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1 Lack of age data - background

1.1 Poor data is no excuse

Lack of age readings does not change the issue:

• The population dynamics are the same

• The problem simply becomes harder

• Poor methods result in poor data

• Need better methods with poor data

• Should attempt to get better data

1.1.1 Details

It is a common misunderstanding that simple methods of analysis are always appropriate
when a researcher has “simple” data. It is, of course, true that a regression analysis us-
ing few or poor data points will lead to only a few variables appearing significant and this
may be the reason for the misunderstanding. In fishery science, however, it is the populati-
on dynamics which are important and thenature of population dynamics do not become
simpler just because data are not available.

Age data may not be available for a number of reasons, but mainly the reasons are either
biological (there are no hard parts which can be used to identify annuli) or economical (it
is too expensive to collect and analyse data).

The lack of age data does not change the primary issue when considering stock dynamics,
which is to obtain an understanding of how the population will respond to different pressures.
In particular, the lack of age data does not mean that there are no age groups in the pop-
ulation!

The lack of age data is not an excuse to use outdated methods ormethods which are known
to perform poorly. In particular, many "classical"methodshave been extensively tested and
found to give very unreliable estimates of population abundance and yield potential.

In many cases the lack of good data is really just a lack of organised collection and
verification. In this case the single most important issue isreally to organize a better data
collection scheme.

Length data alone sometimes have enough resolution to give the same information as data
sets with age readings. Unfortunately, the general rule is that it is more difficult to extract
detailed information from poor data. It follows that in order to obtain sensible results one
needs more elaborate and complex methods as the data gets poorer.

This implies the exact opposite to the popular view: Methodswhich work poorly on good
data should never be used on poor data since then it is not evenpossible to see how poorly
they perform. More elaborate methods which are based on valid statistical techniques are
much more likely to provide appropriate results in general,also for simpler data sets.
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1.2 Missing age readings

• Can often get growth from modes

• Can often use statistical methods to convert to
age

• Can often use models of population dynamics
and fit to length data

• Important: Can often get some (recruitment)
data

Length distribution of Northern shrimp,Pandalus
borealis, in parts per thousand (0/00) in each 1mm
carapace length group, from a sample taken in
Icelandic waters.

1.2.1 Details

In cases when age readings are not available, several approaches exist to stock assessments.

First, methods are available for converting length distributions to age compositions. In
many cases these methods can be used to obtain reliable estimates of the age composition
of catches.

Secondly, statistical methods exist for fitting age-based population dynamics models to
data on length distributions. This topic is more than enoughfor a separate discussion and
the remainder of this tutorial focuses on obtaining age compositions based on length mea-
surements alone.

In the simplest examples, peaks in the length distribution are distinct enough to discern age
groups. In particular it is often fairly easy to identify these cohorts visually (qualitatively)
and this immediately gives some information on growth. However, more than growth data
is needed for a complete understanding of the population dynamics of a species.

In many data sets it is possible to discern the recruitment part of the length distribution.
This provides important information for many estimation methods.

1.3 Cohort slicing

A length distribution is sliced by assigning length groups
surrounding a mode to an age group.
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1.3.1 Details

The simplest method for converting length distributions toage compositions is probably
cohort slicing. But, the method assumes that there is some prior knowledge of growth.

Note 1.1.Cohort slicing is conducted using data on length at age of different cohorts; the
length distributions are simply sliced at the midpoints between the lengths at age to give an
approximation of the number of fish in each age group.

This method is clearly very simple in principle and when the peaks are reasonably clear, it
is very easy to apply.

When the interest is only in obtaining the youngest one or twoyear-classes from the length
distribution this method is more reliable than when used to slice the entire length distributi-
on.

Detailed models of the population dynamics can include an internal model of length and
age which can then be fitted to the sliced data without assuming that they come from only
one age group.

Cohort-slicing is not to be recommended since better procedures exist.

1.4 Smoothing and interpolation

Simple visual smoothing methods can be used to guesstimate the
fraction of each length group to go into each age group (not recommended).

1.4.1 Details

A slightly more sophisticated method than cohort slicing would use a simple interpolation
mechanism to account for the fact that the in-between lengthgroups should be allocated to
more than one age group.
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2 Growth models

2.1 Principles of mathematical modelling

A mathematical model of a biological process is, in its simplest form, just a formula
used to describe the process.

Before attempting to fit complex statistical models, the procedure should be to envisage
the biological processes, formulate them as mathematical models, and then study the
behavior of the mathematical models.

Once the mathematical models appear to behave in accordancewith the biological
processes in question it is necessary to compare the models to data, which is where the
statistics come in.

Part of the procedure is to plot and analyse data in order to verify which mathematical
assumptions may reflect biological reality.

2.1.1 Details

A mathematical model of a biological process is, in its simplest form, just a formula used
to describe the process.

Before attempting to fit complex statistical models, the procedure should be to:

1. Envisage the biological processes

2. Formulate them as mathematical models

3. Study the behavior of the mathematical models

Once the mathematical models appear to behave in accordancewith the biological processes
in question it is necessary to compare the models to data, which is where the statistics come
in.

