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1 Integer arithmetic

1.1 Integer arithmetic
1.1.1 Handout
Natural numbers

The numbers 2,3,4,... are called thenatural numberswhich we denote byN. Two
operations are defined on this set, nanmaagitionandmultiplication Formally, each pair
(a,b) of natural numbers andb is associated with exactly one numtget b which is
termed thesumof a andb and another numbeap, theproductof a andb. The product is
also commonly denotedl- b.

Certain rules of arithmetic apply to these operations.

(a+b)+c=a+(b+c) (associative rule for addition)

(ab)c = a(bc) (associative rule for multiplication)
a+b=Db+a (commutative law for addition)
ab=ba (commutative law for multiplication)
a(b+c) =ab+ac (distributive law)

la=a (1 is the multiplicative identity)

The setN has anordering so that for any two numbeisandb one of three conditions is
satisfied:a is less than pdenoteda < b, a is equal to b denoteda = b or a is greater
than b denotech > b. Formally, these are defined as follovesis less than bif there is a
natural numbec such that+ ¢ = b, anda is greater than bif b is less thara.

Two important rules apply to the ordering of natural numbers

If a< bthena+c<b+c (addition preserves order)
If a< bthenac< bc (multiplication preserves order)

If a < banda+ c= Db, then the numbec is called thedifferencebetweenb anda and
we writec = b—a. On the other hand i& > b anda = b+d, then the numbed is the
differencebetweera andb and we writed = a—b.

Computation with natural numbers is imperfect, since ibrsdxample not always possible
to performsubtraction i.e. to find a natural numbersuch thata= b+ x. This is only
possible ifa > b. The numbex is then called theélifferencebetween the numbeeandb
and is denoted by — b.

To get past this the set of natural numbers is extended byafiding the number 0, called
zeroand this is normally interpreted as the starting point ofrtairal numbers on the line
and then the numbersl, —2,—3,—4,... are added to the number system. This enlarged
number system is called tltegersand is denoted b¥.

OnZ we can define addition and multiplication. These operatamessubject to the same
rules as apply to the natural numbers. Formally this is dorseich a way as to make 0 an
additive identity which means that

a+0=a, acZ.

In addition we now obtain the result that every number has@ditive inverse which
means that for everg € Z there is ab € Z, such thata+ b = 0. The additive inverse is
denoted by-a.

As before we depict the numbers by laying them out on a nunier |

Y

4 3 -2 -1 0 1 2 3 4 .. 7%
6



Integer division

If aandb are integers anld+# 0, and there is an integgisuch that = bx, then we say that
ais divisible by b If such a numbex exists, then it is called theatio of the numbers and
bandis denote(% or a/b. The operation of finding the numbers calleddivision

It is not possible for all numbesandb with b # 0 to dividea by b, i.e. to find an integer
x such thata = bx. On the other hand it is always possible to find integgasdr so that
a=bqg+r and 0< g < b. This operation is calledivision with remainderIn this context,
g is thequotientandr is theremainderof the division ofa by b.

Example 1.1.1
Divide 498 by 7 with remainder.
Solution: 498 4 98 49 8 8 1

so 7 divides 498 71 times with the remainder 1.

2 Prime numbers

2.1 Prime numbers
2.1.1 Handout
Prime numbers and prime factorization

A natural numbegr € N is said to bedivisible by the numbeb € N if there is a number
¢ € N such thata = bc. Any numbera is divisible by 1 and itself sinca= 1-a. A natural
number> 2 which is only divisible by 1 and itself is callgatime The first primes are

2,3,5,7,11,13,17,19,23 29,....
Any natural numbea > 2 can be written as a product of primes
a= P1P2P3---Pm
where the primeg; may be repeated. For example,

7=7, 24=2.2.2.3=23.3, 250=2.5.5.5=2.5%.

Y

A factorization of natural numbers into primes is termgutiane factorization
Visually, the natural numbers can be depicted as evenlyiloiseéd along a line.

0 1 2 3 4 .. N

We select an initial point of reference, 0, and place thishenine. Subsequently we select
a unit length for the line and mark a point one unit length ® tight of O and label this
with 1. This is continued according to the diagram. It folkothat we will havea < b if
and only ifbis to the right ofa on the line.

The operations oN can now be described as moves along the line. The operataddaig

1 to a numbem corresponding to a point on the line is equivalent to taking move to the
right along the line to the point correspondingte- 1. If the numben is added tanthen
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this operation in merely repeatedimes. Multiplication is described in the same manner,
the producimnis defined asn+ m+... +mwhere there are a total ofterms in the sum.

In this mannermncorresponds ta moves of the length from 0 to the poimt

Normally one does not distinguish between the numberN and the point on the line
which corresponds to.

Induction

Let No = NU {0} denote the set of natural numbers and the number 0. The faljow
well-orderingaxiom applies to this set:

Any non-empty subset B has a smallest element

Theinductiontheorem is a consequence of the well-ordering axiom:

Let a€ Np, p(n) be a statement about@ No and assume that the following conditions
hold:

(1) The statement(p) is true.

(2) If g€ No, g > a and it is assumed that(q) is true then it follows that the statement
p(q+1) is also true.

Then gn) is true fall all n> a.

A proof which uses the induction theorem is callggraof by induction
Proof by induction can be used to show that the equation

n

S k=1+2+3+--+n=1in(n+1)

k=1
holds for all natural numbens. Let the statemenp(n) be that this equation holds for a
particularn. Consider firsin = 1. In this case there is only one term in the sum and that
termis 1. The other side of the equality sign contains the&sqion% -1(141) =1. Hence
the statemenp(1) is true.
Now assume thatj € N and thatp(q) is true i.e. that the equation,_,k = 3q(q+ 1)
holds. Using this assumption we obtain the following

g+1 q
Y k= (Zk>+O|+1=%-q(Q+l)+q+1
k=1 k=1

=3(9(a+1)+2(q+1)) = 3(q+1)(q+2)
=2(q+1)((a+1)+1),

which implies thafp(q+ 1) is true. We have therefore shown that the two conditionsef th
induction theorem hold and the theorem thus implies thaeth&tion holds for all natural
numbera.

Example 2.1.1

a) Prime factorize 273.

Solution: We see that 2 does not divide 273 butod = 297. We know that 3 is a prime
number. Then we check 91. 5 does not divide 91 but9a.-13. 7 and 13 are prime
numbers so 273 prime factorized is73 13.

b) Prime factorize 101.

Solution: We start by checking the lowest prime numbers. 2 does nadei¥D1, 10
3-33+2 so 3 does not divide 101 . 5 divides 100 and thus not 101. 7 miutegivide 101
either. The next prime number is 11 buft 121> 101 so if any prime larger than 7 divi-
des 101 some prime smaller than 11 also has to divide it butawe tuled that possibility
out so we know that 101 is a prime number and the number isgl§ iprime factorization.



3 Fractions

3.1 Fractions
3.1.1 Handout
Rational numbers (fractions)

Arithmetic with integers is imperfect in part because it & always possible to conduct
division except with a remainder. In order to improve on tihis number system is ext-

ended by introducingational numbersywhich consist of all fraction% wherep andg are

integers withg £ 0. i
Two fractions— andg define the same rational number if there is an intéged such that

q
r =tpands=tq. Thus for example

1 2 -2 3 -3

3 6 -6 9 -9
Two operations exist for rational number: Addition and nplication. They are defined as
through new fractions
pr

p r _ ps+qr

q s gs

In this manner we obtain exactly the same rules of arithnfeticational number as we
had for integers but in addition the rationals have the featiiat any numbes # 0 has a

multiplicative invere which we denote lay . If a= g wherep # 0 andqg # 0 are integers,

1
thena1 = % We also use the notatichand Yaforat.

pr
og 4 s g8

: 0. . . .
The rational numberE is called zero and it is also denoted by 0. Zero is the unit for

addition, i.,e.a+ 0 =afor all a€ Q. The rational numbet is called one and it is also

denoted by 1. It is a multiplicative unitat= a for all a € Q.
We think of the integers as being a subset of the rational mus#bC Q by not distinguis-

hing between the integerand the rationag.

To have a mental image of the rational numbers, considetfﬁiesﬂet%z ={2;pez}for

eachq=1,2,3,.... Forg=1 we have%Z =Z. On the other hand i > 1, we drawg— 1
equally distributed points between any two numbeendn+ 1 in Z and these form our
view of the rational numbens+k/q, k=1,...,q— 1 which all lie betweem andn -+ 1.

Y
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Example 2.3.1
Calculate

Solution: Here we have to be careful about order of operations and lesefar operations
of rational numbers.

1216 5 12-16 5 192 5 384-75 309 103

53 2 53 2 15 2 30 30 10
4 Powers
4.1 Powers

4.1.1 Handout

Powers and roots

Powersare introduced to simplify notation for repeated composelita is a real number
then we defin@® = 1,al =a, a® =a-a, a®> = a-a-aand in general for a natural number
we writea" = a---a where there are a total ofterms in the product, all equal & For
negative numbens we definea" = 1/a™".

The number in the formulaa” is called thebaseand the numben is thepower.

The following rules of arithmetic apply for powers:

a.am=gttm
an
ﬁ _ an—m7
a"-b" = (ab)",
(@) =am

If ge Nandac R, = {x&€ R;x> 0}, then there is exactly one numbep 0 such that
x4 =a. This numbex is called theg-th root ofa and is denotedya. The following rules
apply to roots:

Vab= a- ¥,
a_ Y2
b~ Vb

VaP = (Va)P.

Yasp — W,
Va=1Va

In particular we write/a as/a and we call this quantity thequare roobf a.

An obvious interpretation of the square rootaak that it gives the length of the edges line
in a square with area The number¥a is commonly called theube rootof a.

It is important to realise that roots do not obey additiongémeralya+b +# ¥a+ Vb. It

is a very common error to assume these two sides are equalking ta simple example
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with e.g. g =2 anda= 9, b= 16 and computing the value on each side of the formula
shows that different values are obtained.

Now letr be a rational number and write this as a ratio of intergersp/q wheremq is a
natural number. Then defirzeto the power of with the equation

a’ = vaP.

The fourth rule of roots above implies that the definitionndependent of which fraction
is chosen to represent the rational numband the third rule implies tha = (ya)P. By
putting together rule for root and power computations omest@ow that the power ruled
also apply for rational powers but in the general applicegione much assume that the
baseais positive or 0.

Pascal’s triangle and the binomial theorem

Let p andq be natural numbers greater then one grd p. Recall that(g), the binomial

coeﬁicientﬁ, Is the number of ways to choose subsets wigements from a set with
p elements. Now consider a particular elemeeat the p elements from which the selection
will be made. There are two possibilities considerancEithera is in the selected subset
or not. Ifais in the subset then we must choape 1 further elements of the remaining
p— 1 and this can be done ( :i) ways. On the other hand &is not in the subset then
we must choose alf elements for the subset from tipe- 1 which remain, which can be

done in(pal) ways. We have therefore shown tHfl} = (gj) + (pal).

If we put p in place ofp—1 in this formula we obtair(parl) = (qfl) + (8). Written in
this form we can use the relationship to write ascal-triangle which is an ordering of
the binomial coefficients in a triangle where each elemethessum of the two closest

elements in the line above.

©) 1

G @ 11
<3><_(2’> 3>ﬁ<3>©<3> - al5a
GO GO 14641

Herepis the line number under investigation agis the number of the element within the
line. Note that the triangle is symmetric about its centé&isBhould not come as a surprise
since by looking at the formule(':pfq) = (pf(pfqp)!)!.(pfq)! = q!(;fiq)! — (F). Also one notes
that when we talk about selectiggirom a collection ofp, another person could write the
statement in reverse and equivalently decide to seleqt thg which we didnot select.
The p-th line in the Pascal-triangle gives the coefficientgaf- b)P as stated in théin-

omial teorem

(a+b)P= zp: <2) aP~ .

a=0

If i andj are such that+ j = p then the coefficient of the teraib! becomes{”jj) = ('IT—JP'
The Pascal-triangle therefore gives us

(a+b)? = a?+ 2ab+b?,
(a+b)® = a°+3a’b+ 3ab? + b?,
(a+b)* = a*+4a®p + 6a%b? + 5ab’ + b*
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and so forth.

Example 3.3.1

Leta > 0. Simplify (2*¥)?(a*%)Y.

Solution: We use rules of arithmetic for power and get:

(@) (@)Y = QP DaYX DY — QPR IYRYXY _ gDRYX _ (gZHY)X,

Example 3.3.2
Expand(x® — 1)%.
Lausn: We use the binomial theorem and get:

021 = () 02"+ (§) 00+ () o2+ (J)ec-vie (G) v
=x&— 48+ 6x* — 4% + 1.

Example 3.3.2
Leta,b> 0. Simplify

3 \/53%G.
Solution: We use rules of arithmetic for roots and power:
Vvavb = {vaVib = vavb = vavb= vab.

5 Sets

5.1 Sets
5.1.1 Handout

Some basic concepts on sets

A set is a collection of separate objects or concepts. Twg) AetndB are said to be equal

if they contain the same elements and we then vkite B.

The objects or concepts which define a set arelgamentsWe writex € Aor A> xif xis

an element of the sét If x is not an element oA then we writex ¢ Aor A % x.

A set may be described by listing its elements. For exam@es#t{1,2 3,...} is the set

of all positive integers (natural numbersp, 4,6, 8,10} is the set containing the first five
even numbers anfR,3,5,7,11} is the set containing the first five prime numbers.

A set is commonly described using an open exprespia so that the set consists of all
elementx such thatp(x) is a true expression. As an example, consider the even nsmber

{2,4,6,8,...} = {xe N; xis evern.

The expression here i‘is an integer and x is evén

The setA is said to be aubsebf the seB is every element oA is also an element d.
This is denoted byA C B or A C B. Note that the subsetsymbaisandC are equivalent
and are used interchangably in mathematical texts.
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The empty setis a set which contains no element. It is denoted by the symbaolhe
empty set is considered to be a subset of all sets.

Operations on sets

If AandB are sets, then theimion, AUB is defined by

AUB= {x;xe Aorxe B},

intersection AN B by
ANB={x; xe Aandx € B}

and thedifferencebetweerA andB is defined by
A\ B = {x;xe Aandx ¢ B}.

Note that the term “or” is used here, and always in mathemm&ithe meaning “and/or”.
When
consi-

dery

ANB T A\B

of

fixed setX, the setX \ A is often termed theomplemenbf the subseA and it is also
denotedA® or CA. Theproductor product setA x B, of two setsA andB is defined as the
set of all pairga, b) of elementsa € Aandb € B,

AxB={(ab);ac Aandbe B}.

We also define unions and intersections
of more than two sets. Ihe N and

A1, Az, ..., A, are sets then we define their
unions and intersections by B

==

n
A ={x;xe A forsomei=1,...,n}
i—1

n
and (A = {x;xc A foreveryi = 1,]..
i—1

If we have an infinite sequendég, A, Ag, . . . Ax Bis shaded.

of sets then we define their union and in-
tersections by

A ={x;xcAforsomeieN} and [)A ={x;xeA foreveryicN}.

i=1 i=1

In the last two definitions the sets were enumerated. It s@dssible to identify collections

of sets using elements of sets which do not need to be suldgbtsmatural numbers. Such
collections are denote@\ )ic; wherel (the index set) can be any set. We then denote the
union and collection of all of these sets with

JA ={x;xeAiforsomeiel} and (A ={x;xeA foreveryiecl}.

iel icl
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Example 1.1.1

Given the seté\:= {1,2,3,4,5},B:={2,4,6,8,10} andC := {6,7,8,9,10}.

a) Find (AuB)NC.

Solution: We start by findingAUB. That is the set of all members that are in at least one
of the set\, B, thatisAUB = {1,2,3,4,5,6,8,10}.

(AUB)NC has the members that belong to béth B andC. (AUB)NC = {6,8,10}.

b) Find AU(BNC).

Solution: We can see th&NC = {6,8,10} and therAU (BNC) = {1,2,3,4,5,6,8,10}
Notice thatAU (BNC) # (AUB)NC. As you can see in this case the order of the operations
matters as we are taking both union and intersection. Ntia&#\N (BNC) = (ANB)NC.

c¢) Find (AnB)NC.

Solution: We can see thaanNB = {2,4} and thenANB)NC = {2,4} NC = 0.

Example 1.1.2

LetAC X andB C Y. Find the complement A x Bin X xY.

Solution: The complement contains all membéssb) € X x Y such that eithea ¢ A or
b ¢ B or both, which can be written as

(A x B)¢ = (A®x B) U (A x B®) U (A® x B°).
Another way to write it ifA® x Y) U (X x B°).

Example 1.1.3

a) Find A\ B in terms of complements and intersections.

Solution: All members ofA are either inB or B®. The members o that are not oB are
thus exactly the members Ain B, so we havé\\ B= ANB°.

b) Let p1, p2, ..., pn be natural numbers. We denote p¥. the set of all integers divisible
by pi where 1< i < n. Denote the set of all numbers divisible by all of the numbers
P1, P2, -, Pn.

