fish5108statass Statistical stock assessment methods

Gunnar Stefansson

2. april 2018

Copyright This work is licensed under the Creative Commons Attriboui&hareAlike License. To
view a copy of this license, visit http://creativecommangl/licenses/by-sa/1.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, Califo94305, USA.

Acknowledgements

MareFrame is a EC-funded RTD project which seeks to remosédériers preventing more wi-
despread use of the ecosystem-based approach to fisheriagenzent.
http://mareframe-£fp7.org

This project has received funding from the European Uni@®genth Framework Programme for
research, technological development and demonstratidergrant agreement no.613571.
http://mareframe-£fp7.org

The University of Iceland uses the tutor-web in many coussesfunds content-development as a
part of this use.

The University of Iceland Research Fund has funded manyeofthdies developing algorithms
uses in tutor-web.

http://www.hi.is/



Efnisyfirlit

|1 _ Statistical techniques for stock assessmehts 5

4.2 Initial values for bulk productionmodels . . . . . ... .. ... .... 16




m%&mﬁs ............................ 27
s . . . 27







1 Statistical techniques for stock assessments

1.1 Biological models

Conceptual model of biology

Mathematical description of the model

Population models: Usually a forward prediction model

Growth etc: Mathematical description of process

e RememberParsimony!

1.1.1 Details

When a biological process is to be modeled, the first step abtain a conceptual view
of the process, followed by a mathematical description, mathematical formula which
describes the process.

1.2 Formal statistical procedures

Model contains parameters
Model predicts data
Parameters are estimated by fitting model to data ™™™

1.2.1 Details

A formal statistical procedure always contains a model Wwidescribes mathematically
how the data have been obtained, i.e. usually specifies ti@apility distribution. A
statistical model always contains unknown parameter&(aiise it is a probabilistic model).

The parameters can subsequently be estimated using teelsnmighich ensure that the
model predicts the data as well as possible.

1.3 Population models

Some basic population model types:

Equilibrium bulk biomass/production model

Dynamic bulk biomass model

Dynamic age structured production model

Back-calculation model




2 Production models

2.1 History

Stock-production models: Typical for whales, shrimp, mepls and other difficult tg
age species

Originally: Assumed equilibrium (oversimplified)
Now: Use dynamic stock-production models

2.1.1 Details

The so called stock-production models have been used toastistock sizes for whales,
shrimp and other difficult to age species. Originally, suabdels assumed that the stock
was at an equilibrium, but in recent decades such overdiegbinodels are not used much

since catches are known to affect stock size and so dynandelsiare needed.

2.2 An equilibrium model

A simple equilibrium production model:
Y=rB(1-2)

Equilibrium yield and biomass

2.2.1 Details

A traditional model of the possible production of a stock igeg by the equilibrium
production model.

Definition 2.1. Equilibrium production model

Y =rB(1--)

Xl m

B=biomass

K=maximum biomass corresponding to no fishing
r=rate of population increase

Y=production

If the production is described using the equilibrium praitut model, then this is also the

equilibrium yield, i.e. the yield that can be obtained astlevel of biomass.



2.2.2 Examples

Example 2.1. The production, or equilibrium yield, curve can easily betf@d given
values ofr andK, e.g. with the following R code.

r<-0.25

K<-1000
Blev<-(0:100)*10
ylev<-r*Blev*(1-Blev/K)
plot (Blev,ylev,’1’)

2.3 Simple forward projections

GivenB the production isB(1—B/K).
If the catch isy the stock biomass will become

B+rB(1—B/K)-Y.

Notably, the stock increases Y is less than the
production and vice versa. -

sssssss

Equilibrium yield with a constant catch line.

2.3.1 Examples

constant catchyY = 100 tonnes.

The following R code will track the development of the stookthe first few years.
http://tutor-web.net/fish/fish5108statass/lecturedgkprod.r

2.4 The problem with equilibrium models

Over-fished=catch above sustainable yield

Observed biomass and catch all above the undé
lying curve

Note: Will overestimate production if assume equili-| /
brium T T, T T L.

is 1.5 times the equilibrium catch.

bias issue when estimating data from an equilibri-

Example 2.2. Suppose a stock starts outBat= K = 1000 tonnes and gets fished V\lth

um model. The solid line is the true model and tl
dot/dashed line is from generated data when fish

ng




2.4.1 Details

Suppose data are collected on biomass and yield while a sdm&ing over-fished, i.e.
the annual catch is more than the annual sustainable yielthid case the stock will be
reduced each year.

The problem is that even in the best scenario, when perféatniration is available on
historical yields and biomass, the corresponding datatgoiBy,Yy), are all above the
equilibrium curve.

In this case, the approach of assuming that the data are reeasuts of points on the

equilibrium curve is clearly extremely dangerous and weitld to serious overestimation of
the production for any given level of biomass.