2.2 Always first plot the data

First always plot the data - e.g. length against age.
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2.2.1 Examples

Estimating a growth curve for a fish stock.
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Example 2.1. First input some data and obtain estimates of mean length andnumbers at
each age - only use ages with minimal number of values.
http://tutor-web.net/fish/fish5103growth/lecture20/length-at-age.r

Example 2.2. Plotting mean length at age:
http://tutor-web.net/fish/fish5103growth/lecture20/mean-length-at-age.r

2.3 A model of fish growth

A model of growth - the von Bertalanffy growth
equation

Lt = L∞
Ä

1−e−Kt
ä

Lt = L∞
(

1−e−K(t−t0)
)
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K= 0.1  Linf= 120  t0= 0

K= 0.5  Linf= 120  t0= 0

K= 0.1  Linf= 80  t0= 0

2.3.1 Details

The von Bertalanffy model of growth describes the length at time (or age)t in terms of
a few parameters. Though possibly not any more realistic, a parameter is often added in
order to better fit data.

Definition 2.1. von Bertalanffy growth equation:

Lt = L∞
Ä

1−e−Kt
ä

Lt = L∞
(

1−e−K(t−t0)
)

This model only models a single trajectory. When used to model the growth of a group of
fish it simply reflects the average length of the population.

In order to model a length distribution, this model needs to be extended to describe the
distribution around the mean length at each age.

2.3.2 Examples
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Example 2.3. If the age of a fish is stored in R as a vector,a, then one can use

lhat<-Linf*(1-exp(-K*(a-t0)))

to compute the predicted length at age.

It would be an improvement to implement this as a function...

Example 2.4. A more detailed examination of the behavior of the von Bertalanffy
growth curve can easily be undertaken using R, e.g. through the following sequence
of commands, or variations thereof:
http://tutor-web.net/fish/fish5103growth/lecture20/vonb-growth-curve.r

2.4 Mathematical models as functions in R

2.4.1 Details

Within R, more complex mathematical models are usually implemented as functions which
take parameters as arguments and deliver fitted, or predicted values, as output.

2.4.2 Examples

Example 2.5. To take the von Bertalanfy growth function again, consider first a simple
R function which predicts the length at age for a given set of parameters:

vonb<-fun
tion(Linf,K,t0){

lhat<-Linf*(1-exp(-K*(a-t0)))

return(lhat)

}

In many cases it is useful to store all the parameter values ina single vector:

vonb<-fun
tion(b){

Linf<-b[1℄

K<-b[2℄

t0<-b[3℄

lhat<-Linf*(1-exp(-K*(a-t0)))

return(lhat)

}

A better version is to include the age vector as an argument, here called "a":

vonb<-fun
tion(b,a){

Linf<-b[1℄

K<-b[2℄

t0<-b[3℄

lhat<-Linf*(1-exp(-K*(a-t0)))

return(lhat)

}

10



2.5 The sum of squares

Need to define the sum of squares deviations based on

yi − ŷi

so use
∑

i

(yi − ŷi)
2

2.5.1 Examples

Example 2.6. Estimating a growth curve for a fish stock.
Define a new function which returns the sum of squares errors,for a given set of para-
meters. The data are assumed to be available in the directorywhere the function is called.

sse<-fun
tion(b){

lhat<-vonb(b)

s<-sum((l-lhat)^2)

return(s)

}

2.6 Fitting a nonlinear growth model
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2.6.1 Details

Nonlinear statistical models involve some nonlinear combinations of the parameters themsel-
ves (i.e. not the independent variables, so e.g.y = α+ βx2 is in fact a linear model).
Nonlinear estimation methods are therefore needed.

2.6.2 Examples

Example 2.7. Estimating a growth curve for a fish stock.
http://tutor-web.net/fish/fish5103growth/lecture20/fish-stock-growth-curve.r

Note that this did not take into account that there will be a difference in how accurate
the various mean lengths at age are, though the initial selection process did limit the
estimation to those ages with over 5 observations.
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Example 2.8. A more complete example with a larger data set:
http://tutor-web.net/fish/fish5103growth/lecture20/fish-stock-growth-curve-expanded.r

3 Models of length distributions

3.1 Statistical and other models of length distributions

A fairly simple statistical model of length distributions is a combination of cohort length
distributions, each of which is assumed to be for a specific probability density such as a
Gaussian density.

The location of each density is centered on the mean length ofthe corresponding cohort
with some standard deviation.

The multiplicative factors forming the combination reflectthe relative strength of each
cohort.

3.1.1 Details

Models of biological phenomena, such as length distributions, can be based on mathematical
models of biological processes or simple statistical models which adequately describe the
data at hand.

A fairly simple statistical model of length distributions is a combination of cohort length
distributions, each of which is assumed to have a specific probability density such as a
Gaussian density.

The location of each density is centered on the mean length ofthe corresponding cohort
with some standard deviation.

The multiplicative factors forming the combination reflectthe relative strength of each
cohort.

In some cases discrete approximations to the Gaussian distribution are used whereas more
commonly the cumulative probability is computed by integrating each length interval.

3.2 Cohort slicing

A length distribution is sliced by assigning length groups
surrounding a mode to an age group.
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3.2.1 Details

In some areas a method known as cohort slicing is commonly used to convert length distri-
butions to age compositions. Remember, cohort slicing is the creation age compositions
by taking the length at age of different cohorts and slicing the length distributions at their
midpoints. This method is clearly very simple in principle and when the peaks are reasona-
bly clear, it is very easy to apply.

Naturally, it is assumed that there is some information about growth.