Solution: The set of numbers divisible by all of the numbeis. . ., pn are the intersection

of numbers divisible by, po,... pn, i.€.

n
piZ.
=1

6 Number systems

6.1 Number Systems
6.1.1 Handout

It is a natural question to ask whether each number

on the number line corresponds to a rational num- 1 1

ber. This is equivalent to asking whether the length

of any line segment can be given by a rational num- I — i R
ber. This was studied in detail by the ancient Greeks 0 12 2

who eventually saw that the answer to the question

is a negative. The rule of Pythagoras tells us that the leafjthe longest sideg, in a
right-angled triangle with shorter sides both of length Istraatisfyc? = 2. The resulting
number is usually called thsquare root of2 and is denoted by/2. It is not a rational
number. This can be proved by an indirect proof, i.e. if waiassthat the statement to be
proved is incorrect, then we arrive at a contradiction.
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The set of real number®, is designed to solve this conundrum. We view the rational
numbersQ as points on the number line and enlarge the set of numbefsasohere is

a numbera corresponding to every number on the line andRebe the set of all such
numbers. As before we can view addition and multiplicatisrmperations on the number
line.

Y

1\@2%3;1 4 ... R

Nl +

—4 -3 251 0

A real number which is not rational is call@dational. There is no special symbol for this
set, which iR \ Q.
The usual rules of arithmetic apply for real numbarb andc:

(a+b)+c=a+(b+c) (associative rule for addition)

(ab)c = a(bc) (associative rule for multiplication)
at+b=Db+a (commutative law for addition)
ab=ba (commutative law for multiplication)
a(b+c)=ab+ac (distributive law)

a+0=a (Ois the additive identity)

la=a (1 is the multiplicative identity)

Every real numbea has an additive inverse which is uniquely determined and evetd
this by —a, and every rea # 0 has a multiplicative inverse ! which we commonly write
as:g[l, 1/aorl:a

Infinity

All of the number systems which have been discussed hereatiueal numbers, integers,
rational numbers and real numbers arnite and unlimitedin one direction or both. In
the upper direction this means that for any nundigr each of these sets there is a number
b in the same set such thatc b. When we want to use this property we need to put into
use a new symboke, which we call the infinity symbol. We can think of this as a new
symbol which is added to the set of real numbers in such a mdhae~ > afor all ain

R (and thus also for ak in N, Z andQ since we view each of those as subset®&pfIn

the same manner as we obtained the negative numbers fromaghie@numbers we define
—oo S0 that—oo < afor all ain R.

One must remember that and —c are not numbers and should not be used as such. In
particular we can not use them in ordinary arithmetic witrgpecial precautions although
this can be tempting. As an example of the unusual natureesktBymbols, we note that
—oo does not have to be the additive inversemfi.e. the equatior-o + o = 0 does not
necessarily hold.

Ordering and intervals in R

In R we have an ordering: in such a manner that for any two numbarandb one of
three things must holda < b, a=borb < a. We also writea > b if b < a. We have the
following rules on the order of real numbers:

if a<bandb < c,thena<c (ordering is transitive)

if a<bthena+c<b+c (ordering is unchanged under additign)

if a< bandc> 0, thenac< bc (ordering is unchanged under multiplication
with a positive numbey)

if a< bandc < 0, thenbc< ac (ordering is reversed under multiplication
with a negative number)

If a,b € R anda < b, we define severaltypes of intervals:

15



Ja,b[={xeR;a<x<b} (openinterval)
[a,b] = {xeR;a<x<b} (closed interval)
[a,b[={xeR;a<x<b} (half-openinterval)
la,b]={xeR;a<x<b} (half-open interval)
| —o,a[={xeR;x< a} (open halfline)
|—w,al={xeR;x<a} (closed halfline)

]
@

]

[

,oo[ {xeR;x>a} (open halfline)
,o[={xeR;x>a} (closed halfline)
—o0,00[=R (the real line)
a,al = {a} (single point interval)

Alternatively one may writéa, b) for ]a, b[, (a,b] for |a, b] and so forth.
Each open interval contains infinitely many rational nursteerd infinitely many irrational
number.
On the real line the intervals are depicted using a thick éine
the different types of endpoints are indicated by using edill
- o circle if the endpoint is within the interval but a clear d¢&rcf
a b the endpoint is not a part of the interval.
Ja,b] For eachx € R we define thebsolute valuef x with

X x>0,
x| =

—X Xx<0.

The numberx| measure the distance between 0 aod the real line. For two real numbers
x andy, the quantityx—y| measures the distance between thera.aifide are real numbers
ande > 0, then

=la—¢,a+¢|

is an open interval centeredatvith diameter 2.

7 Countability

7.1 Countability
7.1.1 Handout

The number of elements of a set can be finite or infinite. Thetgregt @ contains no
elements so the number of elements in itis 0A I§ a set and ther is € N and a bijective
projection (one-to-one and onto functiofd,...,n} — A, the setA is calledfinite. It is
easily seen that the numheris uniquely determined, i.e. that one can not find two diffiere
numberdm andn in N and bijective projection$l,...,m} — Aand{1,...,n} — A. The
numbem is called thenumber of elements of @nd often denoted byA#

If A'is not a finite set we calA infiniteand denote the number of elements ly=# o or

#A = 4. The setAis said to becountably infinitef there is a bijective projectioN — A.
One can also say that the geis countably infinite if its elements can be placed into an
infinite sequencey,ay, as, ... where each element can appear exactly once.

The set of natural numbenl$ is of course countably infinite since the projections x is
bijective onN. The set of integer is also countably infinite since we can set up a bijective
projectionN — Z as follows

1—-0,2—1,3—-1,4—25—-2,....
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Thus rule can be written more tightly as

K, efn= 2k,
n—
—k, efn=2k+1.

The set of rational number® is also countably infinite. Showing this is slightly more
involved than proving thdk is countably infinite.
A setAis said to becountablef it is either finite or countably infinite and it is said to be
uncountablef it is not countable. Several rules apply to countable,detsexampleA set
A is countable if and only if there is a one-to-one projectfon> N. Another rule is:The
countable union of countable sets is countalftfermally, this states that sets of the form
A= Uiel Al are countable if the index skts countable and each of the s@{ss countable.
The set of real numbei® is uncountable and the same can be said of the set of irrhtiona
numbersR \ Q.
Example 2.5.1
Tell whether the sal x Z is countable.
Solution: We have o

NxZ=|J{i}xz=|J{i} xZ

i=1 icN

soN x Z is a countable union of countable sets and thus countable.

8 Algebraic expressions

8.1 Algebraic expressions
8.1.1 Handout

The wordalgebrahas a wide meaning in mathematics. In general, algebra daalshe
topic of defining and using rules of arithmetic on some satvestigate what the effects of
the rules are. In this treatise we will investigate the éffed the rules of arithmetic for the
real numbers which were under discussion earlier.

An expressioror formulg) is a collection of symbols, each of which can be numbers or
alphabetical characters, connected together with theatqrsr-, —, -, :, fraction signs or
parentheses. The alphabetical characters are viewed d®ky/to denote real numbers
These can be fixed numbers which have specific values or eblesiwhich can take on
any value within a subset of the real numbers.

As an example, consider

(3X(y+2)* —2)° - 23(2¥%y +2)*
(ax2 — 2xy2)2+1.53
This is a mixture of a variety of parentheses, power symlgaseral fractions and decimal
fractions. There are no limits to the complexity of this nmta but rules must be observed

on how the operations are used and the parentheses,must pair up. When computing
the value of an expression, four rulesapferator precedencenust be followed:

1. Anything inside a pair of parentheses must be evaluatedwithsing anything outside
the parentheses.

2. The addition (plus)}, and subtraction (minus)., operators split the expressions into
terms and each term must be evaluated completely beforé@ddr subtraction is
conducted.
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3. The symbols for multiplicatioon, the doand crossx, and for division, colon, slash
/ and fraction symbol, split the above terms into compondrisy only apply to the
component which immediately follows

4. Operations are conducted from left to right when terms asdeated.

Example 3.1.1
Simplify
W1 275+4 (224+1)2—12x(1-3)
(1-%)3+3

Solution: We start by calculating in the parenthesis and taking tegetbnvenient compon-
ents and get

G275+ (P+1)2-1Xx(1-3)  [+275+(4+1)% 125 P45 -8
(1-x3+3 (1-%)3+3 I-%5+3

We then extend by 2 and draw together similar components amckt out:

62+50—-16x 112—16x 7—X
= = =16— =16.
7—X 7—X 67— 6

5\ 2 5
2-2) +1.2.
( 6)+ 2

Solution: We start by calculating in the parenthesis and the right acomapt. The rest is
self explanatory.

Example 3.1.2
Simplify

6

6+

( 5)2 5 <7>2 5 49 5 49+90 139
2 2

2-5) T13= 36 36

9 Equations

9.1 Equations
9.1.1 Handout

Expansion and factorization

Expansions the act of taking an expression consisting of a single &mohchanging this
to many terms. The distributive law sets the stage for how ithdone. A few resulting
rules of expansion include the following:

(a+b)(c+ d) = ac+ad+bc+bd,
(a+ b)2_ a + 2ab+-b? :
(a—Db)? = a® — 2ab+b? :
(a+b)(a— )—a —b? :
(a+b)(a® —ab+b?) = a3 + b3,
(a—b)(a®+ab+b?) = a3 - b°.

These expressions ai@mulaswhich state that the mathematical expressions on each side
of the equal sign will yield the same number for any possible® of the variables, b, ¢
andd .
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Consider in detail how the rules of arithmetic can be usedtwsthat the first equation
holds:

(a+b)(c+d)=(a+b)c+ (a+b)d (distributive law)
=c(a+b)+d(a+b) (commutative law for multiplication)
= ca+cb+da+db (distributive law)
= ac+ bc+ad-+ bd (commutative law for multiplication)
=ac+ad+bc+bd (commutative law for addition)

Factorizationis the inverse operation of expansion. In this case an esioresvith more
than one term is converted into an equivalent expressiontwtwnsists only of compon-
ents which are multiplied together. One may think of facation as applying expansion
backards, as inb+ac= a(b+c), thus taking variables or entire components which appear
in all terms and pulling them outside a parenthesis.

Sum and product symbols

Formulas involving long sums or products can be simplifiethiypdocing the symbolS:
andJ], thesum-andproduct symbolslf a;,ay, ..., a, aren mathematical symbols (where

n might bew), then the sums and products of these symbols are denoted by

n
Y a=ai+ax+...+an,
i—1

n

[[a=ai-a...-an.

i=1
This notation is particularly convenient when there areptenways to write the various
g;-values in a similar form.
Variations exist on these symbols, for exampJ8 ,ai, where the sum starts at tineth
element angd_,caa, where the elements éfare added. Further, the symlabr any other
symbol can be used in placeicds an index.
The same comments apply to the multiplication symbol.

Example 3.2.1
Expand(x— 1)(x+1)2.
Solution:

(X—1)(x+1)2= (x—1)(X+1)(x+1) = (C—1)(x+1) =X(C—1)+ (R —1) = —x+ X —1=x+x° —x—1.

Example 3.2.2
Expand(x+ 4)%(x— 4)2.
Solution:

(X+4)%(x—4)? = ((x+4)(x—4))* = (X* — 16)* = x* — 32 + 256

Example 3.2.3
Factorizex® — 2x2 + x.
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Solution: We can see imminently thatdivides the polynomial and after that we apply a
common rule.
33— 2 +x= X0 —2x+1) = x(x—1)2.

Example 3.2.4
Factorizex* — 1.
Solution: We get

X —1=(C+1)(—1) = (+1)(x+1)(x—1).
The polynomiak? + 1 is indivisible in the real numbers.

Example 3.2.5

Calculate the sum .

S (n—1)?

n=3

Solution: We start clarifying a bit by noticing that we can change therimary of the sum
to rewrite it and then calculate.

7 6
Y (n—1)?=>"n*=4+9+16+25+36=90.
n=3 2

Example 3.2.6
Calculate

5
I 2n.
n=1

Solution: We just calculate:

ﬁzn: (2-1)-(2-2)-(2-3)-(2-4)-(2-5)=2°-5! = 384Q
n=1

10 Inequalities and absolute values

11 Linesinthe plane

11.1 Lines inthe plane
11.1.1 Handout

Points and lines in a plane

Points and lines are aspects of mathematics (or specifisidjgometry) which correspond

to everyday life. This is, however, why it is so difficult to adde where to start when
discussing the field: We aknowwhat lines and points are and therefore all attempts at
formal definition appear clumsy and not needed at first sight.

The situation is not quite as simple as one might think. Irneotd conduct systematic
investigations into geometry specific definitions of all cepts are needed and references
to common knowledge are not adequate.
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The methodology which has been selected to approach gegomédt definepointsand

linesfrom some of their elementary properties, assume that som@esfacts (so-called
axiomg apply and work from there. The most important axioms on {goand lines in
classical geometry are:

e Any two distinct points define exactly one line which passesugh both.

e A given line and point outside the line define exactly one tm®ugh the point and
not intersecting the original line.

These axioms can be used to derive all of the geometry whiglesp
/ to daily life.
Points in geometry have no size and lines extend infinitelgitiner
/ direction without width. IfA andB are points and is a line through
the points then the part of the line between the points iedathe
line segmenbr simply thesegmenfrom A to B.
Normally no distinction is made between a line on the one hartithe set of points on
the line on the other hand. Through any pdkihere are two half-lines parallel to a given
line, ¢, one in each direction. The point itself is on both halflines.

12 Triangles, other plane geometric figures and trigonomeic
function

12.1 Triangles
12.1.1 Handout

Angle
An angleis what is obtained when two halflines are drawn from the samimli point
which is then called the vertex of the angle and the halflimescalled its arms. The size
of the angle is measured oegreesor circular measure The size is quantified by first
drawing a circle centered at the vertex and then computiagato between the length of
the circle within the arms to the length of the full circle.ttis ration is multiplied by 360
the result is the degrees of the angle. The circular meagare @angle is found by drawing
a circle of length 1, centered in the vertex and measurindethgth which falls between
the arms. The measurement unit for the circular measurd jsui@ch is short foradians
Angles are measure with sign in such a way that the sign isipedi the angle is formed
by turning a segmerttinto a segmentn counterclockwise across the angle and negative if
the turn is clockwise.

The numbentis defined as half of the length of a circle with radius

m 1, or its area. In decimals it is approximately18159.... This is
an irrational number and thus can not be represented by aeated
] sequence of digits.

The area of a circle is proportional to its radius squaredthedarea

of a circle with radius 1 ist The area of a circle with general radius

is thereforar? and its circumference ist.

The relationships between degrees and radians are sirhpleahgle
is xrad, then the size of the angle, measured in degrees is

X

360 = 2. 180°.
21T Tt

y:
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Conversely, if the angle ggdegrees then its size, measured in radians, is

X A 21trad = A -Tirad

~ 360 180

An angle is aight angleif it is a quarter of a circle, i.e if it is 90or Jrad. An angle which
is in absolute value less than er’39sharp otherwise it isobtuse
Example 4.2.1

a) Convert 75 to radians.
Solution: We multiply by 5. The angle ismrad= 2mrad.
b) Convertg rad to degrees.
— : i 80 :JT180° __ 180°
Solution: We do this by multiplying byl?. The angle i§= = % =30".

Triangles, rectangles and polygons

A path which is composed of three line segments joined tagethpairs in three vertices
is called atriangle. A path composed of four such line segments, joined at fources
is aquadrangle but apentagonis the sides and vertices are five and in genemaseded
polygonif it has n lines and angles.

If all sides of am-sided polygon are of the same length then gdglilateraland if all the
angles are of the same size, all sides of the same length aedofithem intersect, then it
is regular.

In addition to these terms some concepts are specific fargliea and rectangles. Thus
a triangle is aright-angled triangleif one of its angles is a right angle, and eosceles
triangle if any two sides are of equal length. A quadrangle re@angleif all angles are
right angles and a regular quadrangle (thus also a reclasglsquare

Pythagoras’ theorem
Consider a triangle with vertice&, B andC and sides, b andc as
B shown in the figure and that the an@lds aright angle C = 90°.
Pythagoras’ theorem tells us that the relationship betweelengths
of the sides is given by the formula

a’+b?=c?

