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1 Lack of age data - background

1.1 Poor data is no excuse

Lack of age readings does not change the issue:

e The population dynamics are the same

The problem simply becomes harder

Poor methods result in poor data

Need better methods with poor data

Should attempt to get better data

1.1.1 Details

It is a common misunderstanding that simple methods of arsabre always appropriate
when a researcher has “simple” data. It is, of course, traedtregression analysis us-
ing few or poor data points will lead to only a few variablepagring significant and this
may be the reason for the misunderstanding. In fishery sejémmwever, it is the populati-
on dynamics which are important and thature of population dynamics do not become
simpler just because data are not available

Age data may not be available for a number of reasons, butlynidie reasons are either
biological (there are no hard parts which can be used toifgiearinuli) or economical (it
is too expensive to collect and analyse data).

The lack of age data does not change the primary issue whesndeoimg stock dynamics,
which is to obtain an understanding of how the populatiohnegpond to different pressures.
In particular, the lack of age data does not mean that therea@eage groups in the pop-
ulation!

The lack of age data is not an excuse to use outdated methatstioods which are known
to perform poorly. In particular, many "classical"'methb@se been extensively tested and
found to give very unreliable estimates of population alaunog and yield potential.

In many cases the lack of good data is really just a lack of rosgal collection and
verification. In this case the single most important issueadly to organize a better data
collection scheme.

Length data alone sometimes have enough resolution to lggveaime information as data
sets with age readings. Unfortunately, the general rulleasit is more difficult to extract
detailed information from poor data. It follows that in orde obtain sensible results one
needs more elaborate and complex methods as the data gegs. poo

This implies the exact opposite to the popular view: Methatigh work poorly on good
data should never be used on poor data since then it is nopeasible to see how poorly
they perform. More elaborate methods which are based od stdtistical techniques are
much more likely to provide appropriate results in genealslp for simpler data sets.



1.2 Missing age readings

age

and fit to length data

data

e Can often get growth from modes

e Can often use statistical methods to convert *
e Can often use models of population dynami /- .

e Important: Can often get some (recruitmemﬁygth distribution of Northern shrimgandalus
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borealis in parts per thousand (0/00) in each 1m
carapace length group, from a sample taken
Icelandic waters.

1.2.1 Details

53

In cases when age readings are not available, several aboeaxist to stock assessments.

First, methods are available for converting length distiitns to age compositions. In
many cases these methods can be used to obtain reliablatestiaf the age composition

of catches.

Secondly, statistical methods exist for fitting age-basepufation dynamics models to
data on length distributions. This topic is more than endiogla separate discussion and
the remainder of this tutorial focuses on obtaining age amsitipns based on length mea-

surements alone.

In the simplest examples, peaks in the length distributrerdéstinct enough to discern age
groups. In particular it is often fairly easy to identify #eecohorts visually (qualitatively)

and this immediately gives some information on growth. Hasvemore than growth data
is needed for a complete understanding of the populatioamtyecs of a species.

In many data sets it is possible to discern the recruitmeritgighe length distribution.
This provides important information for many estimationthwels.

1.3 Cohort slicing
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1.3.1 Details

The simplest method for converting length distributionsag® compositions is probably
cohort slicing. But, the method assumes that there is soroekrowledge of growth.

Note 1.1.Cohort slicing is conducted using data on length at age &raift cohorts; the
length distributions are simply sliced at the midpointsaesn the lengths at age to give an
approximation of the number of fish in each age group.

This method is clearly very simple in principle and when tleals are reasonably clear, it
is very easy to apply.

When the interest is only in obtaining the youngest one onjear-classes from the length
distribution this method is more reliable than when usedite $he entire length distributi-
on.

Detailed models of the population dynamics can include &rial model of length and
age which can then be fitted to the sliced data without assythat they come from only
one age group.

Cohort-slicing is not to be recommended since better puaesdexist.

1.4 Smoothing and interpolation
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Simple visual smoothing methods can be used to guesstihmte t
fraction of each length group to go into each age group (raatmenended).

1.4.1 Details

A slightly more sophisticated method than cohort slicingilglause a simple interpolation
mechanism to account for the fact that the in-between legigtips should be allocated to
more than one age group.



2 Growth models

2.1 Principles of mathematical modelling

A mathematical model of a biological process is, in its sisplform, just a formula
used to describe the process.

Before attempting to fit complex statistical models, thecpaure should be to envisage
the biological processes, formulate them as mathematiodlefs, and then study the
behavior of the mathematical models.

Once the mathematical models appear to behave in accorddtitehe biological
processes in question it is necessary to compare the madadda, which is where the
statistics come in.

Part of the procedure is to plot and analyse data in orderribywghich mathematica
assumptions may reflect biological reality.

2.1.1 Details

A mathematical model of a biological process is, in its siespform, just a formula used
to describe the process.

Before attempting to fit complex statistical models, thecpaure should be to:
1. Envisage the biological processes
2. Formulate them as mathematical models
3. Study the behavior of the mathematical models

Once the mathematical models appear to behave in accordéthdbe biological processes
in question it is necessary to compare the models to datahvidiwhere the statistics come
in.

2.2 Always first plot the data

First always plot the data - e.g. length against age.

2.2.1 Examples

Estimating a growth curve for a fish stock.