In cases when the peaks are not clear, information from othersources may be used to decide
on where to slice the length distribution. Thus, if tagging data are available, then they may
indicate slicing points. Alternatively, in some years a clear cohort (large or small) may
provide information as to which can be used for other years.

This methods has been tested quite extensively and found to be quite useful. Is it, however,
clear that it suffers from several disadvantages. Obviously, the technique is not well
founded biologically, statistically, or mathematically.More obviously, if a large year-class
comes in, it will dominate several length groups, across theslicing points which may result
in smearing.

Note 3.1.Smearing is where large year-classes become smaller and year-classes on both
sides of the large year-class become larger.

The net result of smearing is that year-class variation willbe underestimated and it may
appear that recruitment is stable when in fact it is quite variable.

Thus, although this method is unquestionably useful, it does leave something to be desired
in terms of how it behaves in various circumstances.

3.3 The distribution of length at age

10 11 12 13 14 15 16 17

0
2

4
6

8
10

12
14

Some length measurements on age 1 cod in Icelandic waters in 1996.

3.3.1 Details

Within an age group fish will have different lengths. If a length distribution is to be
modeled, this feature needs to be taken into account.
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3.4 The Gaussian density and cdf
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Length frequency and fitted Gaussian for a single age group.

3.4.1 Details

A probability distribution can be used to model the number offish in each length group.

Start with a single age group and suppose the distribution offish at length follows a Gaussi-
an (normal) distribution. For simplicity, suppose the meanand standard deviation of length
at age are known.

In this case the mean length and the standard deviations of the Gaussian distribution can be
set to these known values. If the density is further multiplied by the numbers in the sample,
a fitted curve ensues.

Although a Gaussian density can be fitted to the length data for a single age group, there is
an inconsistency in this approach. Basically, the data correspond to aggregates since each
length group consists of an interval. Typically, a length groupl will actually contain all fish
of length l − 1

2 to l + 1
2. The appropriate modeled probability should therefore reflect the

area under the Gaussian density, between these two points.

Definition 3.1. Modeled probability under a Gaussian density for fish lengths
betweenl − 1

2 to l + 1
2.

Φ
(

(l + 1
2)−µa

σa

)

−Φ
(

(l − 1
2)−µa

σa

)

3.4.2 Examples

Example 3.1. The modeled probability reflecting the area under the Gaussian density
can be done in R using:

pnorm((lgrp+0.5-mu)/sigma)-pnorm((lgrp-0.5-mu)/sigma)

where the mean length ismuand the standard deviation issigma.
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3.5 The proportion within a length group

3.5.1 Details

The density function of the Gaussian distribution with meanµ and varianceσ2 is given by

f (x) =
1√
2πσ

e−(x−µ)2/(2σ2)

and the cumulative distribution is

F(x) =
∫ x

−∞
φ(t)dt = Φ

Åx−µ
σ

ã

.

Take a fixed age group of fish and assume that they are distributed along the length axis
according to a Gaussian density, with some mean length (µa) and some standard deviation
of length at age (σa). For this age group, the proportion of fish within length categoryl of
width l is

Φ
(

(l + 1
2)−µa

σa

)

−Φ
(

(l − 1
2)−µa

σa

)

since this is the probability of a fish having a length betweenl − 1
2 andl + 1

2. In the case of
different length groups, the modification should be obvious.

Now, suppose the true proportion of fish in age groupa is πa. In this case the proportion of
fish in length groupl , across all ages becomes the proportion in length group equation.

Definition 3.2. Proportion in length group equation:

∑

a
πa

{

Φ
(

(l + 1
2)−µa

σa

)

−Φ
(

(l − 1
2)−µa

σa

)}

.

πa=proportion of fish in each age group
µa=mean length at age
σa=standard deviation

Given data (observations) on the proportions at length, those can be compared to the theor-
etical proportions. A formal statistical approach would beto estimate the unknown para-
meters by minimizing the discrepancy between the observed and theoretical values. This
can be done using any number of discrepancy measures.

Since it is usually difficult to estimate all parameters at once, it is common practice to
fix all standard deviations at a fixed value and to fix all mean lengths to some reasonable
guesses or values from other sources. Having fixed these, theobserver can estimate all the
proportions. The next step is to investigate which of the fixed values can be estimated using
either these proportions set at the first estimates or estimated with the proportions, starting
with the first estimates as initial values.

3.5.2 Examples
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Example 3.2. Suppose the current length group is stored in the variable "lgrp", the
proportional number in each age group is "pi", the mean length at age is "mu"and the
standard deviation is "sigma". In this case the following R command will compute the
proportion in length group "lgrp".

sum(pi*(pnorm((lgrp+0.5-mu)/sigma)-pnorm((lgrp-0.5-mu)/sigma)))

Notice how every arithmetic operation within this expression is an operation on vectors
and the final summation is across all ages. The reader should test and study this command
line since it will be used in the following.

3.6 Statistical estimation of proportions at age

Parameters:πa, µa, σa

Need some criteria, e.g.
∑

(yl − ŷl )
2

Whereyl is the measured proportion in celll andŷl

is the modeled proportion
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Example length distribution. Cod in 1990 survey of
Icelandic waters.

3.6.1 Details

The proper approach to the issue of age-segregating the catch at length is to assume a
statistical model and to separate the length distributionsby age according to this model.

The most common model is to assume that the distribution of lengths within an age group
is Gaussian and to estimate the parameters of these length distributions along with the
proportion in each age group using maximum likelihood or some derivative method th-
ereof.