The theorem has a converse which states that if we have gl&jan

A b C  ABC with opposite sidesbc and the formulaa? + b = ¢? holds,
then it is rectangular, i.€C = 90°.
Many methods can be used to prove Pythagoras’ theorem. Qhe ofost accessible is to
consider the squares below. They both have side lergthsand therefore the same area.
If we look at the square on the left we see that it is composddufright-angled triangles
which each have are}ab and two smaller squares with areon the one hand ariaf on
the other. The area of the square on the left is therefoka+ a2 + b? = 2ab+ a2 + b2,
Now consider the square on the right. It also consists of fmyint-angled triangles, each
with area%ab and a square with are. The area of the square on the right is therefore
4. %ab—i— ¢ = 2ab+ . As stated above, the two squares have the same area arforere
we have 2b+ a2 4 b? = 2ab+ ¢, which impliesa® + b? = ¢,
a b

m} 0
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Example 4.4.1

Given a rectangular triangle with cathetus 4 og hypotenufadthe other cathetus.
Solution: We use Pythagoras’ theorem. That gives us the fallowing texuawhere
x denotes the unknown length? 5- x> + 42, That implies 25- 16 = 9 = x* and thus

X=+9=3.

Example 4.4.2

Given a rectangular triangle with hypotenuse 13 and castgtfind the area of the triangle.
Solution: We need to find the product of the cathetuses, so we start bpditiae unknown
cathetus. Itis/13? —52 = \/144=12. Then we can easily find the arde= 12.5- 3 = 30.

Example 4.4.3

Check if triangle with sides 5,6,7 is rectangular.

Solution: We use Pythagoras’ theorem. The triangle is rectangulamndfanly if 72 =
62+ 5%, but 7 = 49 and 5+ 62 = 61, so it is not rectangular.

Coordinates and coordinate systems

The following is a short summary of some aspects of two-dsim@ral geometry, in specifically
coordinate geometry. We start with some basic propertiaxobrdinate system in the pla-
ne.

Select a poin©, to be called theorigin of the coordinate
system, draw orthogonally two real number lines through
it with the same scales and let the zero O on each line co-
Y Lo, P=(Y) incide with the originO. Usually one line is chosen to run

! horizontally to the right and the other vertically upwarttsg

is not the only possible choice).

Now let P be a point in the plane. A vertical line through
P will intersect with the horizontal axis in exactly one point
which corresponds to a real numbecalled theabscissaof

the pointP. Similarly, a horizontal line througR intersects
with the vertical axis in exactly one point which correspsrd a real numbey which

we call theordinateof the pointP. Put together we call the paik,y) € R x R = R? the
coordinatesf the pointP and we writeP = (X,y) to indicate the coordinates. Note that all
points on a given vertical line have the same abscissal all points on a given horizontal
line have the same ordinaye

Distances between points

1+

|-
o’lx

Now let P; = (x1,y1) and P, = (x2,y2) be two points

in the plane and assume that they are not on a vertical

line. Then consider the triangle with verticeg P, and

Ps = (X2,y1). This is a right-angled triangle since on the

yi one hand; andP;s are on the same horizontal line with
Py P3 fixed ordinatey; and on the other harfé andP; are on

the vertical line with abscissg. The distance between

Y2 1

P andPs is [x — X3 | and the distance betwe®nandP;
is |y2 —y1|. If we denote the distance betwenandP,
by |P1P.|, the Pythagoras’ theorem implies

PP = /(%2 — X1)2 + (y2 — 1)2.

Example 4.5.1
What is the distance betweé¢h, 2) and(5,7)?
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Solution: We use the formulg/(x —x0)2 + (y — yo)2. Thus the distance ig(5— 1)2 + (7 — 2)2 =
VA2 152 = /41,

Example 4.5.2

A square with horizontal and vertical sides and middl¢0r2) is drawn in a coordinate
system and the distance from it's middle to the corners is 2.

Solution: We see that the squares’ diagonal has length 4 so by Pytlsigjerside length
is 2v/2. As the coordinates vary by a half side length from the ngdgich we can see the

corners are ifv/2,2—v/2),(v/2,24+2),(—v2,2—2),(—v/2,2+ /2.

Trigonometric functions
If A'is the angle between the linésandm, then we define
m the cosine and sine of the andidy displacing the image (or
P = (cosA,;sinA) the coordinate system itself) so thatands in the originO
of the coordinate system and then rotating the image around
1/ the origin O, so that/ ends up on the positive part of the
horizontal axis. Next draw the unit circle centereddaand
look at the intersection between the circle and thedm&his
point has coordinates which we cétlosA, sinA). This is ourdefinition of thecosine of A
and thesine of A
If cosA #£ 0, we also define theangentof A by
SinA

tanA= ——
COSA

and if sinA # 0, we define theotangenbf A by

COsA

COtA = SnA”
It is clear that thex-coordinate of a point on the unit circle is in the inter{all, 1] and the
same applies to itg-coordinate. An angle can be any real number and therefereatine
and since are each functions with dom&imand imagg—1, 1]. Note that the anglea and
A+ 2m give the sam intersectid® = (cosA, sinA). From this we see that both the cosine
and the sine are periodic functions with periad 2
Some values of the trigonometric functions can easily birel@ywith the derivations left as
exercises (these can be seen from considering propertiekevént triangles and judicious
use of Pythagoras’ theorem):

° | rad| SinA | cosA | tanA | cotA
0| O 0 1 0 ——
1 3 1
|83 | %] & |V
2 2

45| @ é % 1 1
60| 3| % | 3 | V3| 5
9| T 1|0 |-—]0

Similar triangles

Two triangles aresimilar if their angles are equal. This implies that the ration betwe
corresponding sides is constant in the two triangles.

Trigonometric functions and triangles Consider the right-angled triangle in the figure.
By setting up a similar triangle with longest side of lengtlhe theorem on ratios between
sides tells us that
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SinA = % = opposite short side divided by long side c
a
COSA = t_; = adjacent short side divided by long sjde
a : . -
tanA = b= opposite short side divided by A b C

adjacent short side

COtA = g = adjacent short side divided by

opposite short side

Areas

The area of a triangle is a half of the product of the baseline
and the height. If we select an angle, §gyand considea as

the baseline, then the heightbsinC. If we chooseb as the
baseline, then the heightésinA. The third option is to choose

c as the baseline and then the heighasnB. The areaF, is
therefore given by the following three formulae depending o
the choice of baseline.

A
F = labsinC = 1bcsinA = JacsinB.

Law of sines

ThelLaw of sinestates that the ration between the length of a side in a teargl the sine
of the opposite angle is the same for all three vertices aaidthits ration is B, whereR is
the radius of the triangle’s circumcircle:

a b . c
sinA  sinB  sinC

Law of cosines
ThelLaw of cosiness a generalization of Pythagoras’ theorem and gives thgtheon one
side of a triangle when the others are known along with théedmgtween them:

c? = a2 + b? — 2abcosC.

Example 4.6.1

A triangle ABChas side lengthAB| = 8,|AC| = 5 and the cornerBAC= 60°. What is the
triangles area?

Solution: We use thaF = %bcsinA whereF is the area. Then we get

1 . 1, .
F = S|ABJ|AC]sin(A) = 58-5sin(60°) = 10v'3

Example 4.6.2

Let ABC andDEF be similar triangles witYBAC= Z/EDF, Z/ABC= /DEF, /BCA=
Z/EFD. Let|AB| =10, |IDE| =5, |BC| = 6. Find|EF|.

Solution: As the triangles are similar we know that

|AB|  |DE]
IBC|  |EF|
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which rewrites
|DE||BC| 56

EF|= =
IEFI |AB| 10

3

Example 4.6.3

A triangle ABC has circumcircle with radius 5 and the angkes- 60° andB = 45°. Find
the side lengths oABC.

Solution: Angle sum of triangle gives th& = 75°. Then we can apply the law of sines
which gives where, b, c denote the sides &BC that

a b C

Sin(60°) _ sin(45)  sin(75°) 2.5

and by solving the equations we get

a=10sin60°) = 5V3, b=10sin45)=5v2, c=10sin75).

Example 4.6.4
An acute triangleABC has side lengthe = |[AB| =5, a= |BC| = 6, b= |CA = 7. Find
cog ZABC).
Solution: We apply the law of cosine. We gt = ¢+ a? — 2accog ZABC). By isolating
we get 2 2 12 2. @2 72
cc+a —b- 5+6°—-7° 12 1
O ABC) = e~ 256 60 5

13 Circles

14 Functions

14.1 Functions
14.1.1 Handout

Functions and graphs
A functionor projection ffrom a setX into a setY is a rule, which assigns to each element
x € X exactly one elementt(x) in Y.

f Functions are written in several ways, for example

f: X=Y, X—=Y or X =Y, x— f(X).

The setX is thedomainof the functionf and the

setY is thetarget setof the function. In this case

f is definedon the seX and that ittakes on values

in the setY. If x € X, thenf(x) is thevalue of the
function f at x The set of all values of the functidhis the subsef f(x); x € X} of Y and
it is termed themageof the functionf.
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Thegraph of the functionf is a subset of the product
setX x Y defined by the collection of pairs

{(xy) e XxY;y=f(x)}.

If AcC X, then the se{f(x); x € A} is theimageof {(x,y) eXxY;y=f(x)}
f, denoted byf (A).

If BCY, then the set of alk € X such thatf (x) € B

is theinverse imageof the setB under the function

f. This set is denoted bf*(B),

f~1(B) = {x e X; f(x) € B}.

If it is clear what function is under consideration, thent(B) is call the inverse image of
B.

One-to-one and onto functions

A function f : X — Y is said to beone-to-ong1-1 orinjectiveif x; # xo implies f(x;) #
f(x2). Equivalently,f(x1) = f(x2) impliesx; = Xo. In words, the function maps different
points in the original set (domain) to different points ie iimage.

A

functi-

said fis1-1 fisnot1-1

to

beonto(or surjectivg if for everyy €Y there is arx € X such thatf (x) = y.

A function f : X — Y is said to beone-to-one and ontor bijectiveif it is both 1-1 and
onto.

These concepts can usefully be considered from solutioegjti@ations. Take to be an
element ofY and we want to see whether we can find X which solves the equation

f(x)=y.

The functionf is onto if and only if a solutiox can be found of every € Y. The function

f is 1-1 if and only if every solution is unique. Hence the fuoctf is bijective if and only
if the equation has exactly one solutiofor eachy € Y.

If f:X — Y is bijective, then we can define another functibn® : Y — X by defining
f~1(y) = xwherex s the unique solution to the equati6(x) = y. We call f ~* theinverse
of the functionf.

Composition of functionsIf f: X — Y andg:Y — Z are two functions then we define
their compositiorgo f : X — Z by the formula

(go f)(x) =g(f(x)).
For bijective functiond we have

flof)x)=x, xeX and (fof Y(y)=y, 'yeY. Y g
( )(X) (X )()/>\ - ,



Example 1.2.1

What is the inverse of the functi-

on f: Ry — Ry, f(x) =12

(HereR, =]0, +oo|).

Solution: We want to find a functiorf ~1: R, — R, such thatf‘l()—l() =X, but that functi-
onisf,thatisf~1=f.

Example 1.2.2

Given the functiond : Ry — Ry; f(x) := % andg: R — R; g(X) :=In(x), tell whether
go f is onto, one-to-one or bijective.

Solution: As we saw in last examplé is bijective. The natural logarithm is strictly
increasing so it is one-to-one and it can take as high or ldwegaas one wants so it is
onto and thus bijective. Thego f is composition of bijective functions and therefore bij-
ective.

Operations on functions

A function f is real-valuedor areal functionif all of its outcomes,f(x) are inR. The
function f is complex valuear acomplex functiorf its outcomes are irC. The number
f(x) is called thevalue of the function f at.x

If f andg are two functions defined on a 9€f then we can use the operationsRno
define new functions. For every two functiofhsansg on the seX we define three new
functions which we call theum differenceandproductof the functions, denoted biy+ g,

f —gandfg(or f -g). These are the functions defined by

X), xe X,
X), xe X
(fo)(x) = f(¥)g(x),  xeX.

If g(x) # 0 for all x € X, then we can also define thatio é of the functionsf andg with

the formula . ™
X
o™ g0

The ratio can also be denoted byg or f : g. If the functiong has zeros, then the ratio can
be defined in the same manner but the resulting function hasithX \ {x € X; g(x) = 0}.
Mathematical analysis largely revolves around definingcioms and investigating their
behaviour. Consider some particular properties of fumstio

A periodic functionis a function for which there exists a numlaesuch thatf (x) = f (x+a)
for all xin the domain off. The numbea is theperiodof the functionf.

A constant functioan be defined on any domain but only takes on a single valee is
of the formx — c wherec is a given constant.

A polynomialis a functionR — R of the form

X an+a,_1 X"+ +aix+ag

wheren > 0 is an natural number arag, . . ., a, are real numbers.

A power functionis of the formf(x) = X" wheren is a real number. Ih > 0 is an integer,
then the domain can Be.

The absolute value functiaa the functionR — R, X — |X|.

An exponential functionis a functionR — R of the formx — a* wherea > 0 is a real
number.
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f<x>x2¥J/ W= Nt =i Atl/f(wzx
1 1 | 1

Power functions Absolute value function Exponential function

Example 2.6.1

Given the functiond : [0,5] — R; f(x) := x> +2x—3 andg: [0,5] — R; g(x) := x+ 3.

Denote the functio%.

Solution: g has no zeros in it's domain. Noy# +2x— 3 = (x— 1)(x+ 3). We get
(x—1)(x+3)

f PRI o
6.[0,5]—>]R{, E(X)_g(x)_ .3 =x—1

15 Polynomials

15.1 Polynomials
15.1.1 Handout

A polynomial is a formula of the form
p(x) = anX"+an_1x" T+ +arx+ag

where the coefficienta; are real numbers. Thaegreeof the polynomial is the largegt
such thata; # 0. Solutions to the equatiop(x) = 0 are called theoots or zeroesof the
polynomialp.
Solving the linear equation
A first degree polynomial is of the forax+ b, wherea # 0 andb are some real numbers
and an equation of the formx+ b = ¢ could be called a first degree equation though
it is more commonly called a linear equation. This equat®msually standardized by
subtracting: from both sides and then reeplacing c by b, so it becomeax+b=0. This
equation has exactly one solution, namely —b/a.
Solving the quadratic equation
A second degree polynomial is of the forax + bx+ ¢ wherea 0, b andc are real
numbers. A second degree equation is of the general &ém-bx+c = d, whered is
a real number bud is normally subtracted from both sides of the equation t@iobthe
standardized form of the quadratic equatiax?’. + bx+c = 0.
Now let us solve the equaticae + bx+ ¢ = 0. First simplify the task by dividing into
both sides and obtain an equivalent equati@®a- Bx+ C = 0, where we have defined
B =b/aandC = c/a. The second step is to look closer at the first two terms xére Bx
and think about how this can be written as a squared term ptosstant. In other words
we want to finda and rewrite the two terms &%+ o) plus a constant. By expanding this
square we know thdi+a)? = x2 + 2ax+ a2. Hence we see that we need to have-2B
to get

BZ

B
0=x’+Bx+C= (x+§)Z—Z+C,
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where we have basically added the final term and subtracéggih to make the equations
hold. From this we see that the original equation is equitaiz

0= (ax¥+bx+c)/a= <x+£>2—b—2+E
B B 2a 422 a’

By subtracting—b?/(4a?) + c¢/a from both sides we again obtain an equivalent equation

X -
+2a

( b)‘z_b_2 c b’—4ac
4a? a 4a?

The quantityD = b? — 4acis thediscriminantof the equation, since the sign of this number
defines how many solutions there are to the equatioD. ¥ 0, there are two solutions

. — —b++/D . —b—+D
1T T 2a 27" 2a
If D =0, there is a single solution
—b
X=—.
2a
If D <0, there is no solution among the real numbers since a reabeusquared is always

positive.

Polynomial division

If pandqg are polynomials then one can sometimes fing a polynoksaich thatp = kqg.

In this case we say that the polynomeadividesthe polynomialp and the operation of
finding thek in question is callegholynomial division

As in division with a remainder for integers one can for pagmals p andq find po-
lynomialsk andr wherer is of a lower degree thampsuch thatp(x) = k(x)q(x) +r(X).
Factoring polynomials

Let p be a polynomiala be a number argix) = x—a. Then there are polynomiakgx)
andr(x) such thatp(x) = (x—a)k(x) +r(x) wherer(x) is of a degree less that one and
hencer (x) is a constant, possibly 0. By insertiagfor x we can obtain the value of this
constant. We then see thidk) = p(a), and ifais a root of the polynomigp, i.e. p(a) =0,
then this implies that— a dividesp(x), i.e. x— ais a factor inp(x).

From this we see that— a dividesp(x) if and only if ais a root ofp(x).

Example 3.4.1

Solve the equations- 7 = 2x.

We solve a first degree equation by isolatiagVe get X = 7 which is equivalent ta = %

Example 3.4.2

Solve the equation@ +3x— 5= 2.

Solution: We want the equation on standard form, that¥$23x—7 = 0. Then we use
the solution formula for quadratic equation.

(_ —3EVF-42:(-7) -3+65
N 2:2 4

The solutions are*3*4‘/§5 and *32‘/@.
Example 3.4.3

Divide X? + 2x — 4 by x+ 4 with remainder.
Solution: We want the rest to be constant so we choose a polynawialb such that
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(ax+Db) (x+4) = ax +4ax+ bx+4b = x? + 2x+ c where the constaitcan be any number.
Thena=1and &4+b=4-+b=2 sob= -2, thenc =4b = —8. Then we have the residue
4.

