Cohort analysis

fish5104vpa Assessment methods based on back-calculations

Gunnar Stefansson

June 9, 2016

Other approximations - Cohort analysis

N assumed known in the last year M assumed known and inflicted mid-year Catch known

Revised equation easily solved w.r.t. N Data on North Sea plaice (available at http://notendur.hi.is/ gunnar/tutorweb.data/biol/nsplaice.canum)

```
3
                                   5
                                            6
        17294
                 51174
1970
                         56153
                                  40686
                                           35074
1971
        29591
                 48282
                         33475
                                  26059
                                           22903
1972
        36528
                 62199
                         52906
                                  23043
                                           16998
```

```
cnum<-read.table("http://notendur.hi.is/~gunnar/tutor-web.data/biol/nsplaice.canum
cnum<-as.matrix(cnum)
cnum["1971","5"]
```

Cohort analysis - mid-year formula

First project cohort to mid-year without catches Then subtract mid-year catches so cohort size after catches becomes:

$$N_{ay}e^{-M/2}-C_{ay}$$

End of year cohort size becomes:

Gunnar Stefansson

Cohort analysis, back-calculations

```
N_{ay} = (N_{a+1,y+1}e^{M/2} + C_{ay})e^{M/2} # Example: Suppose we assume there is a single fish left as 11-year old # at the end of 1995 (i.e. 12-year old at the beginning of 1996). M<-0.15 N12<-1 C11<-cnum["1995","11"] # Then we can back-calculate the numbers N11<-(N12*exp(M/2)+C11)*exp(M/2)
```

Back-calculating a full year

Fix year, y and back-calculate

$$N_{ay} = (N_{a+1,y+1}e^{M/2} + C_{ay})e^{M/2}$$

```
for each age. Get all but oldest.
C95<-cnum["1995",]  # Entire year ages 2-11
N96<-c(60000,60000,60000,40000,40000,10000,10000,10000,10000,1)
names(N96)<-as.character(3:12)  # Note these are beg. yr ages 3 through 12
N95<-(N96*exp(M/2)+C95)*exp(M/2)# Backwards, up diagonally
names(N95)<-as.character(2:11)  # Note the shift</pre>
```

We are now missing age 12 in the stock for 1995 - need to add that before we set up the full table.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなぐ

Making ends meet

Need to adjust endpoints Insert recruits in later and oldest in former for pairs of years


```
cnum<-read.table("http://notendur.hi.is/~gunnar/tutor-web.data/biol/nsplaice
cnum<-as.matrix(cnum); M<-0.15; C95<-cnum["1995",]</pre>
N96 < -c(0.60000.60000.60000.40000.40000.40000.10000.10000.10000.10000.1)
names(N96) <- as.character(2:12) # Note these are beg. yr ages 2 through 12
N1 < -N96[as.character(3:12)]
                                  # Drop the youngest
N0 < -(N1 * exp(M/2) + C95) * exp(M/2)
names(N0) < -as. character(2:11)
                                  # Note the shift
N95 < -c(N0,1)
                                  # Add the extra one
C94<-cnum["1994",]
N1 < -N95[as.character(3:12)]
                                  # Drop the youngest
N0 < -(N1 * exp(M/2) + C94) * exp(M/2)
names(N0) < -as. character(2:11)
                                  # Note the shift
N94 < -c(N0.1)
                                    Add the extra one
```

Cohort analysis

Cohort analysis - F-computations

Compute F within table afterwards:

$$F = ln(N_0/N_1) - M$$

or

$$F_{\mathsf{a}\mathsf{y}} = \mathsf{In}(\mathsf{N}_{\mathsf{a}\mathsf{y}}/\mathsf{N}_{\mathsf{a}+1,\mathsf{y}+1}) - \mathsf{M}_{\mathsf{a}\mathsf{y}}$$

Easy in principle - careful with indices!

```
log(Nmat[2,3]/Nmat[3,4]) # Simple example
```

```
log(Nmat[1:10,1:2]/Nmat[2:11,2:3]) # The whole matrix
A<-ncol(Nmat); Y<-nrow(Nmat)</pre>
```

 $\label{log-mat-log-mat} Fmat < -\log (\operatorname{Nmat}[1:(Y-1),1:(A-1)]/\operatorname{Nmat}[2:Y,2:A]) - M \quad \mbox{$\#$ The general case}$

The trend in fishing mortality

Want an overall measure of fishing mortality per year.

Use average, \overline{F}_y over selected age group. Common choices: Oldest ages or well-sampled ages.

Figure: Fishing mortality trend for initial assessment of North Sea plaice

The selection pattern

Cohort analysis using F as a starting point

Assume a value for F:

Gunnar Stefansson

$$N_{ay} = \frac{C_{ay}}{\frac{F_{ay}}{Z_{ay}} (1 - e^{-Z_{ay}})}$$

Cohort analysis

June 9, 2016

10 / 13

```
NB: Now use the same number of ages and years as in the data.
#
# cohortF - cohort analysis based on fishing mortalities
cohortF<-function(cnum,Fterm,selpat,Foldest){</pre>
  A<-ncol(cnum)
  Y<-nrow(cnum)
  Flast < - Fterm * selpat
  Ages <- as.numeric(dimnames(cnum)[[2]]) # Age range in catches
  Years <- as. numeric(dimnames(cnum)[[1]]) # Year range in catches
  Cline<-cnum[Y.]
  N1 < -Cline/((Flast/(Flast+M))*(1-exp(-(Flast+M))))
  Nmat < -N1
  for(y in (Y-1):1){
    Cline<-cnum[y,]
    psi < -((Foldest[v]/(Foldest[v]+M))*(1-exp(-(Foldest[v]+M))))
```

The oldest fish

Need assumptions for oldest fish: Use mean across some ages within year Need to check the fishing pattern first

The last year

Need assumptions for the last year:

- Use average F over time
- Check (average) fishing pattern
- Repeat VPA with mean F*pattern

Cohort analysis

Figure: Using cohort analysis iteratively for North Sea plaice.

- Backcalculate N
- Compute F later : $F = In(N_{av}/N_{a+1,v+1}) M$
- Estimate oldest fish through mean-F
- Need improved method for F in last year
 Gunnar Stefansson
 Cohort analysis