When the length measurements are in integer units (e.g. 1cm groups) this can easily be do-
ne in spreadsheets, usually through discrete approximations to the Gaussian density, but as
noted above, a more formal statistical approach using the cumulative distribution function
is more appropriate.

The nonlinear minimization becomes quite tricky at times and considerable thought needs
to be given into the sequence in which parameters are estimated.

The large number of parameters implies further problems in estimation due to confound-
ing. This can sometimes be alleviated by reducing the numberof parameters, e.g. by
assuming some standard deviations to be constant or by assuming a growth curve to app-
ly to the mean lengths at age. Such parsimony may lead to considerably more stable results.
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In many cases data on mean length at age and on standard deviations at age can be carried
across years. Thus, the estimation may be reduced to only estimating the annual proporti-
ons in each age group.

In some cases several years worth of data can be combined intoa single estimation process.
In this case the method is transformed into an assessment procedure, dealt with elsewhere.

3.6.2 Handout

Given that the predicted proportional length distributionis given by

ŷl =
∑

a
πa

{

Φ
(

(l + 1
2)−µa

σa

)

−Φ
(

(l − 1
2)−µa

σa

)}

.

a criterion is needed to estimate the set of unknown parameters, : πa, µa, σa.
Some criterion is needed to describe the fit. The simplest of these is a straightforward sum
of squares,

∑

(yl − ŷl )
2 .

Whereyl is the measured (observed) proportion in celll andŷl is the modeled proportion,
given above.

In order to fit anything to the data one first needs to define the number of age groups to be
used. In this particular example three initial modes can be clearly identified. Looking at
the actual data it is seen that these occur at 12, 24 and 35cm. Given that these increments
amount to 12 and 11 cm and will diminish, it is not too unreasonable to expect that the
remaining range of 95cm (=130-35) may correspond to another8 age groups (or more), so
assumingna = 11 age groups should not be too far-fetched.

3.7 Setting initial values
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Example length distribution with initial values for fitted distribution.

3.7.1 Details

Initial values for all parameters are needed before actual estimation can start.

In this example initial proportions are set equal, mean length at age starts out at the peaks
for a few of the youngest ages and are then equally spaced. Thenumber of potential age
groups is set to 11. The standard deviation is set to 2.5 for all ages, which looks about right
for the youngest where it is reasonably clear.
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3.7.2 Examples

Example 3.3. For the cod data, initial values for the mean length at age can
be set at the first few modes and then with a constant difference, e.g. at
µ0 = (12, 24, 35, 45, 55, 65, 75, 85, 95, 105, 115).

To initialize the standard deviation of length at age, note that the first mode is at 12cm
and the lowest value is at 7cm, with a difference of 5cm. If this range corresponds to
95% probability (bi-directional two standard deviations), then the standard deviation
for the first age group should be about 2.5cm. The simple initialization places this as a
constant standard deviation for all length groups.

As is seen in the figure, the resulting initial length distribution is very far from the true
one. However, it does not need to be very close since the first step will be to modify the
proportions.

3.7.3 Handout

Before an attempt is made to minimize the sum, initial valuesmust be set. Some general
guidelines can be given, though exceptions will occur.

Proportions at age are easiest initialized at equal values,πa,0 = (1/na).

The mean lengths at age for the first few ages can often be determined from the length
distribution. Naturally there will be obvious exceptions such as when a year-class is so
small as not to be identifiable in the length distribution (a gap will be apparent between the
peaks). A different method altogether is to use a von Bertalanffy curve and use starting
values ofK andL∞ which pass through the peaks in some manner (see the following secti-
ons).

The standard deviation of length at age can often be estimated for the youngest age. If
this age group stands out as a peak, then the entire width of this peak can be assumed to
correspond to two standard deviations, giving the requiredestimate.

3.8 Estimating proportions alone

The proportions are easiest to estimate and can be
estimated for given values of the mean and standard
deviation.

The results from this first estimation part will
typically clear up what needs to be done about stand-
ard deviations and means.
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Example length distribution. Cod in 1990 survey of
Icelandic waters.
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3.8.1 Examples

Example 3.4. For the cod data an obvious next step is to estimate the proportions first
since the initial values are way off. The figure indicates theresults from estimating the
proportions, given the assumed values for the mean lengths and standard deviations.

Note that although the result is much better than the initialvalues, there is still a long
way to go before this can be called a good fit.

3.8.2 Handout

First steps:
Here one could set up a function to calculate the SSE as a function of the proportions alone,
for fixed values of the mean length and standard deviation at age.

http://tutor-web.net/fish/fish5103growth/lecture30/ssewithfixedlength.r

3.9 Typical parameter reduction - sigma

Commonly assume equal standard deviations

Often the standard deviation for the youngest is
clearly lower than for the oldest

Possibly estimate one or a few for the younger ages
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Example length distribution. Cod in 1990 survey
of Icelandic waters. Sigma values estimated after
proportions.

3.9.1 Details

Consider again the typical estimation problem when trying to estimate all proportions, me-
an lengths and standard deviations from a single length distribution.

If there arena age groups, the proportions must sum to one so there will bena−1 independ-
ently estimated proportions,πa. There can usually be no other restrictions on these since
they correspond to year-class sizes which are usually completely unknown. There must be
on mean length at age per age group, giving a furtherna unknown parametersµa.