X2 4+ 2x—4 = (x+4)(x—2) +4.

In traditional form we write

X—2.

X+4) x24+2x—4
— X2 —4x

x4

2Xx+8

4

16 Rational functions

17 Exponential functions
18 Inverses of functions
19 Logarithms

20 Trigonometric functions and the unit circle

20.1 Trigonometric functions
20.1.1 Handout

The trigonometric functions satisfy many equations whigltoemmonly need in computati-
ons. Some of these will be derived in the following.

A reflection about the horizontal axis the projectionR? — R? given by the formula
(x,y) — (x,—Yy). Consider the vectofx,y) in polar coordinatesx,y) = (r cosb,r sin@).
The reflection has lengthand angular coordinate®. The description of the reflection
in polar coordinates is therefo(&,y) = (r cos8,rsin®) — (rcog—0),rsin(—0)). If we
connect these two descriptions together we obtain the fiaenu

coy—06) = cosd 09 sin—0) = —siné.

A reflection about the vertical axis the projectiorR? — R? given by the formuldx, y) —
(—x,y) = (—rcosh,rsinB). From the image we see that the reflection has the angular
coordinatet— 0 so it can be written ag cos, r sin@) — (r cogt—0),r sin(1t— 0)). From

this we conclude that

cogm—0) = —coso and sift— 8) = sin®.

A reflection about the origiis the functioriR? — R? given by(x,y) — (=X, —y) = (—r cos, —r sin8).
Now, this reflection can be viewed as a rotation of magnitm@deound the origin so this
function can also be described by the form(rlaosd, r sin@) — (r cog0+ 1), r sin(6+1)).

We have thus shown that

cog 0+ 1) = —cosH and sirt®+ 1) = —siné.
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A reflection about the line ¥ x is the projectionR? — R? given by (X,y) — (y,X) =
(rsin@,r cosB). The angular coordinate of the imag%iﬂ— 8 and hence the function can
also be described by cog 31— 6),rsin(311—6)). This leads to the formula

cog3m—-6)=sin@  and sir{31— 8) = cos®.

Now consider two vectora = (a1,a2) andb = (bg,by) of length 1 and write them using
polar coordinatea = (cosB, sinB) andb = (cosp, sind). The angle between the vectors is
06— ¢, soa-b = |al|b|cog0—¢) = aib; + azby is in this case

cog0 — ¢) = cosBcosp + sinBsing.

If we now interchange and —¢ and use the formulae cos¢) = cosp and sif—¢) =
—sing which were derived earlier we obtain

cog 0+ ¢) = cosBcosh — sinBsing.
This gives

sin(8+¢) = cog 51— 06— ¢) = cog(311— 6) — ¢)
= cog 31— 6) cosp + sin(311— B) sind
= sinBcosp + cosBsing.

If we now interchange& and—¢ in this formula and use tha fact that ¢esp) = cosp and
sin(—¢) = —sing, then we obtain

sin(@ — ¢) = sinBcosp — cosBsinG.
We can summarize these results in the following table:

co§—6)=cosB og si(—B)= —sinb,

)

cogm—6)=—cosB and sifm—6) =sing,

cog0+1m =—cos® and sifb+ 1) = —sing,
cog3m—0)=sin@ and sifin—6) = cosd,

cog0 — ¢) = cosBcosp + sinBsing,

cog 0+ ¢) = cosBcosp — sinBsing,

sin(0+¢) = sinBcosp + cososing,

sin(@ —¢) = sinBcosp — cossing.

The last four formulae are thengle sum and difference identitie€onsider the formula
for cog0 — ¢) in the special case whein= 6. Then co$0 — ¢) = cos0= 1 and we obtain

co€0 4 sinfd = 1.

This formula simply states that the poif@osd, sinB) is on the unit circle. If we stick to
the caseb = 0 and consider the formula for c@+ ¢ ), we obtain

cog20) = cos 0 — it =1—2sirf@=2co$0— 1.
Similarly we obtain

sin(20) = 2sinBcosb.
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Example 5.5.1
Simplify
sin(2x)
tan(x
Sirf(x) nX)
Solution: We start by using double angle rule for sine and write tan astfan of sin and
cos. Then we get:

sin(2x) _ 2sin(x)cogx) sin(x) 2sirf(x) cogx) B
st Y= TGP cot) - sixcosx) 2
Example 5.5.2
Simplify
(cos2y) + sirf(y)) sin(x—y) +cogx) sin(y) '

sin(x) co(y)
Solution: We use double-angle rule for cos and angle-sum rule for sirgan

sin(x—y) +cogx) sin(y)
sin(x) coZ(y)
sin(x) coqy) — cogx) sin(y) 4+ cogx) sin(y)
sin(x) co(y)

(cog2y) +sirf(y))

= (cos(y) —siré(y) +sir(y))

B sin(x) cogy)
= cos' )sin(x) coZ(y)

= cogy).

Example 5.5.3
Calculate exact value of gih05’).
Solution: We use the angle-sum rule for sine:

sin(105’) = sin((135—30)°) =sin(135’) cog30°) —cog135’) sin(30°) = %? — \_/—;% = ff/g 1.

21 Theorems and proofs

22 Combinatorics

22.1 Combinatorics
22.1.1 Handout

Counting and the!-symbol

Assume that some form of selection is performed sieps where there akepossibilities
of selection in theth step. In other words, in the first step we select one ol @ossi-
bilities, in the next one df, possibilities and so forth. Using induction it is easy to tes
the total number of different outcomes is equal to

ki-ko-...-kn.
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An example will clarify this multiplicative principle: A gson plans to dine at a restaurant
which offers three different appetizers, four main coursed two types of dessert. The
principle states that the person can choose a three couraeimexactly 3 4-2 = 24
different ways.

Choosing several objects from the same set often resulegjuesices of factors of the form
p-(p—1)-(p—2)-...-(p—q) for some numberp andq. To simply working with such
products we define for a natural numhethe quantity

p=p-(p-1)-(p-2)-...-.21
pronouncedp factorial. For convenience this operation is also defined for O byrggtti
o'=1.
Imagine a set witlp different elements and we want to investigate in how manysthgse
elements can be put into an ordered sequence. The first dl@ite sequence can be
chosen inp ways, the next ipp— 1 ways etc. The total number of orderings is therefore
p-(p—1)-(p—2)-...-2-1=0p!.
Permutations and combinations
Sometimes elements need to be selected out of a set and plawwelér. Consider selecting
g elements out of a total gf elements in the s&. Such a choice of elements is termegta
permutatiorfrom A. The first element can be selectegiways, the nextip— 1 ways etc.,
until we come to the last element which can be selectgol-#g+ 1 different ways. |'I'he

rules of counting above imply that this can be don@itip—1)-...-(p—q+1) = ﬁ

ways in total. The number @f-permutations op elements is sometimes denotgr)q and
|

we have shown thdp)q = ﬁ.
Now assume that the order of the selected elements is iai@o we are only interested
in knowing how many different combinations of elements carsélected. Since the abo-
ve computations count the different ordering separatelgnef they contain the same
elements, they result in higher counts than we now want. &gphat theg elements
have been selected without regards to order. Then theretaral af g! ways to place them
in order. It follows by counting the number of ordered seaq@snve have over-counted by
a factor ofg! when we want the unordered counts. Therefore the numbeag$wn which

g elements can be selected from a sepefithout regards to order iﬁ#)!q!’ le. é(p)q,
which is 1/q! times the number of-orderings fromp.

A selection of this form ofj elements where order is irrelevant is calleg-eombination
The number ofg-combinations fromp elements is denote(:g) and called thebinomial
coefficient

Consider forming a team of 7 handball players from a groupOgblayers. If we start just
by selecting team members then this can be dor(é7%: ﬁ ways as the number
of 7-combinations from 10 elements. Following this the plsyhave to be placed in the
different positions. That can be done in 7! ways. In the emdttital number of possible
different teams is 1) = 7!(10_1%!7! = (101_07)! — (10)7, i.e. equal to the total number of
7-permutations of 10 elements.

Example 2.1.2

a) After a dance a driver asks a group of people if they need a fi@geople need a ride
but there is only room for four, in how many ways can the grotipassengers be given
that all seats are filled?

Solution: We choose four from a group of 10, but the number of such coatioins is

|
<10> 100 =7-3-10=210

4]~ 64l
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b) As the passengers have been chosen it is still left to chobsesin the front seat. If
we do not take into account different orders in the back sedipw many ways can the
driver pick passengers to his car?

Solution: We can choose the group of passengers in 210 ways and thervevéolia opti-
ons for the front seat, so we get210= 840 possibilities.

23 \ectors

23.1 \ectors
23.1.1 Handout

Vectors
Let P, = (x1,y1) andP, = (x2,y2) be two points in a plane
P, and draw a line segment froR to P, and orientate it from
/ P to P.. This directed quantity is called thector from R
P PP, to P and is denoted bf;P, and in a figure it is drawn as
an arrow fromP; to P,. The numbexs — X1 is theordinate
or thex-coordinateof the vector and the numbgs —y; is
theabscissar y-coordinate The coordinate of the vector is the tugle —x1,y2 —yi1). In
some texts the coordinates of vectors are distinguished the coordinates of points by
a

b} . Usually this is not of great

importance since it is usually clear from the context whethe reference is to a vector or
point.

Now think of another set of point®; andP;. If the directed line seqgment frofs to Py is
such that whef; is translated té;, thenP;, is translated td, we say thaP; P, andPsP,
define the sameector. In this case the coordinatesBfP, are the same as the coordinates
of PsPs.

A vector is therefore a directed line segment without a fixtdtieng or endpoint. If it is
drawn in the plane as a vector from one point to another tisecoibrdinates are the same,
no matter where it is drawn. It is customary to indicate vesto boldface in print, cfa,

b, c... or on a whiteboard with an underline asajb, c.... The zero vectod is the vector
with coordinateg0,0).

Each pointP in the plane defines the vectOP from the originO to P. This is theposition
vector of the pointP. It coordinates are the same as the coordinates of the Poit
this manner we obtain a bijective projection from the setliopaints in the plane and the
set of all vectors in the plane. We also have bijective ptaes from both these sets to
R? = R x R defined as the set of all ordered paixsy) wherex andy are real numbers.
These functions project points to their coordinates.

The vector is a particularly important concept in matheosasind vector arithmetic along
with geometric interpretations of vectors should be staiderefully.

Polar coordinates

Letv = (x,y) # (0,0) be vectors with length, so that

r=|v|=vx2+y2

The angular coordinatev is the angle from the-axis to the

using either different parentheses asarb| or as columns{

y V= (X>y)
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line throughO parallel tov. If we denote this angle b§, then

X = CcosH,
y=rsind.
Vector arithmetic
Two operations are available on the set of all vectors in theeg vector additionand

multiplication of a vector by a numbeiLet a = (a;,a2) andb = (b1,b,) be vectors and
t € R be a real number. Theum a+ b is defined by

a+b=(a;+bg,ax+by)

and theproduct fa is defined by
ta= (tag,tap).

These quantities have geometric interpretaions.

Some rules of arithmetic apply and these can be derived Imguke corresponding rules
for real numbers:

(a+b)+c=a+(b+c) (associative law of addition)

(st)a= s(ta) (associative law of multiplication)

at+tb=b+a (commutative law of addition)

t(a+b)=ta+tb (distributive law)

(s+t)a=sa+ta (distributive law)

a+0=a (Ois the additive unit)

la=a (1 is the multiplicative unit)
Example 5.1.1

a) Find the polar coordinates ¢4, 3).

Solution: We can see that the angle in radians is on the intéval/2[. Then we can find
the angle by = arctar{3/4) ~ 0,6435rad. The length is then= /424 32 =5,

b) Find ordinary coordinates for vector with polar coordirsdté =5, 6 = Frad.

Solution: The coordinates are of the for(ncog®), rsin(8)) giving us the coordinates

(5c081/3),5siN(T/3)) = (5-1/2,5-1/3/2) = (3, 23).

Example 5.1.2
Calculate(1,2) +5(—2,5).
Solution: We start by multiplying and then add upp coordinate for cowat:

(1,2)+5(—2,5) = (1,2) + (—10,25) = (—9,27).
Inner products and angles between vectors
The angle between the vectossandb is defined by first translating them to an common

point of origin and drawing an infinite halfline from each. Tdrggle between the halflines
defines the angle betwearandb
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Theinner productis an operation on vectors which assigns to two vedces(a;, ap) and
b = (b1,by) a real number
a-b = ajby + axhs.

The main rules of arithmetic for inner products are:

ab=Db-a (commutative law)
a(b+c)=ab+ac (distributive law)
t(ab) = (ta)-b =a:(tb) (associative law)

Some familiar rules also apply for combining inner productd lengths of vectors:

la>=a-a,
la+b|2=a)®>+|b>+2a-b,
la—b|?> = |a>+ |b> - 2a-b.

The above rules can easily be derived by using the definititinecinner product.
Consider the last of the above rules. By isolat@ndy we obtain

1
a-b=3(a*+b|*~[a—b|?).

The right hand side of the equation contains only length aftars and it is clear that
these do not change if we translate the coordinate systeotaterit around a point. The
following must therefore hold:

The inner product of two vectors is unchanged even if thedinate system is translated
or rotated.

Now consider what this resultimplies. Take two vectors,
aandb and letd be the angle between the two. Since the
inner product is independent of translating or rotating
the coordinate system, we can choose the coordinate
system so thaa is on thex-axis. In this coordinate
systema = (|al,0), 0 is the angular coordinate bfand
henceb = (|b|cos, |b|sinB). This yields a useful rule

b = (|b|cosh, |b|sinB)

for inner products:
a-b = |a||b|cosp.

This result provides yet another property of the inner pobdu
The vectorsa andb are orthogonal if and only i&-b = 0.

Example 5.2.1

a) What is the dot product df1, 1) and(2,1)?

Solution: We calculatg1,1)-(2,1)=1-2+1-1=2+1=3.
b) Calculate(1,2) - ((—2,1) — (12,0)).

Solution: We just calculate:

(1,2)-((-2,1)—(120)) = (1,2)- (-2,1) — (1,2) - (12,0)=0—-12= —-12

Example 5.2.2
Find the cosine of the anglebetween(1,2) and(2,1).
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Solution: We use the relationshifi,2) - (2,1) = |(1,2)||(2,1)|cog8) and by isolating we
get
(1,2)-(2,1) 242 4
cog0) = = —
12D " VEvE 5

Triangular inequality

In a triangle every side length is less that or equal to the siitine other two. One of the
best well known inequalities of mathematics is the triamgégjuality, which describes this
fact in terms of vectors. Consider how this can be deriveéims of known equations.
First note that according to the previous section

|a+b|? = [aJ*+ |b[*+2a-b.
Now rewrite the sum of two squares as follows
(18] + b[)? = [al*+ |b|*+2/a|b].

We know thata- b = |a||b|cosB and since co8 < 1 we obtaina-b < |a||b|. Using the
above equations we see that
la+b|? < (Ja] +[b|)?.

Since botha+ b| and|a| + |b| are positive quantities we have shown the following:
Triangular inequality.For any two vectorgs andb satisfy the inequaltiy

la+b| < af +b].

with equality if and only ifa andb have the same directioa,= tb or b =tawheret <O0.
Other inequalities can be derived from the triangular iradityy Note that

la) = [a—b+b| = |(a—b) +b]

< |a—b|+b|,
and hence
lal —[b] < [a—b].
For any vectoa we know thata| = | —a| and in particulafa—b| = | — (a—b)| = |b—a].
We see that

Ib| —|a] < |b—a| =[a—b].
By combining the last two inequalities we obtain a new result
For any two vectors andb we have

||a| = [b]| < Ja—b].

The equation of a line and a circle

A line Z in a plane is uniquely determined by two points. Consider digbinct points in
a plane with a given coordinate system and write therfias (x1,y2) andP, = (x2,Y2).
If the line isvertical, thenx; = X2 and if it is horizontal theny; = y». If the line is not
vertical, then the number
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Yo—Y1

X2 — X1

is well defined(i.e. the number exists and is uniquely
defined) and is called tr/opeof the line. By using the
property of ratios between lengths in similar triangles we
see that the slope does not depend on which two points
on the line are chosen. Now consider an arbitrary point
P = (x,y) on the line to obtain

h:

Yy . B
h_x—xl & y=y1+h(x—xp)

The latter equation and all equivalent equations arethmtion of the liné. Note that the
horizontal line gets the equatign=y; and the vertical line is described by the equation
X=X.

The equation of a line can always be written in the standadiiarm

ax+by+c=0 with (a,b) # (0,0).