Example 2.1. First input some data and obtain estimates of mean lengthamébers aI
each age - only use ages with minimal number of values.
http://tutor-web.net/fish/fish5103growth/lecture26gth-at-age.r

Example 2.2. Plotting mean length at age:
http://tutor-web.net/fish/fish5103growth/lecture20dméength-at-age.r

2.3 A model of fish growth

A model of growth - the von Bertalanffy growth:
equation .

Lt = Lo (1—€ ")
Lt = Lo (1—e K0}

2.3.1 Details

The von Bertalanffy model of growth describes the lengthraet(or age} in terms of
a few parameters. Though possibly not any more realisti@rarpeter is often added in
order to better fit data.

Definition 2.1. von Bertalanffy growth equation:

Lt =L (1—€e7)

Lt = Lo (1—e(70))

This model only models a single trajectory. When used to mibeegrowth of a group of
fish it simply reflects the average length of the population.

In order to model a length distribution, this model needsdcektended to describe the
distribution around the mean length at each age.

2.3.2 Examples



Example 2.3. If the age of a fish is stored in R as a vectrthen one can use
lhat<-Linfx(1-exp(-Kx(a-t0)))

to compute the predicted length at age.

It would be an improvement to implement this as a function...

Example 2.4. A more detailed examination of the behavior of the von Bari#l
growth curve can easily be undertaken using R, e.g. throhgHdllowing sequenc
of commands, or variations thereof:

http://tutor-web.net/fish/fish5103growth/lecture2@legrowth-curve.r

2.4 Mathematical models as functions in R
2.4.1 Details

Within R, more complex mathematical models are usually enpnted as functions which

take parameters as arguments and deliver fitted, or predratees, as output.

2.4.2 Examples

Example 2.5. To take the von Bertalanfy growth function again, considet f simple
R function which predicts the length at age for a given setaodmeters:

vonb<-function(Linf,K,t0){
lhat<-Linf*(1-exp(-K*(a-t0)))
return(lhat)

+

In many cases it is useful to store all the parameter valuasingle vector:

vonb<-function (b){
Linf<-b[1]
K<-b[2]
t0<-b[3]
lhat<-Linf*(1-exp(-Kx(a-t0)))
return(lhat)

}

A better version is to include the age vector as an argumenrg, ¢alled "a":

vonb<-function(b,a){
Linf<-b[1]
K<-b[2]
t0<-b[3]
lhat<-Linf*(1-exp(-K*(a-t0)))
return(lhat)

10



2.5 The sum of squares

Need to define the sum of squares deviations based on
Yi — Vi
SO use

S (i —%i)?

2.5.1 Examples

Example 2.6. Estimating a growth curve for a fish stock.
Define a new function which returns the sum of squares erfors given set of pars
meters. The data are assumed to be available in the diregbmne the function is called.

sse<-function(b){
lhat<-vonb(b)
s<-sum((1l-1lhat)~2)
return(s)

}

2.6 Fitting a nonlinear growth model

2.6.1 Details

Nonlinear statistical models involve some nonlinear carabons of the parameters themsel-
ves (i.e. not the independent variables, so eug= a + Bx? is in fact a linear model).
Nonlinear estimation methods are therefore needed.

2.6.2 Examples

Example 2.7. Estimating a growth curve for a fish stock.
http://tutor-web.net/fish/fish5103growth/lecture2®{gock-growth-curve.r

Note that this did not take into account that there will be feede@nce in how accurar
the various mean lengths at age are, though the initial s@heprocess did limit th
estimation to those ages with over 5 observations.

11



Example 2.8. A more complete example with a larger data set:
http://tutor-web.net/fish/fish5103growth/lecture2®/fgtock-growth-curve-expanded.

3 Models of length distributions

3.1 Statistical and other models of length distributions

=)

A fairly simple statistical model of length distributiorssa combination of cohort lengt
distributions, each of which is assumed to be for a specitibgility density such as
Gaussian density.

D

The location of each density is centered on the mean lendtieaforresponding cohof
with some standard deviation.

—

The multiplicative factors forming the combination refléoe relative strength of eagh
cohort.

3.1.1 Details

Models of biological phenomena, such as length distrilmstican be based on mathematical
models of biological processes or simple statistical m®dadich adequately describe the
data at hand.

A fairly simple statistical model of length distributions & combination of cohort length
distributions, each of which is assumed to have a specifibgimtity density such as a
Gaussian density.

The location of each density is centered on the mean lengtheoforresponding cohort
with some standard deviation.

The multiplicative factors forming the combination reflébe relative strength of each
cohort.

In some cases discrete approximations to the Gaussiaibdigin are used whereas more
commonly the cumulative probability is computed by intégigeach length interval.

3.2 Cohort slicing
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A length distribution is sliced by assigning length groups
surrounding a mode to an age group.
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3.2.1 Detalils

In some areas a method known as cohort slicing is commontytaseonvert length distri-
butions to age compositions. Remember, cohort slicingasctieation age compositions
by taking the length at age of different cohorts and slicimg length distributions at their
midpoints. This method is clearly very simple in principhlelavhen the peaks are reasona-
bly clear, it is very easy to apply.

Naturally, it is assumed that there is some information ajgoawth.

In cases when the peaks are not clear, information from stheces may be used to decide
on where to slice the length distribution. Thus, if taggirgedare available, then they may
indicate slicing points. Alternatively, in some years aacleohort (large or small) may
provide information as to which can be used for other years.