2.4.2 Examples

Example 2.3. The following R code simulates the development of a stockcivhs
being over-fished each year. The stock is fished using a simfg#ewhich is to take
double the sustainable yield (SY).

http://tutor-web.net/fish/fish5108statass/lectured@kprod-1.r

2.5 A dynamic biomass model

A simple forward projection model:

By. 1= By +rBy(1—By/K) ¥, /

where the catch is specified according to some rule
e.g. proportional harvest:

Y, = pBy. SRR
Equilibrium vyield and curve describing the

trajectory of catch and biomass under a constant
harvest strategy.

2.5.1 Detalils

The simplest model for describing the development of a si®gkobably the simple bulk
biomass model.

Definition 2.2. Simple bulk biomass model

By+1=By+rBy(1-By/K)-Y,.

Yy=annual catches taken from the stock




In order to investigate the behavior of the simple bulk biessmnmodel, the catch can be
simulated according to some simple rule, e.g. as a propoofithe stock siz&, = pBy.

2.5.2 Examples

Example 2.4. http://tutor-web.net/fish/fish5108statass/lectureddldoop.r

2.6 Unknown parameters
Model: By,1 = By +rBy(1—-By/K) -y

Unknown parameters; K, andByp.

e Given model and parameters, the trajectory can be generated

e Assumes catches are known constants (no error)

e Parsimony: May (need to) assurBg= K.

2.6.1 Details

Even the simplest population dynamics models contain patersiwhich are unknown. In
the equilibrium surplus production models these pararseter andK.

In the dynamic production modeBy 1 = By +rBy(1 - By/K) -, the unknown para-
meters are, K, and the initial population siz&y. This approach assumes that the catches
are simply known constants (i.e. without error). An impattaspect of this approach is
that for a given set of parameters the entire populatiordtajy can be generated.

2.6.2 Assignment

Assignment 2.1. Take each figure in this section and redraw it in R using thercands
behind each figure. Next, rerun the commands for each figuing d&ferent assumpt
ons: Investigate the effects of varyikg r, By and the harvest ratp (or the constarl
catch, as the case may be). Draw conclusions concerningisit@isability of differen
harvesting regimes.

3 Fitting criteria

3.1 The issue of fitting to data

Have some internal model of stock development

Model may be bulk or age-based

Need to compare to data-not contort the data!

Data may be bulk or age-based

Note several possible combinations: model or data may blesnor simple




3.1.1 Details

Suppose there is some given (internal) model of stock dpwedmt. This model may be a
bulk (biomass production) model or a highly disaggregategl. (age-based) model.

Such a model will inevitably contain several unknown pargrgwhich can only be estima-
ted based on some measurements. Thus, there is a need toonakésmal comparison
with data.

There is no a priori specification of whether the data needetalibaggregated or bulk-
biomass. It is important that actual data be used with ds tititnsformation as possible.
For example, catch and effort data should NOT be transfotmedtch and CPUE data.

In particular, there are several possible combinationgsaEgtjregated or complex models

and bulk or disaggregated data. For example a model may bleasgel but fitted to length
data and so forth.

3.2 Linking biomass to an index

Annual index of total abundance:

Assumee comes from Gaussian distribution
g is catchability

3.2.1 Details

Recall that a statistical model always links some matheraktiodel to data. For example,
if Iy is an index of abundance in yeppandBy is the model-based biomass in ygathen
one could usdy = gBy as a predicted index. In this simple model it is assumed treaet
is a constant catchability which describes how the indeateslto stock biomass.

If the model is a simple dynamic production mods}, 1 = By +rBy(1—By/K) —Y,, the
primary unknown parameters arek, andBg but in additiong needs to be estimated.

For a given set of parameters several potential measurés gality of the model can be
defined. The simplest is without doubt a direct sum of squares

A2
> (ly=1y)
y
though it may be more appropriate to use log-transformeat dat
a2
> (In(ly) —In(iy))
y

The actual indices are usually assumed to be related to ¢#aecped indices on a log-scale
and one may specify a formal distribution, such as log-nofarahe measurements. Thus,

one would commonly assume thai(ly) = In(ly) + €y and often assume further that the
deviations come from a Gaussian distribution.

Continuing in this manner leads to the full statistical mddethe data.

10



Definition 3.1. Annual index of total abundance

ly = By

3.3 Fitting in a VPA setting

e VPA/cohort analysis gives historical information

e Survey indices provide time series proportional to abundan
o Effort data provide time series proportionalfp
e Can connect through regression (i.e. revise the termiral)ye
e Can reduce to single paramet&yfn)
e Better to formally estimate using a statistical approadip, einimize
> (By— (1/a)Ry)?
over the terminakem.

e Can also write up formal methods (e.g. ADAPT) for estimatamgentire para
meter set, including selection pattex

3.3.1 Details

In order to move forward from simple VPA or cohort analysishieh typically assumes
a given fishing mortality in the last year), towards objeetimethods of assessment, some
model is needed whereby fishing mortality can be estimated.