Thenormal vectom = (b, —a) has a specific meaning as it is orthogonal to the line. If it
also has unit lengthn| = 1, it is called aunit normal vector

If a line ¢ is described by the equati@x-+ by+c = 0 andPy = (Xo,Yo) iS @ given point

in the plane, then its distance from the line is defined asnialsst distance between the
given point and any point on the line. This is given by

|axg + byo + ¢
Va+b?
A circle centered at the poiri¥l andradius r > 0 consists of all point® such that the

distancgMP| betweerM andP is equal tor, [MP| =r. If M = (p,q) andP = (x,y), then
this equation i$MP| = \/(x— p)2+ (y— )2 = r and is equivalent to

(x—p?+(y—a)?=r?
Example 5.4.1
A line goes through the point®,0) and(5, —2).
a) Find the line’s slope.
Solution: The slope is given by the ratio:
yi—y2 0-(-2) 2

X1—X2_ 2—5 N 3

b) Find the equation of the line and write it on standardizeditor
Solution: We found the slope in pag so the equation is of the forgn= %Zx—l— c, wherec

is a constant we need to find. By putti(iy 0) into the equation we get8 2‘—32 + cwhich
givesc = %. We then rewrite to get the standardized form:

2 4
- ——==0.
3x+y 3
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c) Find the distance of—1,3) from the line.
Solution: Now, having already found the standardized equation we sagiven formula
for distanceD directly.

Example 5.4.2

Find the equation of a ring with radius 3 and certar-1).

Solution: A circle with middle in (xo,Yyo) and radiug has the equatiofx — xg)? + (y —
Yo)? = r?. Thus the equation i&—2)%+ (y+1)2=3%=09.

24 Domain and image, injections and surjections
25 Composite functions

26 Limits

26.1 Limits

26.1.1 Handout

Limits

Let f : D+ — R be a real-valued function which is defined on a sulisebf R and leta
be anaccumulation poinbf the setD;. The wordaccumulation pointneans that for any
open intervall containinga there is a poink # a which is inD; NJ. Note that ifDs is
an open intervaDs =|a, B[, wherea < B, then all points in the closed intervgl, (] are

accumulation points dD+.
There are several types of limits

1) )I(mf(x) the limit of f(x) as x goes to a

X
X

2) Xirgbr f(x) the limit of f(x) as x goes to a from the right
3) Xirg_ f(x) the limit of f(x) as x goes to a from the left

)
)
)
4) Xgrpw f(x) the limit of f(x) as x goes to plus infinity

5) Xﬂrpw f(x) the limit of f(x) as x goes to minus infinity
In 4) it is assumed thdd+ contains points in every half-open interyal+c[ and in 5) it is
assumed thdD+ contains points in every half-open interyat o, c[.
These limits describe the behaviour of the functfagither close to the poiraor asx goes
to +oo.
Formally, f (x) converges to the number L as x goestd for every open interval contain-
ing L there is an open intervdlwich containsa such thatf (x) € | for allxe (JND¢) \ {a}.
Since every open interval which contalnwill contain all symmetrics intevalé —e, L+ €|
for small enougte > 0 and every open interval which contaiagontains all symmetric
intervalsja— 6,a+ o[ with > 0 small enough, we see thatx) converges td. asx goes
to a if and only if for everye > 0 there is & > 0 such tha{f(x) —L| < € for all x € D¢
with 0 < [x—a| < &.
When this holds the numbéris called thelimit of the function f as x goes toand is
denoted by lim_,5 f(x). This is also denoted bf/(x) — L if x — a.
We will also permit4-c and—c to be permissible limit. The definition for thec cases
are thatf (x) goes totoo (plus infinity) as x goes to af for every real numbeA there is an
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open intervall which containsa such thatf (x) > Afor everyx # ain D¢ NJ. If this holds
we write

fim, F(9 = o
and say that theémit of f(x) as x goes to a is plus infinity.

A corresponding definition is used when the limitfgi) is —co.
Let f andg be two functions on, leta € | and suppose the limits

limf(x)  og  limg(x)

exist neither isko. Then

and
lim (f()g(x)) = (lim f(x))(Jim g(x)).

X—a

Further, if lim_,29(x) # 0, then

. f(x)  limy_a f(X)
i g(x)  limxag(x)

Now suppose we have functiofis D¢ — R, andg: Dg — R defined on the sef3¢ andDy
and thatf (D) C Dy, so that the composite functigp f is well defined. If lim_,a f(X)=b
and lim,_,,g(y) = c exist, then

lim (go f)(x) = limg(f (%)) = c.

The squeeze theorem _
Thesqueeze theorem a useful method for comput- T

ing the limit of a function. The theorem states thatif | - g /\

f, g andh are three functions with values Rsuch T ~<_ \J \/ v \

that f < g <h and lime, f(x) = limy_ah(x) =L, =
then limc,29(X) = L.

Example: The limit limy_,osinx/x =1
By drawing the unit circle and the poiitosx, sinx), where 0< x < %T[, we see the two
inequalities

) sinx
sinx< x<tanx = ——
COSX

from which we note that

by using the squeeze theorem and the fact that eed efx — 0, we have

. Sinx
im — =1.
Xx—0 X

Example 8.1.1
Find the limit lim,_,1 2541
Solution: The denominator is not zero far= 1 so the function is continuous there. Then

. . 2
we can without trouble conclude limy 515 = 5% = 1.
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Example 8.1.2
Find the limit lim_,2 %~ 24
Solution: The limits over and under are both 0. Notice that

im =4 _ jj ¥F2(x=2)

=2 X—2  x=2  (X—2) :>I<IH1ZX+2:4'

Example 8.1.3
Find the limit limy_, e if it exists.
Solution: We know thaq sin(x)| <1,¥xe R so

sin(x)
X

sm( X)

1
=0
X

lim < lim
X—00

X—00

so by the squeeze theorem we findyipg 37 — 0.

Example 8.1.4

Find the limit limy_, e 2xZX+;>%+1 if it exists.

Solution: We can divide through by? and get

im X2 +1 = jim 1+1/2 im0 14+1/%2 1
o 2 L B+ 1 %@ 24+ 5/x+1/x2  2+5/x+1/x2 2
Example 8.1.5
find the limit lim,_, 1 521 i it does exist.
Solution: Forx = 1 the polynomial above takes the value 2 but the one belowdhbads

value zero, but it takes positive values|@n-o[ so we get the limit lim_, 1+ sztzj‘l’l = o0,
x—1

Notice that the limit from the left is lig. ;- % = —oo,

27 Asymptotes and limits; rational functions

28 Continuity

28.1 Continuity
28.1.1 Handout

Definition of continuity
Let f : D+ — R be defined on a subset Bf a € D and assume there is an open interval
within D which contains. The functionf is continuous at the point &

lim £(x) = f(a).

f is continuous ah f discontinuous ah
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The functionf is said to be continous if it is continuous at all pointfip.
If the functionsf andg are defined on the same set and continuous at the aadinén the
functionsf 4+ g andfg are continuous a and we obtain

im(f(x)+9x) = f(@)+g@ og  Jim(f(xg(x)= f(a)g(a).

X—a X—a

If in additiong(a) # 0, thenf /g is continuous ah and

100 _ 1@
x>ag(x) 9@
Composite functions
If the function values of are in the domain of so the composité o g is defined, and both
are continuous, then the composite function is continuous.
Intermediate value theorem
If f:Ds— Risacontinuous function on a subseffo$em with valued (x;) at the point;
andf(xp) atxz og f(x1) # f(x2), then for ally betweenf (x;) and f (x2) there isxz €]xq, X[
such thatf (x3) =Y.

f(x)

|
fa) +— -
|

I i R
X1 X3 X2

Extrema

Let f : D+ — R be a continuous function on a closed and finite inteBvalc R. Thenf
takes on a largest and a smallest value in the intervalhezetarex;, xo € Dt such that for
all xin Dt one hasf (x1) < f(X) < f(x2).

Polynomials and rational functions

If f is the constant function, f(x) = c for all x € R, then lim4 f(x) = c= f(a), and
hence all constant functions are continuous. The functioh = x satisfies lim_. f(x) =
a= f(a) and is therefore also continuous. Using induction we cam sé¢& that all power
functionsx — x™ are continuous fom € Ng. Similarly, every polynomial

P(X) = anX™ 4+ am_1X™ 1 + - -+ ayx+ ag

is continuous orR.

If P andQ are polynomials, a functiof = P/Q is arational function From results on
the ratio of continuous functions we see that every ratifunaition is continuous at points
which are not zeroes of the denomina€rbut those points are termed thelesof the
function f. In particular, all power functions of the form— x"™ = 1/X™, me N, are
continuous oR \ {0}.

Monotonic functions

A function f defined on an intervdlis said to be:

(i) increasingif x; < x2 implies f(x1) < f(x2),
(i) strictly increasingif x; < xz implies f(x1) < f(x2),

(iii) decreasingdf x; < xo implies f(x1) > f(x2) and
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(iv) strictly decreasindf x; < x implies f(x1) > f(x2),
(v) monotonidf it is increasing or decreasing
(vi) strictly monotonidf it is strictly increasing or strictly decreasing.

Every strictly monotonic function is one-to-one.

If the function f is monotonic and continuous then the the er einhalla og dktfee

intermediate value theorem implies that the funciton vafeem an interval:

Let f : [a,b] — R be a strictly increasing [decreasing], continuous funttiand set =

f(a),d= f(b) [c= f(b),d = f(a)], thenf is a bijective function ofa,b] onto the interval

[c,d] with inversef 1 : [c,d] — [a, b] which is strictly increasing [decreasing].

Power functions with a rational power

Letr = p/q be a rational number sp= 0 and consider the functiofi(x) = X" defined on

the positive realR* = {x € R; x> 0}. Thenf is strictly increasing it > 0 and strictly
1

decreasing if < 0. The rooix+— x4 is the inverse of the continuous power functios x4
and is therefore a continuous function. The functien xlp is also continuous for all values
of p. The functionf is the composite of thesd(x) = (xa)P.

Trigonometric functions

Consider now the trigonometric functions, with cos as a $igeexample. Take a number
a € R and writeh = x— a. First recall the angle sum formula for cos which gives

cosh = cog(3h+ 2h) = (cosih)? — (sinih)? = 1 - 2sirf(1h).
Now apply the same formula to d@s+ h) to obtain
cosx — cosa = coga+ h) — cosa = cosacosh — sinasinh — cosa

= cosa(cosh— 1) — sinasinh
= —2cosasir’(1h) —sinasinh

Since|cosal < 1 and|sinal < 1, we have the inequality
|cosx— cosa| < 2sirf(3h) +|sinh].

By drawing the unit circle and looking at the poiftos, sint) we see that the inequality
|sint| < |t| holds fort € R. This implies that

|cosx—cosal < 2|h| = 2|x—a.

We will proceed to use this inequality to prove that cos is@tiomous function at the point
a by using the definition of a limit. Hence take> 0 and choosé = %s. For everyx which
satisfiegx — a| < & we now know that

|cosx—cosal < 2|x—al|=20=¢.

This proves that cos is continuousatnd sincea was arbitrary, this holds for all real
numbers so cos is a continuous functionsfon

Next note that sin = cog 31— x) so sin is a composition of two continuous functions, cos
andx — %T[— X. Hence sin is also a continuous function. Finally,xaasinx/cosx and
cotx = cosx/ sinx are ratios of continuous functions so tan is continuous lgpahts a
where cos # 0 and cot is continuous at all poirdsvhere sira # 0.

The conclusion is that all the trigonometric functions,,c8, tan and cot are continuous
in their domains.
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Exponential and logarithmic functions

Leta > O be a positive real number. Tlgponential function with baseis the function
defined orR with x+— a*. This function is strictly increasing & > 1 and strictly decreasing
if a< 1. In both cases is the image the set of positive real numiersR; x > 0}. The
inverse therefore exists. It is denoted Jaand called thdogarithm with base a These
functions are continuous.

For the special case,= 1 the functionsc— a* is the constant function 1. In all cases we
see that the continuity imples that the power formulas

aty = a‘ay og @)y =a¥

generalize so that they apply for ally € R. If we take two positive real numbessand
t and write these as= a* andt = &, thenx = log,s andy = log,t and the first power
formula gives

log,(st) = log,(a*@’) = log,(a*"Y) = x+y = logas+ log,t.
If we take a real number, thens' = (a¥)" = a™. The second power formula implies
log,(s') = log,(a™) = rx =rlog,s.
We have thus derived the following properties of logarithms
log,(st) = log,s+log,t 0g log,s =rlog,s,

which hold for all positive real numbessandt and all real numbens

Example 8.2.1

Find where the functiori (x) := % is continuous.

Solution: We know the denominator has zeros in 1 antl and the numerator does not
have zeros there. Then the function is convergent in allmeaibers except 1 andl.

Example 8.2.2
IX|, x>0 . . . :
Letf :R—R; f(x) =< " . Is it possible to givef value inx = 0 such that
sin(x), x< 0
the function becomes continuous there?
Solution: we start by finding the limits from the left and right in zerodacheck if they
are the same. We have ljmg- sin(x) = 0 and lim_,q+ |X| = 0 so by definingf (0) := 0 f
becomes continuous in zero.

Example 8.2.3

Find the intervals wherd : R — R; f(x) = ||x+ 3| — 5| is monotonic, and tell if it is
increasing or decreasing.

Solution: By splitting into cases we can see that

0 = IX+3|—5, |x+3|>5
T 15— |x+3|, [x+3/ <5

We can see that the slope changes where 3| = 5 which is in—8 and 2, also where

X+ 3 =0 which is inx= —3. Thenf is decreasing op— e, —8|, increasing on—8, —3],
decreasing oh— 3,3 and increasing of8, +o|.
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Example 8.2.4
Simplify
logs ((loga(a®))”) .
Solution: We calculate the innermost brackets by the definition of fibigan:

logp ((loga(@®))”) = logy ((xb))*)
Then we use known properties of logarithm

= ylogy(xb) = y(1+logy,(x)).

Example 8.2.5

Where is the functiorf : R — R, f(x) := logs (105i”(>‘2_5)) continuous?

Solution: The polynomiak? — 5 is continuous on alR and so is sin and ¥wvhich takes
only positive values. lagx) is continuous for all positive. Then f is composed of
continuous functions and therefore continuous orRall

29 Derivatives

29.1 Derivatives
29.1.1 Handout

Consider a functiorf : | — R defined on an open intervhlon the real axis and consider
two points on its graph(a, f(a)) and(x, f(x)). The line through these two points is the
secant line to the graph of f throudh, f(a)) and(x, f(x)). The slope of the secant line is

The functionf is said to balifferentiableat the poin@ if the limit
(@)= lim |9 1@

X—a X—a
exists. The valud’(a) is thederivative of the function f at the point #f the function f
is differentiable in every point in the intervhlwe call f adifferentiable function and the
derivativef’ is a function orl. The process of finding a derivativedgferentiation
Note that by writingh = x— a we can also define the derivative by the formula
. f(a+h)—f(a)
I(a) —
(&)= Lano h '

A line with the equation
y=f(a)+f'(a)(x—a)
is thetangent to the graph of &t the pointa.
If the functionf is differentiable in a poin& then it is continuous i
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29.1.2 Higher order derivatives

If fisa continuous function then in some cases the derivatiiself may be differentiable.
In this case one may differentiate again to again to obtasd¢cond derivativef= (f’)’.
This function may also be differentiable and thus we mayioomltas long as the resulting
function is differentiable.

Once we have derivatives éfof more then the second or third order, i.e. more théhor
f””, new notation is needed. Therefore, when the functisdifferentiatech times where
n > 4 the result is denotef(™.

Example 9.1.1

Let f:R — R, f(x) :=x? — 2x+ 1. Find the slope of a line through the poilixsf (x)) and
(x+h, f(x+h)) and use that to find the derivative.

Solution: The lines’ slope is

f(x+h)—f(x)  (x+h)?—2(x+h) +1-x2+2x—1 x242hx+h?—2h—x2
x+h—-x h B h

=2X+h-2.
Then the derivative is lip,o2X+h—2 = 2x— 2.

Example 9.1.2
Find the third derivative of (x) := x® +2x? — 5x + 258.
Solution: We differentiate repeatetly:

f/(x) =3 +4x—5, f'=6x+4, f"=6.

Now let f andg be functions on an intervdland suppose they are both differentiable at
the pointa. Thenf + g is also differentiable e and

(f+9)(a)=f'(a)+d(a).

Similarly fgis differentiable ag with

(fg)'(a) = f'(a)g(a) + f(a)g'(a)

This last formula is calledleibniz’s law If g(a) # 0, thenf /g is also differentiable aa

with
(Y- (2)g(@) - T()g (@)

g g(a)?

