for many year classes:

Cay =
Fay

Zay
(1− e−Zay)Nay

Fay = fishing mortality (rate)

The natural mortality (rate) is defined byMay = Zay −Fay, and hence the total mortality is
the sum of the other two:Zay = Fay +May.

The following is a discussion of these mortality coefficients and their relationship in explain-
ing survival probabilities and overall mortality.

Natural mortality coefficients

When estimating a stock size it is usually assumed that natural mortality (May) is known.
Thus, it is assumed that information on the maximum age or tagging results, acoustic sur-
veys or predation is used to estimate this coefficient. If very young fish are taken into the
stock estimate or if considerable spawning mortality exists it is necessary to haveMay vary
by age. For stock such as capelin it is desirable to have the coefficients also vary in time.

When the catch is mostly based on larger fish, or where there islittle or no variation in
predation from year to year and mortality due to spawning is not considerable, it is usually
assumed that one natural mortality coefficient is valid for all age groups and years. The
labeling of years and ages is usually omitted and the naturalmortality coefficients simply
denoted byM.

26


	The development of a year-class
	Background to the stock and catch equations
	Details
	Examples

	Symbols
	Details
	Examples

	Yearclass development during short time interval
	Details

	The differential equation
	Details

	The stock equation
	Details
	Examples

	Development of stock
	Details

	Mortalities work in sequence
	Details
	Examples

	Rates and proportions...
	Details
	Examples

	Mortality as log-change
	Details

	Development of yearclass biomass
	Details
	Examples


	Catch curve analysis.
	Introduction
	Details

	I-Cod catch in nos at age
	Details

	Catch curve analysis (A) Start with some catch curves
	Details
	Examples

	Catch curve analysis (I-cod) (B) Log-scale (yearclasses 74-78)
	Details
	Examples

	Catch curve analysis (C) Z-by age : ln(N1)-ln(N0)
	Details
	Examples

	Catch curve analysis log axis...
	Details
	Examples

	Catch curve analysis (D) Z estimated as 1.04
	Details
	Examples

	Catch curve analysis
	Examples

	I-cod, Yearclasses 1960-92.
	Details


	Natural mortality
	The natural mortality rate
	Details
	Examples

	On natural mortality, M
	Details

	More on M
	Details

	Additivity of mortalities
	Details

	Effects of different mortality rates
	Examples


	Stock and catch equations
	Deriving the catch equation
	Details

	Development of catch from a cohort
	Details

	Development of catch from a cohort
	Details

	Deriving the catch equation
	Details

	The catch equation
	Details

	Change in yearclass size during a year
	Details

	The catch equation for many age groups and years
	Details