There are alsona standard deviations,σa, so the total number of unknown parameters are
3na− 1, which is usually an uncomfortably large number to be estimated from a single
length distribution.

The first obvious problem is how one should estimate all of thestandard deviations since
these will be very poorly estimated for all but possibly the youngest 1-3 age groups. Thus,
if there are clearly distinguishable peaks in the length distribution corresponding to the
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youngest age groups it may be possible to estimate the width or standard deviation cor-
responding to these peaks. It is common practice to try to reduce the number of standard
deviations to be estimated to a low number, from one to four depending on the amount of
information obviously available in the length distributions.

A second problem, addressed in a later section, is how one canensure thatpa ≥ 0 and
0 ≤ µ1 ≤ µ2 ≤ . . ., not to mention that the mean lengths,µa, should be “reasonable”, i.e.
these values should not increase in arbitrary leaps and bounds but must correspond to a
realistic growth curve.

3.9.2 Examples

Example 3.5. In the cod example there are a large number of age groups. It follows that
it is very unlikely that all the standard deviations can be estimated. On the other hand it
is very clear that they are not constant.

It therefore makes sense to estimate some of these but not all. For example, one can try to
estimate the first four standard deviations and assume that standard deviations from age
four onward are all the same. Alternative assumptions couldof course also be tested.

3.9.3 Handout

The following R code snippet defines a sum-of-squares function for estimation of a fixed
few standard deviations.

http://tutor-web.net/fish/fish5103growth/lecture30/sumofsquaresfixedlength.r

3.10 Full run
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Example length distribution. Cod in 1990 survey of Icelandic waters. Parameters
estimated in twice-repeated sequence.

3.10.1 Details

For the cod example, the previous sections have indicated how it is possible to first obtain
initial values, then estimate proportions only, and subsequently the standard deviations,
each time fixing all other parameters. Naturally the next step is to estimate the mean lengths
at age, using the previously estimated values of proportions and standard deviation.
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Given that each of these estimations is only done for a subsetof parameters, it is important
to repeat the procedure at least once and it is preferable to end the process by estimating the
entire set of parameters simultaneously in order to ensure that a "best” estimate is found.

3.10.2 Example

Example 3.6. Coding in R:In addition to the previously defined functionssseprop and
ssesigma, the following functionssemu is required to estimate the mean lengths at age,
given the values ofπa andσa.

# Define a fun
tion to evaluate the fit of different mu ve
tors.

ssemu<-fun
tion(muve
){

fit<-rep(0,130)

for(lgrp in 1:130){

fit[lgrp℄<-sum(pi*(pnorm((lgrp+0.5-muve
)/sigma)-pnorm((lgrp-0.5-

muve
)/sigma)))

}

sse<-1e6*sum((dat-fit)^2)

plot(lgrps,dat,type='b',lwd=2)

lines(lgrps,fit,type='l',lwd=2,
ol="red")


at("SSE=",sse,"\n")

return(sse)

}

Suppose this function is also defined in the filefun
tions.r, along with the previous
sse-functions.

The sameinit file as before can be used but a longer set of function calls need to be
used since now the purpose is to repeatedly call each function.

3.11 Parameter reduction - using a growth curve

May want to use a von B growth curve in place ofµa

3.11.1 Details

In applications several estimation issues may arise. In particular it may not be feasible
to estimate individual length at age for all ages, even though it may be possible to cle-
arly discern a few peaks for the youngest ages. In this case one may want to use a von
Bertalanffy growth curve, i.e. assume

µa = L∞
(

1−e−K(a−t0)
)

so the mean length at age is based on only 3 parameters rather than tring to freely estimate
a mean length for every age.

3.11.2 Example
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Example 3.7. R coding:A typical function for estimating the vonB growth curve could
be the following. As in the previous sections, this particular function is geared towards
the cod example, with a fixed 11 ages and length groups from 1 to130 cm.

http://tutor-web.net/fish/fish5103growth/lecture30/vonbgrowthcurve.r

3.12 Caveats

Uncertainty estimation
Time of sampling - fixed-point (survey) or continuous (catches)
Time of spawning - short interval or continuous or biomodal
etc

3.13 The next steps
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3.13.1 Details

The next steps are to make the previous routines generic and to set up anR library. The
routines should, for example, not contain exactly 11 age groups and 130 length classes etc.
Routines should also be added to provide reasonable initialvalues for all parameters or at
least initialize from a minimal set of assumptions.

3.13.2 Assignment

Assignment 3.1.Modify the routines in this section and and use them on another stock.
Collection of generic R code
http://tutor-web.net/fish/fish5103growth/le
ture30/base30.dat

http://tutor-web.net/fish/fish5103growth/le
ture30/init1.r

http://tutor-web.net/fish/fish5103growth/le
ture30/fun
tions1.r
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4 Case studies in analysis of length data

4.1 Two yearclasses or many: A case study, part 1

4.1.1 Details

Some care must be exercised when attempting to read ages fromlength distributions, as the
following case study will show.

Before anything else is known about a species, it is typically sampled for length mea-
surements, providing a length distribution such as that above.

This particular length distribution is from a species in Icelandic waters. Assume for the
moment that these data are the only data available on this species. Such a situation is not
all that uncommon especially when research is initiated on anew stock.

Before anything else is known about the species, there is no reason to assume anything
about the age structure. In particular, the length distribution in this case gives no indication
as to whether the two identifiable peaks correspond to two cohorts, and even if they are,
then it is not clear whether the two cohorts are adjacent in time or far apart.