This methods has been tested quite extensively and fourelqaibe useful. Is it, however,
clear that it suffers from several disadvantages. Obwopublke technique is not well

founded biologically, statistically, or mathematicalore obviously, if a large year-class
comes in, it will dominate several length groups, acrossliceng points which may result

in smearing.

Note 3.1.Smearing is where large year-classes become smaller andlgsaes on both
sides of the large year-class become larger.

The net result of smearing is that year-class variation Bellunderestimated and it may
appear that recruitment is stable when in fact it is quitéaide.

Thus, although this method is unquestionably useful, isdeave something to be desired
in terms of how it behaves in various circumstances.

3.3 The distribution of length at age

1 u 2 1 u 15 1 w

3.3.1 Details

Some length measurements on age 1 cod in Icelandic wate®961 1

Within an age group fish will have different lengths. If a lémglistribution is to be
modeled, this feature needs to be taken into account.

13



3.4 The Gaussian density and cdf

,,,,,,,,,, Length frequency and fitted Gaussian for a single age group.

3.4.1 Details
A probability distribution can be used to model the numbéisif in each length group.

Start with a single age group and suppose the distributifistoft length follows a Gaussi-
an (normal) distribution. For simplicity, suppose the meaad standard deviation of length
at age are known.

In this case the mean length and the standard deviations @alissian distribution can be
set to these known values. If the density is further mukigblby the numbers in the sample,
a fitted curve ensues.

Although a Gaussian density can be fitted to the length data $mgle age group, there is
an inconsistency in this approach. Basically, the dateespond to aggregates since each
length group consists of an interval. Typically, a lengtbugyl will actually contain all fish

of lengthl —% tol + % The appropriate modeled probability should thereforeecefihe
area under the Gaussian density, between these two points.

Definition 3.1. Modeled probability under a Gaussian densi for fish lengths
betweenl — 1 to | + 3.

3.4.2 Examples

Example 3.1. The modeled probability reflecting the area under the Gansﬂ;énsit)l
can be done in R using:

pnorm( (1grp+0.5-mu) /sigma) -pnorm((1lgrp-0.5-mu) /sigma)

where the mean length muand the standard deviationsggma

14



3.5 The proportion within a length group
3.5.1 Details

The density function of the Gaussian distribution with mgamd variance? is given by

f(x) — ie_(x_u)z/(%z)

and the cumulative distribution is

F(x) = /X otydt=o (*H).

—o0 (0]

Take a fixed age group of fish and assume that they are digidlaiong the length axis
according to a Gaussian density, with some mean leng)hafd some standard deviation
of length at agedy). For this age group, the proportion of fish within lengthecatry! of

width | is L L
ey

since this is the probability of a fish having a length bet\/\feer% andl + % In the case of
different length groups, the modification should be obvious

Now, suppose the true proportion of fish in age graupTg,. In this case the proportion of
fish in length group, across all ages becomes the proportion in length grougiegua

Definition 3.2. Proportion in length group equation:

o))

T=proportion of fish in each age group
Ma=mean length at age
og=standard deviation

Given data (observations) on the proportions at lengtlsetvan be compared to the theor-
etical proportions. A formal statistical approach wouldtbeestimate the unknown para-
meters by minimizing the discrepancy between the obsemddlaeoretical values. This
can be done using any number of discrepancy measures.

Since it is usually difficult to estimate all parameters atenit is common practice to
fix all standard deviations at a fixed value and to fix all meagtles to some reasonable
guesses or values from other sources. Having fixed theseptdever can estimate all the
proportions. The next step is to investigate which of thedxa&lues can be estimated using
either these proportions set at the first estimates or esthvath the proportions, starting
with the first estimates as initial values.

3.5.2 Examples

15



Example 3.2. Suppose the current length group is stored in the varialggp™| the
proportional number in each age group is "pi", the mean leagtage is "mu“and tlt
standard deviation is "sigma". In this case the followingdRneand will compute th

proportion in length group "Igrp".

sum(pi* (pnorm((1lgrp+0.5-mu) /sigma)-pnorm((1lgrp-0.5-mu)/sigma)))

Notice how every arithmetic operation within this expregsis an operation on vectors
and the final summation is across all ages. The reader stesildrtd study this commagd
line since it will be used in the following.

3.6 Statistical estimation of proportions at age

Parametersrt, Ya, Oa ) REYF
Need some criteria, e.@ (Y1 — i ) P AT 5
Wherey, is the measured proportion in célandyj I j
is the modeled proportion I\ i

xxxxxxxxxx

=

Example length distribution. Cod in 1990 survey p
Icelandic waters.

3.6.1 Details

The proper approach to the issue of age-segregating thk aatength is to assume a
statistical model and to separate the length distributignasge according to this model.

The most common model is to assume that the distributionngjthes within an age group
is Gaussian and to estimate the parameters of these lersitibations along with the
proportion in each age group using maximum likelihood or satarivative method th-
ereof.

When the length measurements are in integer units (e.g. lanpg) this can easily be do-
ne in spreadsheets, usually through discrete approxinmsatmthe Gaussian density, but as
noted above, a more formal statistical approach using theutative distribution function
IS more appropriate.