The simplest such relationship is probably to considenttfata, which might be related
to fishing mortality through a simple linear relationship:

F =qE.

The available data are nd# and the model predicted fishing mortalityAg for any value
of F in the last year.

A natural way forward is to estimate the fishing mortality e tast year to be the value
which gives the best linear fit to the effort data.

In this case the nonlinearity lies in the VPA (or cohort asaywhich is used to compute
the historical fishing mortality.

A serious problem with this particular method is that thedasodel,F = gE reverses the
usual statistical model framework, i.e. the d&tés used to predict the mod€l and not
vice versa. In this simple version, the problem can easilaleiated by reversing the
direction, i.e. writingE = (1/g)F and minimizing the sum of squares

Y (Ey— (1/q)Ry)?

11



Several points should be noted:

e VPA/cohort analysis mainly gives historical information

e Survey indices provide a time series proportional to abooda

o Effort data provide a time series proportionaRp

e Can connect through regression (i.e. revise the termiral)ye

e Can reduce to single paramet&yem).

¢ Better to formally estimate using a statistical approadi, minimize
> (Ey—(1/9)Ry)?

over the terminakerm

e Can also write up formal methods (e.g. ADAPT) for estimagmngre parameter set,
including e.g. selection pattesy, annual recruitment etc.

3.3.2 Examples

Example 3.1. It is possible to carry out a Virtual Population Analysis tbe Icelandig
summer spawning herring. The input for the VP-Analysis (im@rtality coefficients fo
the last year) is adjusted in such a way that the time sequartbe stock assessmentgis
as consistent as possible with the acoustic surveys.

The model is an age-based model and uses catches in numages atowever the modgl
fitting mechanism is of the same form as before, i.e. a sum whresg is minimized i
order to find the estimate.

3.3.3 Handout

The simplest case of estimating stock sizes in a back-@lounlsetting is when a selection
pattern is assumed to be known and fishing mortality on thesbldges are assumed to be
equal (or proportional to) to the fishing mortality on someiyger ages. Here, only one
value remains unknown, the terminal fishing mortakigym.

In principle, any data set can be used to estimate the telfishang mortality. This inclu-
des survey indices, an effort time series, commercial CPatk and so forth.

12



3.4 ADAPT
Simplified ADAPT:

e Start with VPA or cohort analysis
e Use regression to predict indices - ¢SE
e Find the best possible regression by varykgn

e NB: The index-values are on the y-axis!!

SSE =3 Wa [INUgy — (0a + Baln Nay)]?
ay
Often we setvy = 1 for most ages. Usually we s = 1 for most ages.

Full ADAPT: Use nonlinear minimization and estimate inigge composition, annual
Fy and recruitment along withs.

3.4.1 Details

The Adaptive framework (ADAPT) for stock assessments atesgght-forward nonlinear
statistical estimation technique.

An internal stock-projection model is used. This could bekwaards computation but more
often forward projection using cohort analysis is used.

Unknown parameters will typically include recruitment|es¢ion parameters and overall
annual mortality rates along with the initial age-disag@gted population size and catchabilities
(or similar parameters).

For a given set of parameters, the stock can be used to peedicurvey indices.
The prediction error can now be minimized to estimate unkmparameters.

This approach requires a number of assumptions, e.g. teatafth data is known. The
following describes the approach a little more fully.

The collection of catch data concerning various importastt §tocks are of such quality
that it is possible to assume that the data are reasonablyngakured, i.e. contains little
measurement error. This results in the assumption thatiAW&lysis is employed with the
correct input it will provide a sound stock estimate. Thigmeate could in turn be used to
predict indices from survey data and therefore it is feasiblverify whether a given stock
estimate is in accordance with a time series of survey data.

One possible way to conduct such a comparison is throughgtéiat for given mortality

coefficients in the last year and a given relationship witkidas, the deviation in the for-
ecast concerning indices is given by:

SSE =) wa[InUay — (aa+Baln Nay)]2
ay

13



In a simplified version of ADAPT, using cohort analysis fockacalculation, the unknown
coefficients in the model are onty, , B4 and the overall fishing mortality rate for the last
year. The selection pattern for the last year can be giverherbasis of the patterns of
previous years (i.e. restricted or set to the average), ahoh§ mortality on the oldest fish
is fixed (i.e. restricted to an average of younger age grosp#)becomes unnecessary to
estimate all mortality coefficients and only the multipl{ey) needs to be estimated.

In the simplified version, for a given fishing mortality mplier, the best estimate of the
coefficientsoz and B, will be obtained from a simple linear regression. Thus, ttdrees
simple to compute SSE for each valuefgn Different values may be tested fBy until a
low value for SSE has been established. Thus, an estimdttbe ishing mortality for the
last year has been obtained.