In tropical waters such two peaks might even illustrate a single year-class spawned during
two different spawning seasons within a year.

4.2 Two yearclasses or many: A case study, part 2
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4.2.1 Details

When data for two adjacent years are considered, it is seen that the pattern of two major
peaks in the length distribution is repeated. However, it isalso seen that a new peak at a
very small length (7 cm) appears.

The question is now raised, whether there are three year-classes of a very fast growing
species or whether some other interpretation exists.

4.3 Two yearclasses or many: A case study concluded

4.3.1 Details

As more years are added to the picture, the required detail emerges. With three years of
data it is now clear that the peaks are indeed cohorts or groups of cohorts. This is clear
since the peaks move to the right by about 2 cm per year.

Thus, it is concluded that this is not a fast-growing speciesbut a very slow growing one.
Further, the long distance between the peaks is an indication of tremendous year-class
variation.

4.4 Two yearclasses or many: The actual situation

4.4.1 Details

The species in question is redfish. This is a very slow growingspecies with enormous year-
class variation.
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Early attempts at age determination indicated that there was very little year-class variation.
A simple analysis of length distributions, such as this one,clearly invalidates those age
readings.

Experienced fishermen and scientists had problems in figuring out details in the dynamics
of this stock. For example, a catch of juveniles from this stock appears as a whole bunch
of small fish, around 10cm. It is not until the data have been collected and the length
distributions drawn up as a time series, that the growth pattern emerges and indicates that
the pile of small fish on deck is not always 10cm but grows by about 2cm per year.

5 Length-weight relationships

5.1 Estimating the relationship between length and weight

5.1.1 Details

The simple approach to estimating the relationship betweenlength and weight is to log-
transform lengths and weights, followed by a simple linear regression. However, the log-
transformation causes a bias which needs to be investigated.

Alternative methods include using generalized linear models with e.g. a gamma distributi-
on and a log link.

It in known that there are often problems with how a single relationship fits the small fish or
the large fish. Different relationships may be needed for different age ranges, or smoothing
functions may be needed to avoid consistently under- or over-predicting the weight of the
extreme size classes.

The models can be formally tested using a lack-of-fit test forthe mean function, tests of
distributional assumptions, tests for outliers and so forth.

The entire battery of test mechanisms for simple linear regression models is available for
the length-weight relationships.

It should be noted that the primary hypothesis is not whetherthe slope in the log-log
regression is zero, but rather is the slope 3. This hypothesis is usually rejected and that
implies that the usual definition of a conditional factor (asw/l3) is not appropriate.

Finally, theR2-value, reported by popular spreadsheets when a “power-curve” is fitted, has
no meaning for the curve and should not be used. The spreadsheet user should be aware of
this and of the fact that the resulting curve may be seriouslybiased.

5.1.2 Examples

Example 5.1. http://tutor-web.net/fish/fish5103growth/lecture50/lwrelationship.r
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6 Modelling the development of a length distribution

6.1 A length distribution
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A simulated length distribution.

6.1.1 Details

A (discrete) model of length distribution development fromgrowth needs to specify how
each length group progresses from one group to the next via growth.

The following will ignore mortality and other issues, in order to focus on the effect of
growth alone.

6.2 A growth curve
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Deltal= 18 cm at l=22cm

An example of a von Bertalanffy growth curve.

6.2.1 Details

If a general growth curve can be assumed, then that can be usedto determine the mean
growth for a group of fish. Specifically, a von Bertalanffy growth curve can determine the
mean growth of each length group.
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6.3 The updating distribution
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The updating distribution describes the frequency of movements from a fixed length
cell into other cells.

6.3.1 Details

Given the number of fish in a given length group and a mean growth, an updating distributi-
on should be used to describe how the fish move into adjacent length groups so that mean
growth can be determined.

The simplest model would simply move all the fish by the same number of length cells.
The immediate problem with this is that typically the growthis by a fraction, not an integer.

This could be fixed by moving the fish into the length group immediately above or below by
the proportions dictated by the mean growth. This was, for example, done in MULTSPEC.

However, some information exists about how the distribution of fish at length changes in
time, e.g. for a given cohort. Similarly, tagging data givesdirect information on how the
growth corresponds to a spread across several length groups.

It is therefore useful to consider growth in terms of an updating distribution.

6.3.2 Examples

Example 6.1. Take a single length group and model how this should grow intoadjacent
cells, restricted in such a way as to provide the proper mean growth. The example shows
how a binomial distribution can be used.
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6.4 Growth from length at age
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Varying initial lengths will correspond to different growth under the von Bertalanffy
growth curve.

6.4.1 Details

The growth function (or length-at-age function, rather) will predicate different growth patt-
erns for different initial lengths. Thus the updating distribution will be different for different
initial length groups.

6.5 An updated length distribution
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The simulated data transforms into a smoother length distribution since each target
length group contains a sum of parts from several other length groups.

6.5.1 Details

When the updating mechanism has been used to move each lengthgroup, the result is a
new, shifted, length distribution.

6.6 The update as a shifting smoother
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Notice how the updating mechanism shifted and smoothed the initial length distributi-
on.
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6.6.1 Details

An updating procedure will split each initial length into several adjacent ones, each cor-
responding to some growth. This corresponds to a combination of shifting, smoothing, and
spreading out of the length distribution.