Next supposé : 1 — R andg: J — R be such thaf (1) C J. If the functionf is differentia-
ble ata andg is differentiable ab = f(a), then the compositiorgo f is differentiable aa
with

(gof)'(a)=d(f(a) f'(a).
This rule is commonly called thehain rule
If f is a strictly monotonic and continuous funciton on the iméf thenf has an inverse

f~1. Suppose < | and writeb = f(a). If f is differentiable ag, thenf ! is differentiable
at the point with

(174(0) = gy

Example 9.2.1
Let f : R — R; f(x) :=x?—2x+1 andg: R — R; g(x) = x+ 5. find the derivative O‘E.
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Solution: We first find the derivatives fof andg. f/(x) = 2x—2 andg’(x) = 1. We then
use a rule of arithmetic for derivative of rational functson

(i(x)>' _ 9900 — f(0g'(x) _ (2x—2)(x+5) — (¥~ 2x+1)1

g g*(%) (x+5)?
_ 2+ 10k—2x—10—x24+2x—1 x?4+10x—11
- (x+5) - (x+57?

Consider some specific examples of functions and their digres.

(1) The constant functioh(x) = cis differentiable at all points anti(a) =0 for alla € R.
This is easily seen from the definition of the derivative, efm
f(a+h)—f(a) c—c¢C

/ T _ i —
f(a)_rlull?o h _L@o h 0

(2) The functionf (x) = x is differentiable at every point anid(a) = 1 for alla € R. This
is also seen from the definition of the derivative sifi¢e) = aandf(a+h) =a+h:
f(a+h)—f(a) at+h—a

/ — i — i _— — i =
f(a>_r|1|£>no h _rlmlino h rlmlinol L

(3) Any power functionf (x) = X" with the powem a natural number is differentiable with
derivative f’(a) = na"~1. This can be shown using a combination of induction and
Leibniz’s law, or using the binomial theorem:

n

(a+h"=a"4+nad"th+ <2

)an2h2+_._+< n )ahn1+hn
n—1
:an+h<nan—1_|_ <2>a”‘2h+---+h”‘1),

Where(ﬂ) denotes the binomial coefficients. It follows that

_ n_ 4n
im f(a+h)—f(a) _lim (a+h)"—a
h—0 h h—0 h

. n
= lim (na"*+ < )a”zh-i— R LA 1T L
h—0 2
(4) All polynomials f(x) = anx™+ - - - + a;x+ ap are differentiable at all points and from
the rules for sums and products we obt&ifx) = manx™ 1+ ... + 2aox +a;

(5) Every rational functiorf (x) = P(x)/Q(x), whereP andQ are polynomials, are dif-
ferentiable at all pointa € R, whereQ(a) # 0 and the derivative can be computed
using the rule for computing the derivative of a ratio.

(6) The trigonometric functions cos and sin are differdrigaverywhere with derivatives
COSX = —Sinx 0g sifnx = cosx.

The function tan and cot are also differentiable and the farléhe derivative of a
ration gives

1 —
tar{x:ﬁ(:lﬂanzx 0g cofx:si?(:—(ljtcotzx).
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(7) The exponential functiofi(x) = expx = €* is differentiable everywhere with'(x) =
f(x) =e*forall xe R,
exp(x) = exp(X).
Since the natural logarithm is the inverse of the exponkfutiection, its derivative is
In’(x) = 1/x for x> 0.

(8) The exponential function with base> 0, f(x) = &%, is differentiable on the real line
R with derivative
f'(x) = (Ina)a* = (Ina) f(x).
Example 9.3.1
Let f : Ry — R, f(X) :=In(x)€". Calculatef’(x).
Solution: We use Leibniz’ law, we have the derivative$(k) = )—1( and exp(x) = exp(x)
and by that we get

f/(x) = In’(x) exp(x) + In(x) exg (x) = %+In(x)ex.
Example 9.3.2
Letf:R—R; f(X) :=sin(2x),g: R — R; g(x) := X—lz h:R — R; h(x) := cogx?).
a) Calculate(gh)’(x).
Solution: Here we can use Leibniz’ law. We find the derivativeg(x) = ;—32 and by the
chain rule we gelt (x) = —2sin(x?)x. Now putting this into Leibniz’ rule we get:
—2cogx?) —2sinx®)x —2cogx?) 2sin(x?
(909 = G 09h(x) + g () = o) | “2SBCX_ “200%) _ 26106)
b) Calculate( f +h)’(x).
Solution: We geth’ from part a) and by the chain rufé(x) = 2cog2x). By computational
rules for derivatives we then get

(f +h)’ (x) = f'(x) 4+ h'(x) = 2cog2x) — 2sin(x?)x.

C) Calculate(%), (X).

Solution: We have already found the derivativesfoAndh. We use that and get
£\’ f/(x)h(x) — F(X)N'(X)  2cog2x) cogx?) + 2 sin(2x) sin(x?)x
— | (X)= > = > :
h h2(x) CoZ(x2)

d) Calculate( f o g)'(x).

Solution: We know the derivatives of andg already. By using chain-rule we get

o o 2
(109/(%) = F(g()g(x) = 2008 ) 75 = g2,

x3 x3
30 Tangents

31 Derivatives, trigonometric functions, chain rule and inplicit
differentiation

32 Maxima and minima of functions

32.1 Maxima and minima of functions
32.1.1 Handout

The sign of the derivative of a function gives informationitanbehavior.
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The derivative of a monotone function

Let f : | — R be a function define on an open interValf f is increasinf on the interval
acl andh> 0then(f(a+h)—f(a))/h> 0. If f is differentiable af, then this implies
that f’(a) > 0. For decreasing functions the inequality is reversed amtave:

(i) If fisincreasing o and differentiable aa € I, thenf’(a) > 0.

(i) If fis decreasing ohand differentiable a& € |, thenf’(a) < 0.

Extrema of a function

We say that the functiof: | — R
has alocal maximumat the po- y

int c if there is an open interval -7
which containg such thatf (x) <
f(c) for all x € J and we say that

Global maximum

Local maximum

the functionf : I — R has alocal /\ \

minimumat the pointc if there is \/ X
an open interval which contains - -

c such thatf(x) > f(c) for all Local minimum

x € J. The functionf has alocal

extremumat the point if it has either a local maximum or a local minimumaat

If f has alocal maximum atand f(x) < f(c) for all xin | then the maximum is global
maximum Similarly cis aglobal minimumif f(x) > f(c) for all xin | andglobal extremum
if no distinction is made between a maximum and a minimum.

Now suppose thaf has a local mininum at the poictand that we have a open interval
which containsa such thatf (x) > f(c) for all xe J. If h> 0 andc+h e J, then(f(c+

h) — f(c))/h > 0 which implies that

im f(c+h)—f(c) >0,
h—0+ h

if the limit exists. In the other hand i < 0 andc+ h € J, then bothf(c+h) — f(c) <0
andh < 0 so that(f(c+h) — f(c))/h < 0 and we obtain

im f(c+h)—f(c)
h—0+ h

<0,

if the limit exists.

If we assume that the functiohis differentiable at, then the two last limits exist and are
equal tof’(c). Therefore we both havE(c) > 0 andf’(c) < 0, which impliesf’(c) = 0.

If on the other hand the functioh has a local maximum a, then the signs in the limits
are reversed but the conclusion is the same, narfiéty = 0 and we have:

If f:1 — R is a function on an open intervewhich has a local extremum at the point
andf is differentiable at, thenf’(c) = 0.

The mean value theorem

To further investigate the sign of the derivative we needrttean value theorerwhich
states that iff is a continuous function on the closed interjaab| and differentiable on the
open interval a, b) then there i € (a,b) such that

f(b)— f(a) = f'(c)(b—a).
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Monotone intervals
Suppose the functiof is continuous on the closed interval b| and differentiable on the
open intervala,b).

(i) If f'(x) > 0for allx €]a,b], thenf is increasing ora, b].

(X)
(i) If f’(x) <O0forallx€]a, b, thenf is decreasing ofa, b].
(i) If f'(x) > 0forallx €]a,b[, thenf is strctly increasing ofg, bJ.
(iv) If f/(x) < Ofor allx €]a,b], thenf is strictly decreasainf, b].

Monotone intervals and extrema

Let f be a continuous function on the closed inteffeab), leta < a; < b; <band assume
that f is differentiable at all points in the open interyal, b;) except possibly at the point
C.

(i) If f/(x) >0 for all x € (ag,c), and f’(x) < 0 for all x € (c,b1), thenf has a local
maximum arc.

(i) If f/(x) <0 for all x € (ag,c), and f'(x) > 0 for all x € (c,by), thenf has a local
minimum atc.

Example 9.4.1

Find the intervals of monotonicity and local extrema of thadtionf : R — R, f(X) :=
x3 —x2 — Bx.

Solution: We start by finding the derivative df, f/(x) = 3x*> — 2x—5. We then use the
solution formula for quadratic equation to find it's zeros.

L 2E 4—4~3(—5)_}i\/@_1i4 R
B 3.2 376 3 Ty

The derivative is continuous so between zeros the dera/éids the same sign. We then
find the sign of the derivative of each of the intervals betwt®e zeros. We find that on
the interval] — oo, —1[ the derivative is positive, it is negative or 1,%[ and positive on a
]%,Jroo[. Then we can conclude thétis increasing on — c, —1|, decreasing of— 1,%[
and increasing o}§,+oo[ and thatf has local maximum ix = —1 and local minimum in
x=3.

33 Increasing and decreasing functions; derivative tests

33.1 Plotting graphs of a function
33.1.1 Handout

The following gives a summary of how information on the dative of a function is used
to plot its graph:
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(1) First find the domain of the function, including the laoatof any poles.

(2) Find the function values or limits of the function at damandpoints, in particular
the limits of the function ag — o andx — —oo if the domain is unlimited. If the
funciton has a pole at = a then one needs to investigate both Jimg- f(x) and

limy_, 4+ f(X).

(3) Find the intersections of the graph with theandy-axes, i.e. on the one hand solve
the equatiorf (x) = 0 and on the other hand compute the val(@).

(4) Compute the derivative of the function and find all pointsere the derivative is zero
or undefined, i.e. solve the equatiff{x) = 0 and find allx in the domain such that
f’(x) is not defined.

(5) Split the domain into intervals where the function is ratumic and well defined
and find the sign of the derivative in each such interval. Relat the function is
monotonic in an interval unless: (a) the derivative has a »éthin the interval,
(b) the derivative is not defined everywhere in the intereal(c) the function is
discontinuous within the interval.

(6) Use this information to find the locations of all local nraa and minima.
(7) Compute and plot the function values at the maxima andnain

(8) Compute and plot function values at a handful of interiaedooints.

Example 9.5.1

Find information sufficient to draw a reasonable graphf ofR — R; f(x) 1= x3 —x? —
5x. Solution: Most of what we have to do has already been done in examplé. Qe
can see the function is continuous everywhere. We checkrtiies limy_,., f(X) = o« and
limy_,_o = —oo. Intersection withy—axis is at(0,0) and zeros are in 0 and the zeros of
x? —x—5 which are

_1+£/1-4(-5) 1+V21

N 2 2

We know all intervals of monotonicity from example 9.4.1 amdere f has extrema. We
have to find the values of in —1 and3, they aref(—1) = 3 and f(5/3) = =3>. By
finding a couple of other values where they are needed we d¢angagh information for
a reasonable picture.

X

Example 9.5.2
Find information sufficient to draw a reasonable grapli ©f := ”l?n*(gz
Solution:

1. We start by finding the domain. In is only defined for positiumbers and [i1) =0
so f is not defined ik = 0.

2. We find the limits off in 4 and 0. A third degree polynomial increases much
faster than 1x) whenx — o s0 limy_,e (X) = 4. Then lim_ o+ X3 — 2x> = 0 and
limy_,o+ IN(X) = —o0 S0 limy_,q+ f(X) = 0. Now limy_,1 x3 — 2x% = —1. Then we get
that lim,_,+ f(x) = —co and lim_,;- f(X) = 4+ because lima,1In(x) = 0 and Ir(x)
is positive forx > 1 and negative fox < 1.

3. We want to find all zeros of. They are the same as fot — 2x2 on the positive real
axis.x® — 2x2 = x?(x— 2) so the only zero is ix = 2.
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4. Let's find the derivative of.

i) (3 —4ax)In(x) — (C—2)5  (3x%—4x)In(x) — X2+ 2x
() = In(x)2 - In(x)2

We see that the derivative is defined on the whole domafn ®hen we find the zeros
of (3x2 — 4x) In(x) — x? 4 2x which turn out to be none. (We a skip the calculations
required to show that.)

5. Now it's clear that the monotone intervals afe1[, where f is increasing, and
]1,+o[ wheref is also increasing.

6. There are no local extrema but to draw a reasonable graplgdod to calculate
several values of where needed, then we can draw a graph which gives a good
grasp of most of the properties 6f

34 Natural logarithm and its derivative

34.1 Natural logarithm
34.1.1 Handout

The power functionx — x™ has the antiderivative— x™/(m+ 1) for any rational num-
berm# —1. The functionx — x~! = 1/x is continuous on the positive real axis and
therefore has an antideriviative. The particular antiggive which takes on the value 0 at
the pointx = 1 is called thenatural logarithmand is given by the formula

nx= [ g, x> 0.

1t

For all real numberg andy and all rational numbenswe
have

In(xy) =Inx+Iny, In(x/y)=Inx—Iny og InX')=rInx.

The natural logarithm is strictly increasing and we have the
limits

lim Inx= —o0 0g lim InX = +co.
X—0+ X—>+00
This implies that In has an inverse, which we denote by exg.ifiterse turns out to be an
exponential function exp= € with a numberg, as base. This number has the property that
Ine= 1. Any exponential functiow — a* with basea > 0 can be written aa* = e("@x,
Example 10.8.1
Simplify In(20) — 2In(2) + In(3).
Solution: By rules for logarithm we get

In(20) — 2In(2) +In(3) = In(20) —In(22) +1In(3) = In(20-3) —In(4) = In <6740) =In(15).
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35 Derivative of inverse functions; exponential function
and hyperbolic functions

36 Inverse trigonometric functions and their derivatives
37 [I'Hopital’s rule

38 Indefinite integrals

38.1 Indefinite integrals
38.1.1 Handout

Let f be a function on an interval A functionF is called theantiderivative or primitive
of f if F is differentiable on the intervdlandF’(x) = f(x) for all x € |. The antiderivative
of a functionf is often called thendefinite integraland is denoted by

note that ifG is another antiderivative df, then the difference satisfies the equation
(F-G)/(x)=F'(x)-G(x="f(x—f(x)=0

for every pointx € I. It follows thatF — G is a constant function and we therefore know that
G =F +C, whereC is some constant. In order to specify all possible intefiimtegrals of
the functionf (x), we always include the unspecified const@rmind write

/f(x)dx:F(x)+C.

Our knowledge of derivatives makes it possible to set upetabF antiderivatives. Such
tables are very useful for computing integrals.

f(x) F(x)=/[f(t)dt f(x) F(x)
1 1

X" mxXtt+C 3 Inx|x| +C
e e&+C a* 2z+C
xet (x—1)e*+C Inx xInx—x+C
x'e | x"e—n[x"leXdx || x"Inx %Inx—%—kc
sinx —cosx+C COSX sinx+C
tanx | In|zx5|+C cotx In|sinx| +C

1 1 1 1
ST In| gz —cotx| +C o In| g5 +tanx| +C

5 | sin 1 5+C s ltamrlX4C
] %In’%gjjtc VeEa? | 5Vt a+ Lin|x+ @ +a2|+C

2 .

= | Inx+V¥¢+a[+C | Va2 | 3V@2 -2+ L sin T X+C
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39 Riemann sums and definite integrals

39.1 Definite integrals
39.1.1 Handout

Definite integral

To keep matters simple initially, consider a positive fumcton an interval, in other words
let f be a function on an interva, b] and assume thédt(x) > 0 for all x € [a,b]. We will
want the “integral of the functiori over the intervala, b]” to mean the area of the region
bounded by the-axis, the graph of, the vertical linex = a and the vertical linex= b.
This region in the plane is the set:

D={(xy);0<y< f(x),xe [ab]}.

This task is easy if the functiofis of a simple form, for example a constant, step function
of if the graph is a combination of a finite number of line segtse To define the area
of a general regio of this form requires approximating it from the inside andnfrthe
outside using polynomialgy C D ogB O D, and computing the areas AfandB. If there is
an upper bound to the area of all polyg@ws D and if that is the same as the lower bound
to the area of all polygonB D D, then that numbelr € R is defined to be thentegral of
the functionf over the areda, b] and the functiorf is said to be integrable over the interval
[a,b]. The integral is denoted by

/b f(x)dx

a
and we view this as the area of the region
The formal definition of the integral needs to be a bit moresgalsince it is not limited to
positive functions. Further, in the definition we only catesi polygons which are unions
of rectangles with sides parallel to the axes of the cootdisgstem.
A setP = {Xo,X1,...,Xn} Wherea=xp < X3 < --- < X, = b is apartition of the interval
[a,b]. Consider a functiori : [a,b] — R and assume that the functidris boundedso that
there exist constanta andM, such that

m< f(x) <M, X € [a,b].