The SSE-equation contains scaling coefficients (weightg)which need to indicate the
relative precision for the main age groups in the groundfisiiey data. These numbers
can be estimated by examining how low the sums of squaresecér bach age group.

It should be noted that the equation assumes different ceeftsa, andp, for each age

group. By way of simplification, it could be stated tlflat= 1 for all age groups, but little
can be said foo,, which then becomes the catchability coefficient (denotgd

3.5 Abundance index (research or log-books)

e Log-books: catch per towing hour

— use mean weight to get number of fish per towing hour
— use age determination to get number per age group

e Groundfish survey: direct count

— use age determination to get number per age group

— Other research cruises...

3.5.1 Detalils

In the above discussion it has been assumed that surveynafion is available. A survey
index could in principle be age-disaggregated, a bulk indexany other measure which
can in some way be linked to stock size or fishing mortality.

In principle a survey is not needed, as it is possible to usengercial catch-per-unit-
effort data, effort data, or other measures. On the othed,hiams quite likely that data
from commercial fleets will have time trends as far as retesiops with stock size are
concerned.

14



3.6 Nature of relationships

e Poor relationship betwedx andU

— Is VPA bad?

— Uncertain indices?

— VariableM? { / - /

e Good relationship betwedx andU

— VPA and indices OK
— M stable

Ak

e N—U bad buty —U good

— VariableM and/or VPA bad

3.6.1 Details

Various different methods for the estimation of currentktsize have been introduced in
the above sections. No single method is perfect, but thereeatain indications that some
methods are much better than others.

What we can learn from these methods is that if there is anyector doubt regarding the
estimate of stock size, it is desirable to try other methaodkdata sets in order to examine
whether the results are verifiable when the problem is viethealigh a different pair of
spectacles.

4 Formal statistical stock assessments in dynamic bulk pragtti-
on model

4.1 Aggregate data

Have only total catch and abundance d#andly.
No error in catches:

By+1=By+rBy(1-By/K)-Yy

Errors in indices:

ly = qBye™
or:
ly=aBy
and A
Inly =Inly+¢&y

4.1.1 Examples

15



Example 4.1. Nephrops in Icelandic waters, 1980-1998:

http://tutor-web.net/fish/fish5108statass/lecturedpmons-80-98.r

4.2 Initial values for bulk production models

1. Define the model and parameters to be estima- . .
ted.

2. Initialize parameters. \

3. Evaluate the model fit. ’ o

4. Optimize the model fit.

4.2.1 Details

It is usually quite important to carefully select the inlittalues and parameter transformati-
ons when fitting stock-production models. There are seveeaons for this.

Firstly, if the initial biomassBp) and productivity ) are too low, then forward projections
will result in zero or negative biomass values and in turmbjams with fitting. Similarly,
if parameters are estimated on the original scale, a mimwitioiz algorithm will not know
that the parameters typically need to be positive and mayégmtive values. One solution
is to use the logarithms of the parameters for optimization.

A simple approach to obtaining initial values of the rightgnaude is to select scenarios
which correspond to data without negative biomasses etc.example, if the initial bi-
omass is chosen equal to the total historical catch and deergroductivity is used, then
the corresponding modeled stock biomass will corresporaddepletion model, but one
which can explain the catches (though it may give a poor fihéandices).

Similarly, if the initial values of catchability are set toree ratio of the survey index to
catch, then this will lead to appropriate units &pr

4.2.2 Examples

Example 4.2. The initialization of a dynamic bulk biomass model involvestting
initial values for all parameters. A procedure is then néetteforward project th
population and subsequently to evaluate the quality of théofthe data. The fu
example of R commands to project the stock forward and peptiedicted index fro
initial parameter values is as follows:

http://tutor-web.net/fish/fish5108statass/lecturedBfirodmodel.r

16



4.2.3 Handout

The estimation procedure is usually separated into a fews,paamely initialization of
parameters, projection based on those parameters, avaltla fit to data, and search for
parameters which give the best fit to the data.

4.3 Estimation in bulk production models

1. Define the model and parameters to be estima- .. . .
ted - T \ N

a S
2. Initialize parameters \/ .

3. Evaluate the model fit

4. Optimize the model fit

4.3.1 Details

Having obtained initial values, the next step is to projéetfuture stock and evaluate the
model fit using actual data. A minimization algorithm is thesed to estimate the parameter
values.

4.3.2 Examples

Example 4.3. The following procedure will project forward the populatiand evaluat
the quality of the fit to the data:

174

http://tutor-web.net/fish/fish5108statass/lecturet@/ardprojection.r

4.3.3 Handout

The estimation procedure is usually separated into a fews,paamely initialization of
parameters, projection based on those parameters, ewvaltls fit to data and then search
for parameters which give the best fit to the data.