The nonlinear minimization becomes quite tricky at timed aonsiderable thought needs
to be given into the sequence in which parameters are estimat

The large number of parameters implies further problemsimation due to confound-
ing. This can sometimes be alleviated by reducing the nuroabg@arameters, e.g. by
assuming some standard deviations to be constant or by aggangrowth curve to app-
ly to the mean lengths at age. Such parsimony may lead todenaily more stable results.

16



In many cases data on mean length at age and on standardaleyvettage can be carried
across years. Thus, the estimation may be reduced to omtyagstg the annual proporti-
ons in each age group.

In some cases several years worth of data can be combineaisirigle estimation process.
In this case the method is transformed into an assessmarddane, dealt with elsewhere.

3.6.2 Handout
Given that the predicted proportional length distributi®given by

- Srfo(((11H) o[1=bw)]

a criterion is needed to estimate the set of unknown paramet®, pa, Oa.
Some criterion is needed to describe the fit. The simplestesfd is a straightforward sum

of squares,
S (v —9)%

Wherey; is the measured (observed) proportion in te@hdyj is the modeled proportion,
given above.

In order to fit anything to the data one first needs to define timber of age groups to be
used. In this particular example three initial modes canlearly identified. Looking at
the actual data it is seen that these occur at 12, 24 and 35wm@n at these increments
amount to 12 and 11 cm and will diminish, it is not too unreadi@ to expect that the
remaining range of 95cm (=130-35) may correspond to an@lage groups (or more), so
assumingi, = 11 age groups should not be too far-fetched.

3.7 Setting initial values

nnnnnnnnnn Example length distribution with initial values for fittedsttibution.

3.7.1 Details

Initial values for all parameters are needed before acttahation can start.
In this example initial proportions are set equal, meantlelag age starts out at the peaks
for a few of the youngest ages and are then equally spacedndrber of potential age

groups is setto 11. The standard deviation is set to 2.5 fagak, which looks about right
for the youngest where it is reasonably clear.

17



3.7.2 Examples

Example 3.3. For the cod data, initial values for the mean length at agefcan
be set at the first few modes and then with a constant differereeg. a
Ho = (12, 24, 35, 45, 55, 65, 75, 85, 95, 105 115).

To initialize the standard deviation of length at age, nbt the first mode is at 12cn
and the lowest value is at 7cm, with a difference of 5cm. I§ tleinge corresponds fo
95% probability (bi-directional two standard deviation)en the standard deviatign
for the first age group should be about 2.5cm. The simpleaiigttion places this asja
constant standard deviation for all length groups.

As is seen in the figure, the resulting initial length digitibn is very far from the tru
one. However, it does not need to be very close since the tisivall be to modify the
proportions.

14

3.7.3 Handout

Before an attempt is made to minimize the sum, initial valmest be set. Some general
guidelines can be given, though exceptions will occur.

Proportions at age are easiest initialized at equal vatugs= (1/na).

The mean lengths at age for the first few ages can often bentdetnt from the length
distribution. Naturally there will be obvious exceptiongch as when a year-class is so
small as not to be identifiable in the length distribution &p gvill be apparent between the
peaks). A different method altogether is to use a von Bertlacurve and use starting
values ofK andL. which pass through the peaks in some manner (see the folicseicti-
ons).

The standard deviation of length at age can often be estihfatethe youngest age. If

this age group stands out as a peak, then the entire widthsopélak can be assumed to
correspond to two standard deviations, giving the requesgonate.

3.8 Estimating proportions alone

The proportions are easiest to estimate and can be
estimated for given values of the mean and standat
deviation. g

The results from this first estimation part will, | ||
typically clear up what needs to be done about stand- | |
ard deviations and means. =

LLLLLLLLLL

=

Example length distribution. Cod in 1990 survey p
Icelandic waters.

18



3.8.1 Examples

Example 3.4. For the cod data an obvious next step is to estimate the gropsffirst
since the initial values are way off. The figure indicatesrégsults from estimating the
proportions, given the assumed values for the mean lengthstandard deviations.

Note that although the result is much better than the inigdlies, there is still a long
way to go before this can be called a good fit.

3.8.2 Handout

First steps:
Here one could set up a function to calculate the SSE as aduaradtthe proportions alone,
for fixed values of the mean length and standard deviatiogeat a

http://tutor-web.net/fish/fish5103growth/lecture36¥gshfixedlength.r

3.9 Typical parameter reduction - sigma

Commonly assume equal standard deviations

Often the standard deviation for the youngest‘gés‘
clearly lower than for the oldest

Possibly estimate one or a few for the younger ages. I¥

xxxxxxxxxx

Example length distribution. Cod in 1990 survey
of Icelandic waters. Sigma values estimated after
proportions.

3.9.1 Details

Consider again the typical estimation problem when trymgdtimate all proportions, me-
an lengths and standard deviations from a single lengthlmlision.

If there areng age groups, the proportions must sum to one so there will bel independ-
ently estimated proportionsi,. There can usually be no other restrictions on these since
they correspond to year-class sizes which are usually egtelplunknown. There must be
on mean length at age per age group, giving a funlgemknown parameteis;.

There are also, standard deviationsi,, so the total number of unknown parameters are
3ny — 1, which is usually an uncomfortably large number to be estn from a single
length distribution.