Sums of the form

n

U=> m(x—x-1) 0g YziMim—w,
i=1 i=1

wherem < f(x) < M; for all x € [x_1,X%], are calledower sumsandupper sums for the
function fand a sum of the form

S=> f(t)(% —%-1)

i=1

wheret; € [X_1,%] is Riemann-sum for the function fWe have the obvious inequality
U < S<Y for all lower, Riemann and upper sutds SandyY.
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a d ]

Lower sum. Upper sum. Riemann sum.
The bounded functiori : [a,b] — R is said to bantegrableif for every € > 0 there is a
lower sumU and upper sunY for f such thaty —U < e.
If f is integrable then one can find an increasing sequence of |9M!'BS(U]')]?°:1 and
decreasing sequence of upper SL(M$‘J-’°:1 such that; —U; — 0. In this case both sequ-
ences converge to the same limit which is defined to bentegral of the function f over
the interval[a, b] denoted by

/:f(x)dx

It should be noted thatin this case is1ota variable, i.e.fzf f(x) dxis not a function ok.
Once the integral has been evaluated there isammy more in the formula. For this reason
the term to “integrate ow’ is commonly used.

In this definition it is assumed that< b. If a= b, then the integral is 0. & > b, we define

/abf(x)dx:—/baf(x)dx

Example 10.1.1

Find upper sum and lower sum with points of division in thegers forf := x% 4 4x on
the intervall0, 8.

Solution: We see the function is strictly increasing so by choosingviige taken at the
right end on each interval we get an upper sum and by chodsénggtiue at the left end we
get a lower sum. Every interval is of length 1 so we get, wivedenotes upper sum

8 8 8
Y=Y f(k) =Y K+4ak=>"K*+4> k=204+4-36=2348
k=1 k=1 k=1 k=1

and the lower surb is

8 7
U= f(k-1)=> K +4k=Y—f(8) =252
k=1 k=0

Computational formulas for integrals

(i) If f andg are two integrable functions da, b], then the functiorf + g is integrable
and

[ 100+ g00)dx= [t et [ g0 ax

(i) If kis areal number and is integrable ona, b], thenkf is integrable and
b b
/ kf(x)dx= k/ £(x) dx
a a
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(i) If a<c<bandf isintegrable ona,b], thenf is integrable on bothe intervala, c|

and|c, b] with
/bf(x)dx:/Cf(x)dx+/bf(x)dx

(iv) If fisintegrable oda+ c,b+c|, then

‘b "b+c
/ f(x+c)dx:/ f(x)dx
a a+c

Example 10.2.1
Calculate the integral

/olx—kdx-i—/:(x—l) +kdx

Solution: We use known rules for integration and get
1 3
/0 x—kdx+/ (x—1)+kdx

_/' X— kdx+/ X+ kdx

_/ Xdx— / kdx+/ xdx+/ kdx

. 22 02
— [“xdx—k4+k=2=-Z —2
/X X—Ktk=5"73

Monotonic functions are integrable

Let f : [a,b] — R be an increasing function. Thenis bounded sincé(a) < f(x) < f(b)
forall x € [a,b]. LetP = {Xg,...,Xn} be anevendivision of [a,b], i.e. x, =a+i(b—a)/n.
Thenx —x_1 = (b—a)/n. We can now setn; = f(x_1) andM; = f(x). Sincef is
increasing the numbets ="' ; m(b—a)/nandY =3[! ; M;(b—a) are lower and upper
sums for the functiorf and we have

n n

Y-U=> (Mi-m)(b—a)/n=> (f(x)—f(x-1))(b—a)/n=(f(b) - f(a))(b—a)/n.

i=1 i=1

Note that we have used the following fact:

(x1) = F(x0) + F0x2) = F(x1) + F(xa) = Fx2) + -+ + F (%) — T (Xn-1)
= f(xn) — f(x0) = f(b) — ().

It follows that by choosing the division fine enough, i.e. abimgn large enough, we can
make the differenc&y’ —U as small as we like. We have thus shown that an increasing
function is integrable.

Note that since the function is

monotonic the rectangles defined

by the pointgx;, f(x)) 0g (%i+1, f (X+1))

do not overlap. We can therefore
f(b)—f(a) think of them as stacked on top

of each other to form a rectangle
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with areah- (f(b) — f(a)). The
area of this rectangle is equal to
Y —U. But by lettingh tend to
0 we see that the area — and thus
Y —U — can be made abitrarily
small and therefore the function is integrable.
If f is decreasing, thern f is increasing so-f is integrable. Rule (ii) in the preceding
section usingk = —1 then shows that is integrable. From this we obtain the general
result: A monotonic function ona, bj is integrable.

Continuous functions are intregrable

Consider a continuous functidnt [a,b] — R and select an evenly spaced partition as previ-
ously done. Since the functidnis continuous it takes a maximum and a minimum in some
pointsc; andd; within each subdivisioffix;_1,%;]. This implies thatf (¢;) = min{f(x); x €
[Xi—1,%]} and f(di) = max{ f(X); X € [x—1,X%]}. The corresponding upper and lower sums
therefore satisfy

n n

Y-U=> Mi—m)b—a)/n=> (f(d)-f(ci))(b—a)/n

i=1 i=1

Given a numbee > 0, we can choose the partition fine enough so thatfdd;) — f(c) <
g/(b—a) for all n. The number of terms in the sum s so we have a bound on the
difference:Y —U < €. We have therefore shown thaty continuous real function defined
on an intervala,b| is integrable.

The last two results can be combined to the followilfgf is a bounded function ofa, b]
and if there is a partion d&,b| such that within each subdivisidnis either monotonic
or continuous, ther is integrableand the integral is the sum of the integrals within the
subdivisions, i.e.

/a;bf(x)dx:é;/:lf(x)dx

whereg; are the endpoints of the sub-intervals.

do 31 32 éia

40 Fundamental theorem of calculus

40.1 Fundamental theorem of calculus
40.1.1 Handout

Fundamental theorem of calculus
Integration and differentiation are the main operations of
fz;) f(x)dx= F(b) — F(a) calculus. Their relationship is described by two theorems
which in combination are called the fundamental theorem(s)
of calculus:
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(i) Ifthe functionf is continuous offe, b] andF is defined
by
X
F(X) :/ f(t)ydt, xe[ab]
a

thenF is the antiderivative of, i.e.F'(x) = f(x) for
allx € [a,b.

(ii) If f is a continuous function oja,b] andF is its anti-
derivative, then

Example 10.6.1
Find the derivative oF (x) := [sin®(t?) dt.
Solution: By the fundamental theorem of calculus we get the derivétiye) = sin’(x?).

41 Rules of integration

41.1 Rules of integration
41.1.1 Handout

The second fundamental theorem of calculus states thattidxgral of a continuous functi-
on over an interval can be computed by finding an antidevigatnd taking the difference
of its values at the Two methode will be given to utilise this.

Integration by substitution

Let g be a continuous integrable function on the interjab] and f be a continuouos
function on an interval which contains the image([a, b]). If the functionF is an anti-
derivative for the continuous functioh then the chain rule gives

(Fog)'(x) =F'(g(x))g'(x) = f(9(x))g'(x)

and thereforé= o g is an antiderivative foff (g(x))d'(x). The second fundamental theorem
then gives

b , g(b)

[ f(a0)g(x)dx=F(g(b) —F(g(@) = [ " f(t)dt
a 9(a)

A common use of this method is to think af= g(x) as a new variable in the leftmost
integral and this is inserted into the integral in placgEf) and thendu must be inserted
in place ofg’(x) dx.
Using indefinite integrals this rule becomes

| Hex)g ) dx= [ f(u)du=F(u)+C=F(g(x)) +C,

whereC is a constant.

Integration by parts

Consider two differentiable functions andg with continuous derivatives. The Leibniz-
rule stateg fg)’ = f'g+ fg’ and from it follows

b

b
f09900| — [ (900 dx

b
| 100g (x)dx—=

b
= f(b)g(b) — f(a)g(@) — | 1'()g(x)dx

a
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Writing this result in the form of indefinite integrals thdeuecomes

[ 1009 dx=1(x)g09 — [ /(g dx

Partial fractions expansion

Many rational functions can initially seem intractable fiotegration. In this caspartial
fraction expansionmay be used to simplify the task, as described below.

Any polynomialq with real coefficients can be written in the form

q(x) =a(x—by)'1(x—b2)"2. .. (x—bp)"" (x4 c1x+ 0 )11 (X2 + Cox+ 02 )12 . . (X% + CrX+Cy) ™.

wherea, b, ¢, andd, are real numbers; arej, natural numbers and the second order terms
do not have real roots. It can be shown that i a rational functionf (x) = p(x)/q(x),
wherep andq are polynomials with real coefficients, théncan be written as a sum of
terms of the form

A
(x—by)k

and the form

Bx+C

(X2 +Cs 4 )’
whereA, B andC are real numberk < i, andl < js. Rational functions of this form are
calledpartial fractionsand are fairly easily integrated.
Now let f(x) = p(x)/q(x) wherep andq are polynomials. Ifp is of order greater than
or equal to the order af then we can writef (x) = a(x) + b(x)/q(x) wherea andb are
polynomials and the order dfis lower than the order aj. Since polynomials (such @3
are easily integrated, we will assurpéo be of a lower order thag
To expandf (x) = p(x)/q(x) into partial fractions one first factokgx) into a product of
first and second order polynomials with real coefficientsxtNiefine the equation

n g A m jk BuX+C
f<X):ZZW+ZZ<X2:LKX+S|()]|’

k=11=1 k=11=1

where the left-hand siddx), is the ratiop(x) /q(x) and the right hand side has as denom-
inators all the terms forming(x).

The next step is to find the lowest common denominators ofigine-hand side, simplify it
and compare the coefficients. By solving the resulting eqaatone can find the missing
coefficientsA;, B andC;.

As an example, consider the rational function

fx) = PO _ x°
q(x)  x4+3x345x2 4 5x 2
The order ofp is higher than the order gfso we undertake polynomial division and rewrite
f(x) as

- 4x3 + 102 + 13x+ 6
X4+ 3x34+5x24+5x+2°

In this new setup we have the saxje), and by observing that= 1 is a double root we
can write

f(x) =x

60



a(x) = X*+ 3+ 5 +5x+ 2 = (x+ 1)°(X° +x+2)
wherex? +x+ 2 does not have a real root so we will solve the equation

H3+102+13x+6 A . B Cx+D

X +33+52+5x+2  Xx+1 (x+1)2  x24x+2

Finding a common denominator on the right hand side and congpeoefficients we see
that we must have

A+C=4,
2A+B+2C+D = 10,
3A+B+C+2D =13

2A+2B+D =6.

Solving this system of equations givesAis- 9/4,B=—-1/2,C=7/4andD =5/2=10/4
so the partial fractions become
9 1 7x+10

) =X=3+ 265D " 2x+ 02 T 4@ X 2)

Example 10.7.1
Calculate the integr%"/ 2 sin(x) cogx) dx.
d

Solution: We use the substitutiam= sin(x), that givesg; = cogx) and we get

2 _/sinm2ycogx) ot 12 02 1
/0 sm(x)coqx)dx_/sin(o) cos¥) du_/ = = .

Example 10.7.2
Calculate the integraly'x? sin(x) dx.
Solution: We use integration by parts and get

/Onx2 sin(x) dx = [—x?cogx)| 5 — /on—2xcos(x) dx

We calculate the value in brackets (note that@jn= sin(m) = 0) and use integration by
parts again

=T~ [—2xsin(x)]5[+/0n—25ir(x) dx= 12 — 2[—cogX)|f =0 —2(1+1) = TP — 4.

Example 10.7.3
Calculate the integral

/‘5x4+2x2—4x—1
3 X3 —-3x24+2x
Solution: We start by dividing with residue and get

X'+ 2% —ax—1 %% — 10x— 1 9%? — 10x— 1

X3 S X4 B
x3 — 3x2 + 2x X+ +x3—3x2+2x X+ +x(x—1)(x—2)
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Then we find partial fractions:

A B _C 9 —1x—1
X (Xx—1 x—2 X(x-1)(x—2)

which gives us

AX—1)(Xx—2)+Bx(x—2) +Cx(x—1)
X(X—1)(x—2)

A —3Ax—2A+Bx? — 2Bx+Cx? —Cx

B X(x—1)(x—2)

9% —-10x—1

~ X(x—1)(x—2)°

and we get the equation system

A+B+C=09,
~3A-2B-C=-10,
2A= 1.

To solve this system we start by using the last equation toAind—%. We add together
the first two equations and get2A — B = —1 and by putting in the known value éfwe
getB= —2A—1=1+1=2. Then the first equation giv€s= 9+ 5 — 2= 1. Then we
can integrate:

/5x4+2x2—4x—1
3

x3 — 3x2 + 2x
:/3;5X+3_%(+X31+2(X1_52) dx
— [X—22+3x—%In(x)+ln(x—1)+l?5ln(x—2) z
:552+3'5_%'”(5)+2'”(4)+1_25'”(3)—352—3'3+%|n(3)—2|n(2)_1_25|n(1)

=14— % In(5) +In(4) +8In(3).
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42 Integration and derivatives of logarithmic and expon-
ential functions

43 Definite integrals and measure of area
44 Partial integration and partial fractions
45 Improper integration

46 Introduction to differential equations
47 Autonomous differential equation

48 Separating variables

49 First order linear differential equations

50 Sequences

50.1 Sequences
50.1.1 Handout

Seqguences

A function defined orlN or Ng with values in some set isssequenceA sequence is eeal
sequencgf the set iSR, but acomplex sequenc# the set isC. The function valuesa(n),
are usually writtera,,. Sequences, b, c,..., can be defined in different ways, e.g. using
formulas such as

1 1 1
an:n, bn:_, Cn:ﬁ7 dn:

These same sequences can also be written as

(Mn=1, (1/n)n=1, (2 n-0: (n(ni l)) -1

Sequences can be described by writing several terms, enowtdrify the rule being used.
Thus sequences of even numberds, odd numbers, primes aativeggpwers of two can
be described with

1111

2°4’8’16"

Sequences can also be described usidgfaition by inductionin this case a few terms
are written out in full, e.gay, . . ., ax, followed by a formula which describes how a general
a, is computed based on the previous terms. A good example KEhbeacci-sequence

2,46,8,..., 1,357,..., 235711... og

aa=1 a=1a=a,2+ap1, N=>2

This results in the sequence
1,1,2,3,5,8,1321,....
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Example 7.1.1

a) Find a formula for then—th term of the sequence given by214,8, 16, .. ..

Solution: Each term is double the next term before, where the first terind 2°. Then
then—th term is 21,

b) Define the sequence from a) by induction.

Solution: We have thaf; = 1 and every term thereafter is double the previous term which
can by formulated by, = 2a,_1, n > 2.

51 Series

51.1 Series
51.1.1 Handout
Series

If (an)p-1 IS @ sequence then we can form a new sequéngg_, by forming sums,
Si=a1, S=a+a2, Sn=a+---+an.

The generak'th term in this new sequence is tkeh partial sumof the sequencéan);y_;.
A series> ¢ ;& is the sequence which consists of the partial sums of a gieeess
(a)p-1- Thusy g ;1/kis the sequence
1 1 1 1 1 1
Lil+-, 144, 14=+=+—,....

R T Rt Rt
Example 7.2.1
Find a formula for the n-th term of the serigg " k.
Solution: Here ", k denotes the sequence where ttheth term is then—th partial sum

of (k)% thatissy = S0, k= 2054

Example 7.2.2

Find the partial sum sequence of the sequeagg.";, which is given bya, := (—1)".
Solution: We are to calculate the sum_;(—1)k. Forn= 1 the sumis-1. Forn =2 it
is 0 and then repeats,

n —1if nis odd
k=
Z( ) {Oifn is even

Arithmetic sequence

A sequencean);,_, is anarithmetic sequenciéthe difference between adjacent terms is a
fixed numbem, so thatay, 1 — ax = mfor all k. We obtain a general description with

ap=at+mag=a+tm=a+2m...,aa=a+(n—1)m

In this case it is easy to find a formula form theh partial sum, as we can use the formula
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Sho k= %n(n—i— 1) (easily proven by induction):

n

s=> (a+(k—=1)m) = na1+mzn:(k—1)

k=1 k=1
n—1
=na+m)_ k=na+m-3(n—1)n
k=1
. 2a1+(n—1)m_n_ a;+an
N 2 N 2

From the last part of this equation we see that the partialisuan arithmetic sequence is
equal to the number of terms times the average of the firstastddrm.

Note that(k)y_, is an arithmetic sequence wigh = 1 andm= 1.

Example 7.3.1

In a arithmetic sequende,),,_; the first term is 2 and the fifth term is 14. Find the sum of
the first 100 terms.

Solution: The difference between first and fifth term is 12 so the diffeeeof adjacent
terms is 3. Then we calculate term 100dny0 = 2+ (100— 1) - 3= 299. Then we use a
formula for partial sum of arithmetic series and find

100 a1 +aipo
Z a = 1007 =50(2+299) = 15050
k=1

Geometric sequence

A geometric sequena® ageometric progressiois a sequencésy )y, such that the ratio
between adjacent terms is a constant, i.e. there is a numb&, so thata,,1/a, = q for
all n. The numbeq is theratio of the sequence.