4.4 Revising the model

Need to verify output

g g
H H
s ]
g g
g g
H

17



4.4.1 Examples

Example 4.4. Modify the model to follow the assumptidsy = K.
http://tutor-web.net/fish/fish5108statass/lecturedln

4.5 More nephrops case studies

Longer time series are available W %

Series can be spatially disaggregated

See file nephrops.dat

Caveat: Fleet changes may have occurred during't t
time period - invalidates the analysis. ;

45.1 Examples

Example 4.5. Data onNephrops norvegicus from the MRI 2011 annual report (sge
http://www.hafro.is).

Read in the data, fit, and plot
http://tutor-web.net/fish/fish5108statass/lecturedpimonstull.r

5 Case studies of stock-production models

5.1 History
5.1.1 Details

Recall that stock-production models have been used to atsistock sizes of difficult
to age species including whales and shrimp. These modalsnasthat the stock is at
equilibrium which is an oversimplification. As a result, ecent decades such models are
being replaced with dynamic models since catches are knowafidct stock size.

5.2 Prawn models
5.2.1 Detalils

The simple bulk biomass model (see definition 2.2 of tut@)alan be modified in various
ways to suit real situations. Recruitment indices for dee@-prawn are, for example,
available and should contain such information. It is knohett tod feed to a considerable
extent on deep-sea prawn and this factor should be enteeeglgtinto the model. Natural
mortality is, on the other hand, less well known and it is diffi to estimate the increase in
biomass between years.

18



Definition 5.1. Prawn model

By+1 = 0By —Yy+ PRy — 6Dy

Ry= recruitment index
Dy=index of cod predation on prawn
o= production excluding recruitment and mortality excluglpredation by cod

The system is described in such a way that biomass at therbegiof the year is multiplied
by a coefficient, catch is subtracted, recruitment is addedoaedation is subtracted.

Unknown coefficients in the model agga, B, 8, g andBy . Given these coefficients, it
is possible to computBy for all the years. Estimation of the coefficients is arrivédbya
establishing the values that match existing data on catchrpeeffort most closely.

This model can then be used to examine biomass changes feyeanto the next. For a
given size of the cod stock, the effect of catches on the stankbe examined.

5.2.2 Examples

Example 5.1. The following data provides an example of the type of dataladdor J
prawn model:

http://tutor-web.net/fish/fish5108statass/lecturezMpmmodel.dat

The data can be entered into a spreadsheet and the caloslaoonpleted. Wheh
using the spreadsheet, we begin by guessing the values nbwnkcoefficients. These
values are then used to update the stock and make prediesdoscatch per unit effor.
Then the quadratic deviation of the projection is computédally, different values fo
the coefficients are tested in order to examine which valivestige lowest quadratic surf.

T —

http://tutor-web.net/fish/fish5108statass/lecturef@mmodelexpanded.dat

As can be seen from the last column, an estimate is obtaindtecdmount of prawf
consumed by cod on an annual basis. This is denoté® as

It is possible to plot measured and projected catch per &oiteAlthough it is seen thj
the predictions match the data quite closely, it is alsordlegt the number of parametdrs
is high compared to the number of data points.

This model was introduced in (Stefansson et.al. 1994)). rékelts of stomach contept
investigations in Icelandic waters have been presentedriows articles by Palsson et @l.

19



Example 5.2. Herring models
Acoustic surveys provide an estimation of the size of theihgistock at a certain poigt
in time.

Measurements of stock size do, however, not give any infooman yield potential}
This requires additional information on how the stock redotcatches. If, for exampl
renewal within the stock is slow, hardly anything can be tadigpm it without depleting
it by an amount which almost equals the catch. If, on the ofized, renewal is fagt
(high natural mortality rates, good recruitment and fashvidual growth) it will be
possible to catch a bigger proportion from the stock each yea

U

Stock-production models like the ones described above th@vefore been designed t)r
herring stocks. These models are then estimated in such dahatis most consisteft
with counts or catch per unit effort.

5.3 Marine mammals
5.3.1 Detalls

The most important information on the size of the whale sis@btained by sighting sur-
veys (counting). It can be assumed, that the total numbamnasvi for the year in which
the counting took place.

Elaborate statistical methods are then used to link thdthegiwcounts to total abundance
for the stocks.

Stock-production models have been designed for whale stde&rameters of the models
are estimated in order to obtain the best possible fit to adnucelmeasurements and other
historic data.

5.4 Redfish
5.4.1 Detalils

Redfish are notoriously difficult to assess due to ageing@&sis a result, simple models of
a production-type have been used for several redfish stbtiwever,these are complica-
ted by their long life span. Thus, acoustic surveys for3deastes mentella stock of red-
fish have recently begun in order to use stock-productionatsatiat mimic that used for
whales.