The first obvious problem is how one should estimate all ofstia@dard deviations since

these will be very poorly estimated for all but possibly tleeiggest 1-3 age groups. Thus,
if there are clearly distinguishable peaks in the lengtlrithgtion corresponding to the

19



youngest age groups it may be possible to estimate the widstaadard deviation cor-
responding to these peaks. It is common practice to try toaedhe number of standard
deviations to be estimated to a low number, from one to fopedding on the amount of
information obviously available in the length distribui

A second problem, addressed in a later section, is how onemsure thap, > 0 and

0 < <M <... notto mention that the mean lengthg, should be “reasonable”, i.e.
these values should not increase in arbitrary leaps anddsoomt must correspond to a
realistic growth curve.

3.9.2 Examples

Example 3.5. In the cod example there are a large number of age groupsloivithat
it is very unlikely that all the standard deviations can benested. On the other handjit
is very clear that they are not constant.

estimate the first four standard deviations and assumettradard deviations from age
four onward are all the same. Alternative assumptions cotiwurse also be tested.

It therefore makes sense to estimate some of these but nBbakkxample, one can try Jo

3.9.3 Handout

The following R code snippet defines a sum-of-squares foandbr estimation of a fixed
few standard deviations.

http://tutor-web.net/fish/fish5103growth/lecture3dnsdisquaresfixedlength.r

3.10 Full run

Example length distribution. Cod in 1990 survey of Icelandiaters. Parameters

estimated in twice-repeated sequence.

3.10.1 Details

For the cod example, the previous sections have indicatedths possible to first obtain
initial values, then estimate proportions only, and subsatly the standard deviations,
each time fixing all other parameters. Naturally the nexi &¢0 estimate the mean lengths
at age, using the previously estimated values of propa@tamd standard deviation.

20



Given that each of these estimations is only done for a sabgpetrameters, it is important
to repeat the procedure at least once and it is preferabledtthe process by estimating the
entire set of parameters simultaneously in order to ensateat"best” estimate is found.

3.10.2 Example

Example 3.6. Coding in R:In addition to the previously defined functiogsseprop and
ssesigma, the following functionssemu is required to estimate the mean lengths at gige,
given the values oft, ando;,.

# Define a function to evaluate the fit of different mu vectors.
ssemu<-function (muvec){

fit<-rep(0,130)

for(lgrp in 1:130){

fit[1grpl<-sum(pi* (pnorm((1lgrp+0.5-muvec)/sigma)-pnorm((lgrp-0.5-
muvec) /sigma)))

}

sse<-le6*sum((dat-fit)"2)

plot (1grps,dat,type=’b’,1lwd=2)

lines(lgrps,fit,type=’1’,1lwd=2,col="red")

cat ("SSE=",sse,"\n")

return(sse)

}

Suppose this function is also defined in the filmctions.r, along with the previou
sse-functions.

The sameinit file as before can be used but a longer set of function calld teée
used since now the purpose is to repeatedly call each fumctio

3.11 Parameter reduction - using a growth curve

‘ May want to use a von B growth curve in placeugf

3.11.1 Details

In applications several estimation issues may arise. |hcpdar it may not be feasible
to estimate individual length at age for all ages, even thatignay be possible to cle-
arly discern a few peaks for the youngest ages. In this caser@y want to use a von
Bertalanffy growth curve, i.e. assume

Ha = Loo (1_ e*K(a*to))

so the mean length at age is based on only 3 parameters tadinering to freely estimate
a mean length for every age.

3.11.2 Example

21



Example 3.7. R coding:A typical function for estimating the vonB growth curve codl
be the following. As in the previous sections, this par@cudlnction is geared towar@s
the cod example, with a fixed 11 ages and length groups fron13Q@am.

http://tutor-web.net/fish/fish5103growth/lecture30fsgrowthcurve.r

3.12 Caveats

Uncertainty estimation

Time of sampling - fixed-point (survey) or continuous (c&sh
Time of spawning - short interval or continuous or biomodal
etc

3.13 The next steps

3.13.1 Details

The next steps are to make the previous routines genericocaset up arr library. The
routines should, for example, not contain exactly 11 agegs@nd 130 length classes etc.
Routines should also be added to provide reasonable iniiaés for all parameters or at
least initialize from a minimal set of assumptions.

3.13.2 Assignment

Assignment 3.1. Modify the routines in this section and and use them on amatioek.
Collection of generic R code
http://tutor-web.net/fish/fish5103growth/lecture30/base30.dat
http://tutor-web.net/fish/fish5103growth/lecture30/initl.r
http://tutor-web.net/fish/fish5103growth/lecture30/functionsl.r
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4 Case studies in analysis of length data

4.1 Two yearclasses or many: A case study, part 1
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4.1.1 Details

Some care must be exercised when attempting to read agetefngth distributions, as the
following case study will show.

Before anything else is known about a species, it is typicsgdimpled for length mea-
surements, providing a length distribution such as thavabo

This particular length distribution is from a species inldcalic waters. Assume for the
moment that these data are the only data available on thisespeSuch a situation is not
all that uncommon especially when research is initiated neva stock.

Before anything else is known about the species, there iason to assume anything
about the age structure. In particular, the length distidouin this case gives no indication
as to whether the two identifiable peaks correspond to twortshand even if they are,

then it is not clear whether the two cohorts are adjacentnie tr far apart.

In tropical waters such two peaks might even illustrate glsigear-class spawned during
two different spawning seasons within a year.

