selF1<-0
selF2<-0.15
selF3<-0.35
Fcrash<-0.8
selF4<-1.1
Linf<-160
k<-0.1
beta<-3
cond<-0.02
ages<-1:14
t0<-0
la<-Linf*(1-exp(-k*(ages-t0))) # Mean length at age
la<-round(la,2)
wa<-cond*la**beta/1000 # Mean weight at age in kg
wa<-round(wa,2)
s50<-5 # Age at 50% selection
sa<-round(1/(1+exp(-1.1*(ages-s50))),2) # Selection at age
p50<-5.5
pa<-round(1/(1+exp(-2*(ages-p50))),2) # Proportion mature at age
M<-0.2
yrfun<-function(Fmult,sa,M,wa){
Fmort<-Fmult*sa
Z<-Fmort+M
prop<-(Fmort/Z)*(1-exp(-Z))
Ztemp<-c(0,Z[1:(length(Z)-1)])
cumZ<-exp(-cumsum(Ztemp))
C<-prop*cumZ
Y<-sum(wa*C)
return(Y)
}
srfun<-function(Fmult,sa,M,wa,pa){
Fmort<-Fmult*sa
Z<-Fmort+M
Ztemp<-c(0,Z[1:(length(Z)-1)])
cumZ<-exp(-cumsum(Ztemp))
S<-sum(wa*pa*cumZ)
return(S)
}
#alpha<-0.0005
alpha<-1/srfun(Fcrash,sa,M,wa,pa)
K<-20000
Srange<-0:2000*100
Rhat<-alpha*Srange/(1+Srange/K)
plot(Srange,Rhat,type='l',xlab="S ('000 t)",ylab="R (millions)",ylim=c(0,10000))
sr2<-srfun(selF2,sa,M,wa,pa)
sr3<-srfun(selF3,sa,M,wa,pa)
#sr.crash<-srfun(Fcrash,sa,M,wa,pa)
#lines(Srange,Srange/sr.crash)
text(150000,6500,"Beverton-Holt curve")
text(150000,6000,expression(R=alpha*S/(1+S/K)))
text(70000,3000,"Replacement")
#text(15000,4500,"Slope for\n Fcrash is")
#text(15000,6000,expression(alpha))
S0<-10000
R0<-alpha*S0/(1+S0/K)
S1<-R0*sr2
R1<-alpha*S1/(1+S1/K)
S2<-R1*sr2
R2<-alpha*S2/(1+S2/K)
S3<-R2*sr2
R3<-alpha*S3/(1+S3/K)
S4<-R3*sr2
R4<-alpha*S4/(1+S4/K)
lines(c(S0,S0,S1,S1,S2,S2,S3,S3,S4),c(0,R0,R0,R1,R1,R2,R2,R3,R3))
lines(Srange,Srange/sr2)
Details
If a spawning stock starts at $S_0$, some average level of recruitment, $R_0$, will be produced, as determined by the relationship between spawning stock and recruitment. During its lifetime, a cohort of size $R_0$ contributes $S_1=k*R_0$ to the spawning stock, where the constant $k=(S/R)$ is derived from the spawning stock biomass per recruit computations. $S_1$ then produces recruitment, $R_1$, according to the relationship between spawning stock and recruitment, and so on.\\
It should be noted that this ignores any time lags that occur because recruitment takes several years to enter the parental stock.
Examples
\begin{xmpl}
The figure shows how a stock which starts at a certain size, thousand tonnes, seeks a certain equilibrium as the spawning stock produces a certain amount of recruits which in turn produce a certain spawning stock.\\