6.7 An example of an updating model
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Caricature of an update mechanism

6.7.1 Details

A length updating mechanism is implemented by specifying a method for how much fish of
a specified length should grow and then prescribing how a meangrowth should correspond
to a distribution of fish onto different length groups.

6.7.2 Example

Example 6.2. The entire updating mechanism can be demonstrated using thefollowing
R code:
http://tutor-web.net/fish/fish5103growth/lecture60/updating-mechanism-in-gadget.r

7 Using length data in population models

7.1 Introduction

Several approaches exist:

• Cohort slicing and then VPA-style

• Just use lengths for recruits and then statistical
models

• Model length dist as a part of pdy model
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A
simulated length distribution.
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7.1.1 Details

Several approaches exist to include length data in population models.

• Cohort slicing and then VPA-style: This is a very simple method and can always
be used if there is basic information about the growth of the species, i.e. some in-
formation on where the length distributions should be sliced. Naturally, more ela-
borate methods than cohort slicing could also be used.

• Use lengths of recruits and then statistical models: For very many species the first
one or two age groups are clearly separated from the rest, butthe older ages are all
in one lump. General population dynamics models can easily be fitted to data when
there is an index of recruitment and a separate index of the adult population.

• Model the length distribution as a part of a population dynamics model: In this case
an internal population dynamics model is used to predict thecorrect length distri-
bution. The measured length distribution is then used for comparison. Parameters of
the population dynamics model are estimated by ensuring that the predicted length
distribution is close to the measured one.

7.1.2 Examples

Example 7.1. Suppose we want to track the length distribution of a single cohort (for
simplicity).

7.1.3 Assignment

Assignment 7.1.When estimating parameters using a non–linear minimizer itis prefera-
ble to provide ‘reasonable’ starting values. A way to do thisfor the von Bertalanffy
equations is as follows:

Lt = L∞(1−exp(−K[t − t0]))

Assumet0 = 0, then,

Lt = L∞(1−exp(−Kt)) (1)

Lt = L∞ −L∞exp(−Kt) (2)

L∞ −Lt = L∞exp(−Kt) (3)

SubstituteLt+1 for Lt in equation 2.

Lt+1−Lt = L∞exp(−K(t +1))−L∞exp(−Kt) (4)

Which can be written as:

Lt+1−Lt =−L∞exp(−Kt)(1−exp(−K)) (5)

Substitute equation 4 into equation 5.
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Lt+1−Lt = (L∞ −Lt)(1−exp(−K))

Lt+1 can be written as a function ofLt .

Lt+1 = L∞(1−exp(−K))+Ltexp(−K) (6)

Lt+1 can be plotted againstLt and a linear regression model fitted.

Lt+1 = a+bLt

wherea= L∞(1−exp(−K)) andb= exp(−K). K andL∞ can then be estimated from:

K =− ln(b)

L∞ = a/(1−b)

von Bertalanffy — predicting
R can be used to calculate the predicted length at age (lhat) from the von Bertalanffy
equation:

lhat <- Linf*(1-exp(-K*(a-t0)))

whereLinf, K andt0 are constants anda is the age(and can be a vector).

The equation can also be stored as a function:

vonb <- fun
tion(b) {

Linf <- b[1℄

K <- b[2℄

t0 <- b[3℄

lhat <- Linf*(1-exp(-K*(a-t0)))

return(lhat)

}

whereb is a vector containingL∞,K, t0. The required agesa are in another predefined
vector.

• Write a function in R to predict length at age withL∞ = 160,K = 0.09 andt0 = 0
for fish aged 2 to 14.

• Plot the predicted lengths at age.

• Calculate the growth curves for different parameters and compare on the same plot.

von Bertalanffy — estimating
Given data on mean length at age, the von Bertalanffy parameters can be estimated
by finding the parameters which minimize the difference between the observed mean
lengths at age and those predicted from the von Bertalanffy equation.

To calculate the sum of squared errors for a set of parametersuse a function like this:

vb.sse <- fun
tion(b){

lhat <- vonb(b)

sse <- sum((l-lhat)^2)

return(sse)

}
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This function combines the function to predict the von Bertalanffy growth curve (vonb)
with the calculation of the difference between the observedgrowth curve and predicted
growth curvesse.

The best fit to the data is from the parameters giving the lowest sum of squared errors.
To estimate these parameters there is an R functionnlm which is used like this:

est <- nlm(vb.sse, 
(100, 0.1, 0))

It is better to use:

est <- nlm(vb.sse, 
(100, 0.1, 0), typsize = 
(100, 0.1,0.001))

wheretypsize is an estimate of the order of magnitude of the optimized parameters.
Using this should reduce the number of iterations required,increase the chance an
optimum will be found and make the optimization more robust.There are many other
options innlm which are explained in help.

The output ofnlm includes

est$estimate # the parameter estimates

est$minimum # the minimum sse

est$
ode # a 
ode whi
h tells you the status

# (i.e. whether an optimum has been found)

To see the search being done bynlm add

lines(a, lhat, 
ol=2)

to vb.sse and set up a plot before runningnlm e.g.

plot(a, vonb(
(Linf,K,to)), type="n")

von Bertalanffy – fitting to data

• Given these data:

L <- 
(18, 24, 29, 32, 35)

t <- 
(1.5, 2.5, 3.5, 4.5, 5.5)

– Estimate the von Bertalanffy parameters

– Plot Lt againstLt+1

– Fit a linear regression line usinglm

– Use the estimates ofK andL∞ from the linear regression to start the non-linear
minimization.