4.2 Two yearclasses or many: A case study, part 2
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4.2.1 Details

When data for two adjacent years are considered, it is seeritté pattern of two major
peaks in the length distribution is repeated. However, #i$® seen that a new peak at a
very small length (7 cm) appears.

The question is now raised, whether there are three yessedaof a very fast growing
species or whether some other interpretation exists.

4.3 Two yearclasses or many: A case study concluded
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4.3.1 Details

As more years are added to the picture, the required det&itgas. With three years of
data it is now clear that the peaks are indeed cohorts or grofipohorts. This is clear
since the peaks move to the right by about 2 cm per year.

Thus, it is concluded that this is not a fast-growing spebigsa very slow growing one.

Further, the long distance between the peaks is an indicatidremendous year-class
variation.

4.4 Two yearclasses or many: The actual situation

4.4.1 Details

The species in question is redfish. This is a very slow growpegies with enormous year-
class variation.
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Early attempts at age determination indicated that thesewegy little year-class variation.
A simple analysis of length distributions, such as this arlearly invalidates those age
readings.

Experienced fishermen and scientists had problems in figurin details in the dynamics
of this stock. For example, a catch of juveniles from thisktappears as a whole bunch
of small fish, around 10cm. It is not until the data have bedtecied and the length
distributions drawn up as a time series, that the growtrepattmerges and indicates that
the pile of small fish on deck is not always 10cm but grows byuaBom per year.

5 Length-weight relationships

5.1 Estimating the relationship between length and weight
5.1.1 Details

The simple approach to estimating the relationship betiergth and weight is to log-
transform lengths and weights, followed by a simple linegression. However, the log-
transformation causes a bias which needs to be investigated

Alternative methods include using generalized linear neagth e.g. a gamma distributi-
on and a log link.

It in known that there are often problems with how a singlatiehship fits the small fish or
the large fish. Different relationships may be needed fdeht age ranges, or smoothing
functions may be needed to avoid consistently under- or-presticting the weight of the
extreme size classes.

The models can be formally tested using a lack-of-fit testtiermean function, tests of
distributional assumptions, tests for outliers and sdfort

The entire battery of test mechanisms for simple lineareggjon models is available for
the length-weight relationships.

It should be noted that the primary hypothesis is not whetherslope in the log-log
regression is zero, but rather is the slope 3. This hypathesisually rejected and that
implies that the usual definition of a conditional factor {@4°) is not appropriate.

Finally, theR?-value, reported by popular spreadsheets when a “poweetis fitted, has

no meaning for the curve and should not be used. The sprestdsder should be aware of
this and of the fact that the resulting curve may be seriobislged.

5.1.2 Examples

Example 5.1. http://tutor-web.net/fish/fish5103growth/lecture50&lationship.r

25



6 Modelling the development of a length distribution

6.1 A length distribution

nnnnnnnnnnnn
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6.1.1 Details

A simulated length distribution.

A (discrete) model of length distribution development frgnowth needs to specify how
each length group progresses from one group to the next evatlyr

The following will ignore mortality and other issues, in erdto focus on the effect of
growth alone.

6.2 A growth curve

An example of a von Bertalanffy growth curve.

6.2.1 Details

If a general growth curve can be assumed, then that can betagkdermine the mean
growth for a group of fish. Specifically, a von Bertalanffy gtb curve can determine the
mean growth of each length group.
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6.3 The updating distribution

e The updating distribution describes the frequency of mam@sfrom a fixed length|
cell into other cells.

6.3.1 Details

Given the number of fish in a given length group and a mean ¢wawt updating distributi-
on should be used to describe how the fish move into adjacegtheroups so that mean
growth can be determined.

The simplest model would simply move all the fish by the sammler of length cells.
The immediate problem with this is that typically the grouglvy a fraction, not an integer.

This could be fixed by moving the fish into the length group irdragely above or below by
the proportions dictated by the mean growth. This was, fang{e, done in MULTSPEC.

However, some information exists about how the distributb fish at length changes in
time, e.g. for a given cohort. Similarly, tagging data gida®ct information on how the
growth corresponds to a spread across several length groups

It is therefore useful to consider growth in terms of an upapdlistribution.

6.3.2 Examples

Example 6.1. Take a single length group and model how this should growadjacen
cells, restricted in such a way as to provide the proper meanth. The example shows
how a binomial distribution can be used.
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6.4 Growth from length at age

remen Varying initial lengths will correspond to different grdwunder the von Bertalanffy]

growth curve.

6.4.1 Details

The growth function (or length-at-age function, rather) piiedicate different growth patt-
erns for different initial lengths. Thus the updating dimition will be different for different
initial length groups.

6.5 An updated length distribution

""""" The simulated data transforms into a smoother length bigton since each target
length group contains a sum of parts from several other teggiups.

6.5.1 Details

When the updating mechanism has been used to move each gogih the result is a
new, shifted, length distribution.

6.6 The update as a shifting smoother

““““““““ Notice how the updating mechanism shifted and smoothedhttial length distributi-
on.
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6.6.1 Details

An updating procedure will split each initial length intoveeal adjacent ones, each cor-
responding to some growth. This corresponds to a combimafishifting, smoothing, and
spreading out of the length distribution.

6.7 An example of an updating model

" Caricature of an update mechanism

6.7.1 Details

A length updating mechanism is implemented by specifying#wd for how much fish of
a specified length should grow and then prescribing how a meamth should correspond
to a distribution of fish onto different length groups.