20



6 Models with internal age structure

6.1 Introduction

Internal age structure
Incorporate growth information

Link to any available data
e Length measurements

e Age data

e Survey indices

6.1.1 Details

The term "age-based dynamic production model"has beentasg@tompass a fairly wide

range of models which have several common features. Thedelsiimcorporate all the

positive features of all earlier models of single-speciegyation dynamics. The follow-

ing section describes these models and illustrates howenognt fisheries models form a
single class of models. Some of these do not explicitly mtdukeproduction as a function
of the adult population and the term "statistical assessmexel"is therefore sometimes
preferred.

These statistical models are flexible yet parsimonious mrpaters and can be linked to
any available fisheries data but they do not require the engst of a particular data set.
They use an internal age structure in order to encapsulatgit@ent variation. And, they
commonly incorporate growth information, at least in thevi@f length distributions.

Typical data sets accounted for are
e Annual landings
e Survey or CPUE indices in numbers or weight
e Length measurements
e Age data

This section only considers models which do not take growfiietly into account and
thus do not link directly to length measurements. If lenggasurements are used in these
particular methods, this is through some transformatioor éxample, a survey length
distribution is typically used to obtain an index of recnoént, even an index for 2-3 age
groups (through some form of cohort slicing).

6.2 Biomass or numbers

‘ Choose whether population model is in biomass or numbers

21



6.2.1 Details
The choice of a numbers or hiomass model is not trivial.

Note 6.1. A biomass-based model directly incorporates the growthefindividuals and
recruitment in biomass as well as survival into a single pobidn component.

Note 6.2. A numbers-based model allows for a separation of the recauit in numbers
and thus deals with natural mortality separately which seide poorly estimated.

Note 6.3. Intermediate models may include one or two true age grouppa amgle lumped
plus group.

6.2.2 Handout

The various dynamic models of fish populations are natulialkgd through the use of "the
plus group". First, the dynamic bulk biomass and numbersaisq@gnoring fishing):

Bty1=Bt+rB: (1-Bt/K)
and
Ntz =Ne+rNe (1—N/K)

are the same models, though one described the change in rauamakthe other describes
the change in biomass. There is a difference in interpogtaii course, since the production
term in the numbers model describes a change in weight whidbdes both recruitment
in numbers and the weight increase of individuals in the patpn.

Naturally one can rewrite the numbers model as consistinngosteps:
R =N (1-N/K)

Ner1 =N+ R
which makes the model more like a fisheries model with a reocent term.

Inserting a mortality on the adult population and using adBtan-Holt formulation for the
recruitment term transforms this model into:

alN
Rt - -
1+N/K
Nz = Ne“+R
This particular formulation assumes that the catches danuohide the recruiting year-
class. Alternatively, one might assume that the catchesnapart from the recruiting

year-class (applying a differedtvalue toR in the equation) or that recruitment enters the
fishery at the beginning of the year with:

alN
RO= TNk
Ney1 = (Nt-l-Rt)e_Zt

6.3 Forwards or backwards

‘ Should computations be forwards or backwards in time?
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6.3.1 Details

The traditional VPA and cohort analyses project the poputatbackwards in time. This
has the benefit of VPA convergence, which provides stabimatds of historical numbers
in each age group.

A forward projection is in many ways a more natural approddhs starts with some initial
population either in numbers or biomass. The populatiomasight forward one year at a
time using a set of projection equations.

A forward projection is needed in order to incorporate a gitaip.

6.4 Models of catches

Want to include errors in catches
Unlike many bulk biomass and VPA models
Can usd,y = Fys, to reduce parameters

6.4.1 Details

The forward mechanism allows several parametrizationshvie more natural than those
used in VPA. In particular it is very easy to restrict the n@mbf parameters, e.g. by
assuming that fishing mortality is separalftg,(= F/sa) every year (not just the last).

6.5 The plus group

Traditional biomass model

By1=By+rBy(1-By/K)-Yy
Numbers model with true ages.1., A:

—7
Nar1y+1 = (NA,y+ NA+1,y) e A

6.5.1 Details

A traditional biomass model has a simple aggregate meastweabbiomass:

By.1=By+rBy(1-By/K)-Yy
A model of population numbers with true ages.1,A may use "agef+ 1 as a “plus

group”. Each year this group gets reduced by mortality bugva age group enters the plus
group.

—Z
NA+17y+1 = (NA,y + NA+1,y> e A

Examples of this approach include the case where there syenany true ages so the plus
group is negligible but also cases where there is only asitige age and the plus group
becomes very similar to the bulk biomass model.

Although this seems like a very appealing method, two im@edissues arise. Firstly, a

mean weight "at age"needs to be attached to the plus group. gteen year the plus group
has a certain age composition and therefore a mean weighbiecastimated. However, this
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will change dynamically as can best be seen by consideriagya tohort entering the plus
group. This cohort may dominate the plus group in numbersraididuals in this cohort
will of course gain weight in time. Thus, the mean weight ia filus group changes with
time. A solution to this may be to use available data on themrmezight in the plus group,
if such data is available on an annual basis.