• A dataset including haddock age and length is available from:

http://tutor-web.net/fish/fish5103growth/haddockage.dat

– Using these data, calculate mean length at age (tapply and fit a von Bertal-
anffy growth curve assuming age 1 is equivalent tot = 1 etc.

– Add the fitted growth curve to a plot of the observed data

– How many fish are there at each age? Does eliminating from the analysis
ages with a very small number of fish affect the estimated growth curve?

32



7.2 Simulating a length distribution

Population numbers can be simulated using the
stock equation

Mean length at age can be generated from a von
Bertalanffy curve

The distribution of length at age can be generated
from the mean and standard deviation assuming a
Gaussian distribution

The population length distribution is generated by
adding the age-based length distributions
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7.2.1 Details

It is fairly simple to simulate population length distributions based on assumptions such as
a fixed year-class size and growth according to a von Bertalanffy curve.

These simulated curves can be used in an estimation procedure to evaluate whether the
same growth can be extracted. If one generates a length distribution which has the same
overall flavor as a particular sample, this type of fitting to simulated data provides very
simple tests of whether there is any chance of extracting information from the observer
length distribution.

Noise can then be added to evaluate uncertainty in the estimation procedure.

Most length distributions are aggregates of several samples. A better method to estimate
uncertainty would be to bootstrap the entire length distributions and obtain repeated estima-
tes of growth and proportions in the age groups.

Note that it is not sufficient to bootstrap (resample) on individual fish since the fish in a
given length sample are correlated and therefore entire samples needs to be bootstrapped.

7.2.2 Examples

Example 7.2. The plot gives the proportional length distribution for individual year-
classes and the total population, when the stock equation isused to generate year-class
size from a fixed number of recruits and the von Bertalanffy growth curve is used to
generate mean length at age.

The simulated figure is typical of what an observed length-frequency plot can look like.

7.2.3 Assignment

Assignment 7.2. Models of length distribution
A single age
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• If the length distribution of an age-class is Gaussian (normal) with mean length
µ= 23 andσ = 1.4 then it could look like this:

# generating a point value for every 
m

le <- seq(15,30,1)

plot(le, dnorm(le, 23, 1.4), lwd=2)

lines(le, dnorm(le, 23, 1.4))

• If a length group is assumed to go from -0.5 to +0.5 then it is more appropriate to
sum (integrate) the distribution within this region ratherthan use the density of the
mid–point. Thecumulative distributionis then used:

# the 
umulative distribution is a 
ontinual sum of the density

distribution

le <- seq(15,30,1)

plot(le, pnorm((le-23)/1.4), type="o")

# the density distn from the 
umulative

leA <- seq(15.5,30.5,1) # upper point

leB <- seq(14.5,29.5,1) # lower point

# to 
he
k leA and leB are 
orre
t

rbind(leA,leB)

d2 <- pnorm((leA-23)/1.4) - pnorm((leB-23)/1.4)

# the values from the 
umulative distn

plot(le, d2, type="o")

# the values from the density distn

points(le, dnorm(le, 23, 1.4), 
ol=2)

Several ages
To model several ages, the mean length at each age can be defined in a vector egmu <-


(23, 34, 42, 50) or a growth model can be used to define the mean length at age.

• A population containing several length distributions can be simulated like this:

• The mean length at age is predicted using the von Bertalanffymodel.

• The standard deviation of length at age is fixed.

• The number at age is predicted using the stock equation.

# generating the mean length from von Bertalanffy

a <- 1:8 # 8 age groups

mu <- vonb(
(60,0.18,0))

sdev <- rep(2.4,length(a))

le <- 1:60

leA <- seq(1.5,60.5,1) # upper point

leB <- seq(0.5,59.5,1) # lower point

# the proportion at age assuming no fishing and M = 0.3

N <- 1

M <- 0.3

for(i in a){

N <- 
(N, exp(-M)*N[i℄)
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}

Ntot <- sum(N)

p <- N/Ntot

# use a loop to 
al
ulate length distribution for ea
h age

# and store in rows

# the length distribution * proportion at age

ldist <- NULL

for(i in a) {

d2 <- (pnorm((leA-mu[i℄)/sdev[i℄) - pnorm((leB-mu[i℄)/sdev[i℄))*p[

i℄

ldist <- rbind(ldist, d2)

}

# these 
an be plotted individually

matplot(le, t(ldist), type="l")

# and the length distribution would look like

plot(le, apply(ldist, 2, sum), type="l")

Practicals

• Plot the length distributions for different von Bertalanffy growth curves and with
different patterns of mortality at age (eg with only naturalmortality on younger
fish but fishing mortality on older fish.

8 Using length data in population models

8.1 Introduction
Several approaches exist:

• Cohort slicing and then VPA-style

• Just use lengths for recruits and then statistical models

• Model length distribution as a part of population dynmaics model

8.1.1 Details

Several approaches exist:

• Cohort slicing or other age-segregation and then VPA-styleassessment

• Use lengths for recruits, or R and B, and then statistical models

• Model length distribution as a part of population dynamics model
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This topic is enough for a complete course in fisheries. Importantly, if annual length distri-
butions exist, then there is potentially some information about age groups. Many assess-
ment procedures are available, which typically have an internal age and growth structure,
which predicts annual length distributions, e.g. Gadget.
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