6.7.2 Example

Example 6.2. The entire updating mechanism can be demonstrated usiriglkbing
R code:
http://tutor-web.net/fish/fish5103growth/lecture6@apng-mechanism-in-gadget.r

7 Using length data in population models

7.1 Introduction

nnnnnnnnnnnn

Several approaches exist:
e Cohort slicing and then VPA-style

e Just use lengths for recruits and then statistical
models

e Model length dist as a part of pdy model

simulated length distribution.
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7.1.1 Details
Several approaches exist to include length data in populatiodels.

e Cohort slicing and then VPA-style: This is a very simple nogttand can always
be used if there is basic information about the growth of {hecees, i.e. some in-
formation on where the length distributions should be sdlicBlaturally, more ela-
borate methods than cohort slicing could also be used.

e Use lengths of recruits and then statistical models: Foy waany species the first
one or two age groups are clearly separated from the resthéutider ages are all
in one lump. General population dynamics models can easiljtted to data when
there is an index of recruitment and a separate index of tauk polpulation.

e Model the length distribution as a part of a population dymamodel: In this case
an internal population dynamics model is used to predictctireect length distri-
bution. The measured length distribution is then used forgarison. Parameters of
the population dynamics model are estimated by ensurirghlegoredicted length
distribution is close to the measured one.

7.1.2 Examples

Example 7.1. Suppose we want to track the length distribution of a singleoct (for
simplicity).

7.1.3 Assignment

Assignment 7.1.When estimating parameters using a non—linear minimizepitefera;
ble to provide ‘reasonable’ starting values. A way to do fleisthe von Bertalanffy
equations is as follows:

Lt = Lo (1 —exp—K][t —to]))

Assumeg = 0, then,

Lt = Lo (1 —exp—Kt)) (1)
Lt = Lo — LeoeXp(—Kt) 2)
Lo — Lt = LoeXp(—Kt) (3)

Substitutel ¢ 1 for L; in equatiori 2.

Li+1 — Lt = LeoeXp(—K(t + 1)) — Leoexp(—Kt) (4)

Which can be written as:

Lit1— Lt = —Leoexp(—Kt) (1 —exp —K)) (5)
Substitute equatidn 4 into equatidn 5.
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Lt+1 —L= (Loo — Lt>(1— exr_(—K))

Li+1 can be written as a function &f.

Li+1 = Leo(1—exp—K)) + Liexp(—K) (6)

Lt+1 can be plotted againkt and a linear regression model fitted.

Liy1=a+bl
wherea = L. (1—exp—K)) andb = exg—K). K andL. can then be estimated fromj

K =—In(b)
Lo =a/(1—D)

von Bertalanffy — predicting
R can be used to calculate the predicted length at aget() from the von Bertalanffy
equation:

lhat <- Linfx*(1-exp(-K*(a-t0)))

whereLinf, Kandt0 are constants anis the age(and can be a vector).

The equation can also be stored as a function:

vonb <- function(b) {
Linf <- b[1]
K <- b[2]
t0 <- b[3]
lhat <- Linfx*(1-exp(-K*(a-t0)))
return(lhat)
+

whereb is a vector containind..,K,tp. The required agea are in another predefingd

vector.

e Write a function in R to predict length at age with = 160,K = 0.09 andtg =0
for fish aged 2 to 14.

e Plot the predicted lengths at age.

e Calculate the growth curves for different parameters amapaoe on the same pl¢

von Bertalanffy — estimating

Given data on mean length at age, the von Bertalanffy paemetn be estimatld

by finding the parameters which minimize the difference leetvthe observed me
lengths at age and those predicted from the von Bertalanfiatgon.

To calculate the sum of squared errors for a set of parametera function like this:

vb.sse <- function(b){
lhat <- vonb(b)
sse <- sum((1l-lhat)~2)
return(sse)

}
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This function combines the function to predict the von Blariéfy growth curve {onb)
with the calculation of the difference between the obseyreavth curve and predictgd
growth curvesse.

U7

The best fit to the data is from the parameters giving the loa@® of squared error|
To estimate these parameters there is an R funatiarwhich is used like this:

est <- nlm(vb.sse, c(100, 0.1, 0))
It is better to use:
est <- nlm(vb.sse, c(100, 0.1, 0), typsize = c(100, 0.1,0.001))

wheretypsize is an estimate of the order of magnitude of the optimized mpatars
Using this should reduce the number of iterations requirediease the chance gn
optimum will be found and make the optimization more robugbere are many othrr
options inn1m which are explained in help.

The output ol1m includes

est$estimate # the parameter estimates
est$minimum # the minimum sse
est$code # a code which tells you the status
# (i.e. whether an optimum has been found)

To see the search being donertiyn add

lines(a, lhat, col=2)

tovb.sse and set up a plot before runningm e.g.
plot(a, vonb(c(Linf,K,to0)), type="n")

von Bertalanffy — fitting to data

e Given these data:

L <- c(18, 24, 29, 32, 35)
t <- ¢(1.5, 2.5, 3.5, 4.5, 5.5)

Estimate the von Bertalanffy parameters
— PlotL; against_; 1

Fit a linear regression line using

Use the estimates &f andL., from the linear regression to start the non-lingar
minimization.
e A dataset including haddock age and length is available from
http://tutor-web.net/fish/fish5103growth/haddockage.d
— Using these data, calculate mean length at agpp(ly and fit a von Bertal
anffy growth curve assuming age 1 is equivalerttol etc
— Add the fitted growth curve to a plot of the observed data

— How many fish are there at each age? Does eliminating fromnblsis
ages with a very small number of fish affect the estimated tirowrve?
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7.2 Simulating a length distribution

Population numbers can be simulated using the
stock equation

Mean length at age can be generated from a vo
Bertalanffy curve

The distribution of length at age can be generate
from the mean and standard deviation assuming
Gaussian distribution :

0

xxxxxxxxxx

The population length distribution is generated Bg?'li_'ated proportional length distribution  of
individual age groups and the total population |i

adding the age-based length distributions equilibrium.