A second problem with the plus group is that an incorrecteatinatural mortality may
cause a lot of non-existing fish to aggregate within the plosig.

6.6 Recruitment

Numbers model
Recruitment is the number of individuals in an incoming yelass. Growth of older
individuals, natural mortality and weight of recruits igaeate.
Typical model:R=aS/(1+ S/K).

Production model:
Recruitment is the growth in biomass or surplus productibrcorporates growth of
individuals, natural mortality and recruiting year-classveight.
Typical model:rB(1— B/K).

6.7 Initial population size

In a forward projection one needs to set an initial poputasize (all ages, in first year)
Can use equilibrium assumpties only one parameter:

No,a = No,oe ™M

(where we start the ages and years from Olgp= R)
Can try to estimate all ages more parameters but also more potential to fit data for
initial year (if available).

6.7.1 Details

When using a model which projects forward in time some assiommeeds to be used
for the initial population size. This applies to all agese first year, i.e. a single total
biomass in a bulk biomass model, but all true ages as welleagltls group in a numbers
model.

Itis possible to use an equilibrium assumption to reducatimeber of parameters required.
For example, in a numbers model an assumption of steady-atak no historical fishing
will mean that the numbers at age in the first year are giveNdy= N;,I_Loe*""a where
Mg is usually an assumed number and this reduced the first-peameter set to only the
historical number of recruits.

Naturally one can also try to estimate the numbers at agdlfages in the first year. This
will require more parameters but the approach also has natempal to fit the data better
for the initial year (if such data is available, e.g. in thenfioof a length distribution with

distinct peaks).
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6.8 Initializing an estimation procedure
6.8.1 Details
When a parametric statistical approach is used to fit a ptipaldynamics model, the first

step is to input data and set the initial values of the pararset

6.8.2 Examples

—4

Example 6.1. Some R code for setting initial values in a statistical ageeal populatio
model is given below. The data are for nephrops in Icelanditere from 1980.

http://tutor-web.net/fish/fish5108statass/lecture§ianit.r

6.9 Projecting a stock in numbers forward in time
6.9.1 Details

When a stock in numbers is to be projected forwards in timenfkmown parameters,
the formulas are usually the standard catch and stock emsatwith provisions for the
recruiting year-class and the plus group as indicated pusy.

6.9.2 Examples

Example 6.2. The following R code will project stock biomass forward ima.
This uses a stock-numbers model and assumes some true adeasfeone) with @
plus group. Note that this only assumes estimation of fishimegtality and recruit
ment. The initial stock size is set to an equilibrium stockdzhon a constant recruitmeht.

The code can be downloaded from:
http://tutor-web.net/fish/fish5108statass/lecturegiiar

6.10 Evaluating a model fit

Usually an evaluation of a fit is coded as a function whichnetwa fit measure for a
given set of parameters.

6.10.1 Details

In order to fit a model a method is needed for comparing modglutuo data. Such a
method typically computes the sums of squares between eadalset and the correspond-
ing fitted values. In particular, when a model is used for fighnortality, the catches are
usually predicted and similarly, survey indices are tylygaredicted from proportionality
with the biomass.

6.10.2 Examples
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Example 6.3. A typical fit-evaluation function in R takes a vector of paetsrs as
input. Each element (or group of elements) of the vectoresponds to a specilflg
population parameter (or group). In the following examphes first parameter is t

cathcability. This is followed by a vector of annual fishingmalities and a vector gf

annual recruitment values.

http://tutor-web.net/fish/fish5108statass/lecturefits.r

6.11 A complete run

Need more data, e.g. on recruitment in order’;to
reduce the number of parameters compared [to
number of data points. o

me

Would prefer production to be linked to stock size.. \/V\ \

6.11.1 Details

A complete model-fitting run consists of first initializingg parameters, followed by functi-
on definitions, and finally calling the nonlinear minimizers

6.11.2 Examples

Example 6.4. When fitting a model to the nephrops data and plotting theltethe R
commands below can be used.

One normally first sets up a "run file", containing commandgctvican be run using p

single "source"command in R. This should automaticallygnesany other R command
files, which read data, initialize variables, estimate tloelssize and plot results.

http://tutor-web.net/fish/fish5108statass/lecturegiifarunplot.r

ReferencedSBN:
ISBN:
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7 Finicky details

7.1 The weighting factors

SSEy + SSE
or weighted?
Logged data:
A>-(In(x) = In(®))>
t
where
A 1 _ 21
V[In(x)] Oinx)
if possible...
7.1.1 Details

As indicated above, there may be several data sources. IMotabre will usually be
landings information and one or more survey indices. Theesponding sums of squares
are commonly added together to form a single objective fandb be minimized. This is
only rarely acceptable and may lead to seriously incoresailts.