=]

7.2.1 Details

It is fairly simple to simulate population length distribarts based on assumptions such as
a fixed year-class size and growth according to a von Beffglanrve.

These simulated curves can be used in an estimation prec¢olwvaluate whether the
same growth can be extracted. If one generates a lengtibdigin which has the same
overall flavor as a particular sample, this type of fitting tm@ated data provides very
simple tests of whether there is any chance of extractingrmétion from the observer
length distribution.

Noise can then be added to evaluate uncertainty in the @stim@ocedure.
Most length distributions are aggregates of several san@ebetter method to estimate
uncertainty would be to bootstrap the entire length diatidms and obtain repeated estima-

tes of growth and proportions in the age groups.

Note that it is not sufficient to bootstrap (resample) onvidiial fish since the fish in a
given length sample are correlated and therefore entirpleameeds to be bootstrapped.

7.2.2 Examples

Example 7.2. The plot gives the proportional length distribution for imidual year-
classes and the total population, when the stock equatiosed to generate year-cldss
size from a fixed number of recruits and the von Bertalanfigwgh curve is used t
generate mean length at age.

A4

The simulated figure is typical of what an observed lengéerfiency plot can look like

7.2.3 Assignment

Assignment 7.2. Models of length distribution
A single age
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e If the length distribution of an age-class is Gaussian (@dywith mean lengtf
pn= 23 ando = 1.4 then it could look like this:

# generating a point value for every cm
le <- seq(15,30,1)

plot(le, dnorm(le, 23, 1.4), lwd=2)
lines(le, dnorm(le, 23, 1.4))

e If alength group is assumed to go from -0.5 to +0.5 then it isenappropriate tJ
sum (integrate) the distribution within this region rattfean use the density of tije
mid—point. Thecumulative distributions then used:

# the cumulative distribution is a continual sum of the denstity
distribution

le <- seq(15,30,1)

plot(le, pnorm((le-23)/1.4), type="o0")

# the density distn from the cumulative

leA <- seq(15.5,30.5,1) # upper point

leB <- seq(14.5,29.5,1) # lower point

# to check led and leB are correct

rbind (1leA,leB)

d2 <- pnorm((leA-23)/1.4) - pnorm((1leB-23)/1.4)

# the walues from the cumulative distn

plot(le, d2, type="o")

# the values from the density distn

points(le, dnorm(le, 23, 1.4), col=2)

Several ages
To model several ages, the mean length at each age can beddefamgector egu <-
c(23, 34, 42, 50) or a growth model can be used to define the mean length at dge.

e A population containing several length distributions carstmulated like this:
e The mean length at age is predicted using the von Bertalamdiyel.
e The standard deviation of length at age is fixed.

e The number at age is predicted using the stock equation.

# generating the mean length from wvon Bertalanffy
a <- 1:8 # 8 age groups

mu <- vonb(c(60,0.18,0))

sdev <- rep(2.4,length(a))

le <- 1:60

leA <- seq(1.5,60.5,1) # upper point

leB <- seq(0.5,59.5,1) # lower point

# the proportion at age assuming no fishing and M = 0.3
N <1
M<-0.3
for(i in a){
N <- c(N, exp(-M)*N[i])
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Ntot <- sum(N)
p <- N/Ntot

# use a loop to calculate length distribution for each age
# and store in rows

# the length distribution * proportion at age

ldist <- NULL
for(i in a) {
d2 <- (pnorm((leA-muli])/sdev[i]) - pnorm((leB-mu[i])/sdev[i]))*pl[
il
1ldist <- rbind(ldist, d2)
}

# these can be plotted individually

matplot (le, t(ldist), type="1")

# and the length distribution would look like
plot(le, apply(ldist, 2, sum), type="1")

Practicals
¢ Plot the length distributions for different von Bertalanfjrowth curves and wit

different patterns of mortality at age (eg with only natursbrtality on younge
fish but fishing mortality on older fish.

8 Using length data in population models

8.1 Introduction

Several approaches exist:
e Cohort slicing and then VPA-style

e Just use lengths for recruits and then statistical models

e Model length distribution as a part of population dynmaiasdel

8.1.1 Detalils

Several approaches exist:
e Cohort slicing or other age-segregation and then VPA-gtgtessment
e Use lengths for recruits, or R and B, and then statisticaletsod

e Model length distribution as a part of population dynamiasdel
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This topic is enough for a complete course in fisheries. Ingmky, if annual length distri-
butions exist, then there is potentially some informatibowt age groups. Many assess-
ment procedures are available, which typically have anmaleage and growth structure,
which predicts annual length distributions, e.g. Gadget.
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