7.1.2 Handout

Consider the estimation of weighted factors (weights) tagsigned to sums of squares
which will be minimized in order to estimate parameters iroaydation dynamics model
for a fish species. Assume that all of the terms correspormhpeld data. Each termis thus

of the form
A" (In(x) —In(%))?

where thex,'s may be annual landings, indices, or any other data whichbeapredicted
from the model and is the weighted factor.

The "correct"weighted factor from a statistical viewpdsithe inverse variance,

o1 1
V[In(x)] olzn(xt)

and it should be noted that in the case of low variability, skeendard deviations of the
logged quantities are close to the coefficient of variatibtine original numbers. Since the
latter are convenient to think of and the former are comparatly convenient, the term
CV(x) is commonly used whegi ) is meant.

In the case of the landings data, these are sometimes knatenpyiecisely in which case
it would be natural to assume e@V (Y) = 0.1, reflecting a belief that 95% of the annual
catch estimates are within 20% (two standard deviations)ef true valud]

10ne notes that this approach tacitly assumes a symmetrg iertbrs
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In the case of an abundance index, e.g. a CPUE indeis intended to reflect adult bi-
omass, one could set up a simple time series model to estihetacertainty in the index
or one could fit a polynomial in time and use the residualstiervariance estimation (cf
IWC work, IWC 19xx).

In either case one must keep in mind that the resulting vegiastimate only estimates the
variance in the data set itself. It does not include the maeawith regard to the model
uncertainty which may be much higher. These approachesog@\er, give fairly objecti-
ve guidelines on the choice of weights.

Traditional text books on statistics only skim over the cleadf weights and there is a rea-
son for this: A fundamental assumption in statistical medelthat the model is correct!
When this assumption holds the parameter estimates arasatbiegardless of the choice
of weights. Unfortunately this assumption rarely holdsday model and although it is
often "approximately correct”, it is commonly seriouslyphated in fisheries.

If there are model errors, then the model will typically netdble to fit all data sets simulta-
neously. In this case the choice of a high weight on one datailédrive the model” to

fit that data set and give poor fits to other sets. It is theegfoperative that several choices
of weights be investigated in order to evaluate the levehobnsistency observed.

7.2 Caveats

‘ Typically too many unknowns!

7.2.1 Details

Although the annual fishing mortality is typically quite weletermined by the annual
yields, few other parameters are well defined. In particadempting to determine annual
recruitment in the presence of a single total abundanceiisd#goomed to be dubious.

7.3 Adding a production term
7.3.1 Details

It makes little sense to talk of a production model unlesseti®a production term. In an
age-structured model the production term is normally inftren of a stock-recruitment
relationship.

7.4 Smoothing

Add penalty terms?

> (Ri1—R)?
or o
> (Rt+1 - Rt)
etc
7.4.1 Details

Inserting time-series-like components as sums of squallesmooth the time series of
fishing mortalities and/or recruitments. This will usuaigsult in more stable estimates.

28



The exact way in which this is done is somewhat important.

The method used here has been criticized.

7.5 Atypical run

Annual recruitment
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" Example of a complete run

7.5.1 Examples

Example 7.1. A collection of R routines for conducting a simple age-stuoed assesg-
ment with a production component is given below.

First, consider the initialization phase.
http://tutor-web.net/fish/fish5108statass/lecturesiiianit.r

Next, a function to project the stock forward one year is eeed
http://tutor-web.net/fish/fish5108statass/lecturesiifar
http://tutor-web.net/fish/fish5108statass/lecturesjiiaun.r
http://tutor-web.net/fish/fish5108statass/lectures&its.r

These methods can be improved quite a bit. To get more prestsmates one neefls
more data, however!

8 Some case studies

8.1 Stochastic simulations

‘ Simulate a population with errors in data

8.1.1 Examples

Example 8.1. Example R code for the assessment:
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init.r
http://tutor-web.net/fish/fish5108statass/lectura8yi

predict.r
http://tutor-web.net/fish/fish5108statass/lecture@@fit.r

simpop.r
http://tutor-web.net/fish/fish5108statass/lectura8fiisp.r

ssefcn.r
http://tutor-web.net/fish/fish5108statass/lectureits.r

statass.r
http://tutor-web.net/fish/fish5108statass/lecturesgifs.r

8.2 Cod in Icelandic waters
8.2.1 Detalils

\\/\ HI[I]LJL HMLH ,,,,, /

Consider a simple example based on cod in Icelandic waters.

Data: Total landings and indices based on a groundfish sinywextracting "ages"1 and 2
from the scaled length distributions as well as the plusgi@ill in numbers).

Note that the landings are almost entirely of ages 3+ so tpeoapnate age indices are
pre-recruitment indices.
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