Consider some examples of geometric sequences

111
7274787"‘7

The terms in a geometric progression are of the form

1,-1,1,-1,1,-1,..., 1 i—1,—i,1i,—1,....

a=a0, a3 =ag=a¢’, ..., ap=aq" "
and therefore tha-partial sum becomes
si=a1(1+q+0+-+q"h).

If q= 1, then all the terms in the sequerieg) are the same and we obtain=a; - n.
Now suppose] # 1 and multiplys, by g. We then have

g% =a g+ ++q") =sh—a+aq"

We can solve this equation fsg to obtain

Example 7.4.1
The first term of a geometric sequen@),,_; is 5 and the forth term is-40. Find the
tenth term of the series;_;an .
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Solution: We want to find the sungo = 5"1%, a,. We start by finding the quotiert we
know that B® = —40 an thugy = /—8 = —2. Then we throw what we have into a formula:

1-9© _1-1024
s0=3 5(-2)¢1=a 1_qq =5 = = ~1705

Limits of sequences and series

A real sequencéay),._; is said to beconvergenwith limit L if for every open interval
containingL there isN € N so thatay € | if k > N. We indicate this by writing

= Jim
Recall that any open interval containihglso includes an open interval of the fofin—
g,L+¢) = {xeR;|x—L| <e}. This implies that one can re-word the definition of the
limit by stating that a sequence is convergent with limit for everye > 0 there isN € N
such that
lax—L| <€ forall k > N.

A corresponding definition for complex sequences exchatlgesvords “every open in-
terval” by “every open disc”.

An arithmetic sequencax = a; + (k— 1)m has a limit only if it is a constant segence, i.e.
m= 0, in which case the limitis;. A geometric sequena® = a;q*? has a limit if and
only if || <1 org= 1 with limit 0 if |g| < 1 buta; if | = 1.

The seriesy"}’ ; a is said to be convergent if the sequence of partial sums igergant
and we then write the limit as,;’ ; ay.

It is easy to see that if a series is convergent then the terost oonverge to 0. This
statement can not be reversed as it is easy to find sequenadsarl not convergent but
have terms which go to 0.

Earlier we computed the partial sums of a geometric progressa, = a1q< 1, a; £ 0. It

is convergent only ifg| < 1 and

© 1
>oadt=a .
k=1 —q

Example 7.5.1
Let (an)y_, be a geometric sequence wih:= 5 anda, := 4. Find the sum of the series

> k1 A
Solution: We can see that the quotientgs= f—;‘ < 1 and we put this into a formula:

1 5
a =25.
Z K = 17 g e 1/5
Example 7.5.2
Find the limit of the sequend@y);;_; with a, := nz”j;}rl.
Solution: We divide over and under bar witi?:
n’—1 1—1/r? limp,el—1/n> 1

lim ——— = =—-=1
M2 gl s ©1+1/n+1/M  liMysel+l/n+1/m 1
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Example 7.5.3

find whether the sequeneg := coqnm) is convergent.

Solution: Notice that cognm) = (—1)"~1, but that means that the sequence cannot be
convergent as it takes two different values, 1 arld infinitely often.

52 Complex numbers

52.1 Complex numbers
52.1.1 Handout

Limitations of the real numbers

The number systenl, Z and@Q have their limitations and the same applies to the real
numbersR. In the set of natural numbers subtraction is incompletehénset of integers
division is incomplete. The rational numbers can not be wgetscribe the lengths of all
line segments which occur in geometry.

The square of a positive number is always greater than ol émmaro and therefore there
is no solution to the equatiox?t = —1. The same can be said for the general quadratic
equationax’ + bx+c = 0 with a# 0. It has no solution among the real numberB if=

b? — 4ac < 0. Many other examples can be given of polynomials of everrondth no
roots inR. Polynomialsp of odd order always have a root.

It is a natural next question whether the real numbers systenbe extended to a number
system where one can solve the second order equetien-1 and whether such a number
system gives solutions to other equations which can not bedm R.

Imagine that there is a number system which includes thentgabers as a subset and that
there is an elementwhich satisfies? = —1. Thei is of course not a real number. Assume
further that all the rules of arithmetic for reals still apph the system. For example we
then havea = ai for all real numbers.

Now consider real numbeegs b, c andd. The rules above along with rules of arithmetic for
real numbers give methods of adding and multiplying the nensdo+ ib andc + id with

(a+ib)+ (c+id) =a+(c+ib) +id = (a+c) +i(b+d)
and
(a+ib)(c+id) = ac+ibc+ aid + ibid
= ac+ibc+iad +i%bd
= (ac—bd) +i(ad+bc).

These two formulas give a recipe for how to add and multipgrtbmbers+ib andc+id

S0 as to obtain a number of the same form.

The complex number plane

Now let us revisit the question of whether and how one canneifeto a larger number
system where there is a numbesatisfyingi? = —1. As it turns out such a system exists
and every number in the system can be written in the farmb wherea andb are real
numbers.

Consider the set of all vectors in a plane. Every vector hasdinates a, b) € R? indicat-
ing where the endpoint is if the initial point is at the origifihe set of all vectors has the
operations of addition and multiplication by a number. THdition is described by

(a,b)+ (c,d) = (a+c,b+c).
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Now, multiplication onR? can be defined in the light of the formula described earlier. F
the system to work we need something lilee+ib)(c+id) = (ac—bd) +i(ad+ bc) and
therefore we simply define

(a,b)(c,d) = (ac—bd,ad+ bc).

The number plan®? with regular addition and this multiplication is called thgstem
of complex numbers denoted byC. The next step is to establish all the usual rules of
arithmetic:

(a,b)+((c,d)+ (e f)) (associative law for addition)
e

( = (a,

( ) b)((c,d)(e f)) (associative law for multiplication)
(a,b)+ (c,d) = (c,d) + (a,b) (commutative law for addition)
(a,b)(c,d) = (c,d)(a,b) (commutative law for multiplication)
(a,b)((c,d)+ (e f)) = (a,b)(c,d)+ (a,b)(e f)  (distributive law)

(a,b)+(0,0) = (a,b) ((0,0) is the additive unit)
(1,0)(a,b) = (a,b) ((1,0) is the multiplicative unit)

The numbe(—a, —b) is the additive inverse df, b). Note that the equatiof@, b)(a, —b) =
(a?+b?,0) implies that every numbei, b) # (0,0) has a multiplicative inverse

a —b
a2+b?’ a2+ b2

( ),

which implies that

a —b
<a7b)(a2_|_b27 a2+b2) - (170)

Now note that
(a,0)(c,d) = (ac,ad) = a(c,d).

which implies that multiplication by the vectga,0) is the same as multiplication by the
numbera. Similarly the set of vectors of the foraand the vecto(a,0) and we simply
consider the horizontal axigx,0) € R?; x € R} as the real lin®. In particular we simply
write 1 in place of(1,0) and 0 for(0,0)

The setR is called thereal axisin the complex plane but the

iR setiR = {iy;y € R} is theimaginary axis
. a+ib  Consider the vecto(0,1). This vector has the property
ib 7 (0,1)> = (-1,0). A special symbol is used to denote this
L7 vector: i = (1,0). Every vector(a,b) can now be written as
o | the compositéa,b) = a(1,0) + b(0,1). Since we do not dist-

a R inguish between the real number 1 and the complex number
(1,0) we have the representation

(a,b) = (a,0)(1,0) + (b,0)(0,1) = a+ ib.

Real parts, imaginary parts and conjugates

If zis a complex number we can write= x+ iy wherex andy are real numbers. The
numberx is called thereal part of the numberz and the numbey is theimaginary part.
We denote the real part by Rand the imaginary part by Im
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z A complex numberz real if Imz = 0 and it ispure imaginaryor
simplyimaginaryif Rez= 0.

If ze C with x= Rez andy = Imz, thenz= x—iy is thecomplex
conjugateor conjugateof the number. Note thatzis the reflextion
of zabout the real axis arg= z.

Some simple rules apply to the conjugate:

NI

Z= (x+iy)(x—iy) =X +y?,
z+z=2x=2Rez,
z—z=2ilmz

ZW= 2W.

The first equation gives a new way to write the multiplicaiiveerse:

1 1 x—iy
z — - T2 2

z#0.

Note thatzis real if and only ifz= zandzis pure imaginary if and only it = —z
Length and angular coordinate
If ze C, x=Rezandy = Imz, the number
iR

Z=X+1y
y 2=+ ¥z,

is thelength or absolute valueof the complex numbez. If
0 € R and the complex numbercan be written in the form

o x R
z=z|(cosB+isind),

then the numbe® is theangular coordinateof the complex numbez. The trigonometric
functions cos and sin are periodic with period &nd therefore all numbers of the form
0+ 2rk with k € Z are also angular coordinates for

The ordered pai|z|,0) provides thepolar coordinatef the number.

Using the rules of arithmetic we can write the conjugate angyth as follows:

17 =14,
z= |z\_2,
1 Z
:W, Z;é O

Powers

If zis a complex number we can define non-negative integer polwesptain’ = 1,
ZL =z, andZ" = z-- - zwhere all the components are the same and their numbrerig.
The negative powers are defined first by taking as the multiplicative inverse afand
for negativen setz" = (z 1)I"l. This gives the same power rules as for real numbers:

2. M= Fm
Zn_ -m
=2

Z'w' = (zw)",

()" =™
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The unit circle

The unit circleT consists of all complex numbers with absolute value 1. Ewery T
can therefore be written in the form= cosa + isina. Take another such numbeav,=
cosP +isinf and multiply the two to see what happens:

zw= (coso +isina)(cosB +isinp)
= (cosa cosP — sina sin) +i(sina cosP + cosa sinf)
= coga +B) +isin(a+B).
In this we have used the angle sum and difference rules. ®hisula provides a rule
attributed to de Moivre:
(cosB+isind)" = cognd) +isin(nd).

Geometric interpretation of multiplication
Let zandw be two complex numbers of lengtl and|w|
and angular coordinatesandf3. We obtain uz z

zw= |Z||w|(coga +B) +isin(a+p)). 1
wich tells us that the length of the product is the product of u
the lengths oz andw and that the angular coordinates of B ch
the product is the sum of the angular coordinateg ahd 1
W.
If ue T is a number on the unit circle with angular coordinﬁl&e&uzﬁszotation ofz
by the angle.

Triangular inequality
Consider two complex numbersandw and let us do some computations:

24+ W2 = (24 W) (ZFW) = (2-+W)(Z+ W)
= ZZ+ 2W+ WZ+WW
= 2%+ 2W+2W+ W)
= |Z]2+ 2Re(zW) + |w|2.
Now note that
|Rez| < |7 and [Imz < |z.
The first inequality implies
|2+ W[ <[22+ 217w + [w* = (2 + |w])*.
Taking the square root on each side of the inequality signesghetriangular inequality
z4+w < |2+ |w.

Using this on the terms— w andw in place ofz andw, gives|z| = |(z—w)+w| < |z—
w| + |w|. Equivalently,|z| — |w| = |(z—w) +w| < |[z—w/|. If we switch the roles ot and
w in the inequality we obtair-|z| + |w| < |w—2| = |z—w|. The last two inequalities are
usually combined in a different version of the triangle inality.

|12 = [w| < [z—w.

Unit roots

Consider the equatia! = 1, wheren > 2 is a natural number. Ksolves the equation then
1 =|2"| = |Z" which implies|z| = 1 and we can writg = cos +isinf. The rule of de
Moivres implies

cognB) +isin(nB) = (cosB+isind)" =2"=1.
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The number 1 has the angular coordinaté&k 2  u, Us Us ),
for any k € Z and this number implies tha /'T\\ ...//I‘\\Ul
is an integer multiple of & so possible angular 13 Yo Uo
coordinates of the numberare given by \/ﬂun .
7..Un-2

If two integersk; andk; have the same remainder after integer dision,lifien co$2rik; /n) =
cog2rky/n) and sir{21k; /n) = sin(2rkz/n). This tells us that the equatial = 1 hasn
distinct solutionsul, ..., u,_1, called then-th roots ofl and these are given by the formula

keZ. Ua

0 = 2rk/n,

Uk = cog21k/n) +isin(2rk/n), k=0,1,2,...,n—1.

These numbers are all on the unit circle. Note that 1, ux = u‘{ fork=1,....n—1,and
that these are placed at the vertices of a regulsided polygon, where we have defined a
two-sided polygon to be the line segméntl, 1].

i

n=3

N

/|

n=4

N

ﬁ

7

N

S

\7

N
L

AN
\ N

Roots

Let w = s(cosa +isina) be a given complex number of lengh> 0 with angular coord-
inatea and let us seek a solution to the equatBa= w. If zis such a solution and and
is ann-th unit root, then we havézu)" = Z'u" = 2" = w and henceuis also a solution.
Since there are distinct unit roots this implies that once we find a singleusoh zy we

find n different solutionspu by inserting all then different unit roots fou. Now letzy be

the complex number given by

2= s%(cos(or/n) +isin(a/n))
and raise this to the-th power.
= (s%)n(cos{a/n) +isina/n))"
= s(cogna/n) +isin(na/n)) =w
It follows that we have a formula for one solution. By using formula for then-th unit
roots we obtain the set of all solutions to the equafba w = p(cosa +isina), with

2= pn(cog((a+2mK)/n) +isin((a+2mk)/n)),  k=0,...,n—1.

The formula can be described in words: Timeoots are found by first finding a single
solutionzy. It is then rotated by the angleti2n by multiplying with u; to obtainz; = u;zp.
Nextz is rotated by the anglerfnto zo = u;z;, continuing in this manner until different
roots are found.
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Example 6.1.1
Calculate(2+5i) — (3—1)(5+2i).
Solution: As usually we first multiply and then add together.

(245i) — (3—i)(542i) = 2+5i — (15+6i — 5 —i22) = 2+5{ — 15— 6i + 5| — 2 = — 15+ 4.

Example 6.1.2

Find real part, imaginary part, conjugate and multiplieainverse of1+ 2i).

Solution: The real part is R& + 2i) = 1 and the imaginary part is Ifh+ 2i) = 2. The
conjugate isl+2i = 1— 2i. The multiplicative inverse is the conjugate divided by it
length squared.

1 1-2i 1-2i
1+2i 12422 5

Example 6.1.3

a) Find polar coordinates for1+i.

Solution: The length is/(—1)2+ 12 = /2. The angle isJ', (we can see that by noting
S _ I 1 arctar{1/1) and drawing a picture).

b) Calculate(—1+i)8.

Solution: We found the polar coordinates in last part. We use them aply && Moivre’s
rule:

(—1+1)8 = (v2cog3M/4) +/2(31/4))8 = /2" (cog(8- 31/4) + Sin(8- 311/4)) = 16(cOS(6T) i Sin(6m)) = 16

Example 6.1.4

a) Find all fifth roots of 1.

Solution: We know the length of all fifth roots of unity is one. Then we f@t6 on the
interval[0, 21 such that cod8) = 1, but these are the valuesté$uch that 8 = k2, k€ Z,
thatis Q& 4, & 8 Then we have all five possible angular coordinates.

b) Find all fifth roots of(16— 16i).

Solution: We start by finding one fifth root. The angle(d6— 16i) is Z* and the length of

the number is 1§2. Then we get the fifth roof 16v/2 (cog 71t/4- 5) +isin(71/4-5)) =
V2(cos(48) +isin(F)). By multiplying this solution with fifth roots of unity we getll
the fifth roots, they are

2k 2k
V2 (cos(?n/20+ ?n) +isin(7m/20+ ?")> , k=0,1,2,34.

Polynomials

Polynomials with complex coefficients
Polynomials with complex coefficients are defined as betoeag expressions of the form

P(2) =anZ'+an12" '+ + agz+ao.

whereay, ... ., a, are complex numbers ads a variable which can take on complex values.
We can viewP as a function defined o6 taking values irC. The order of the polynomial
is, as before, the largest value jofuch that; # 0.

A complex numben is said to be aeroor aroot of the polynomiaP if P(a) = 0.
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Root of a second degree polynomial
We want to solve the equati@® + bz+ ¢ = 0 assuming that the coefficiersisb andc are
complex numbers and that# 0. This is done exactly as in the real case but the result will
become more general.
Start by dividing both sides bg to obtain an equivalent equatiah+ Bz+C = 0, where
B =Db/aandC = c/a. The next step is to look at the first two terres;- Bzand write those
as a square plus a constant. In other words we want to writetfits form(z+ a)?. Now
recall that(z+ a)? = 22 + 2az+ a?. Therefore

BZ

B
0=Z2+Bz+C= <Z+§)2_Z+C'

And this implies that the original equation is equivalent to

0= (aZ+bz+c)/a= (242 LA
B B 2a 422 a’
By subtracting the numberb?/(4a?) +c/a from both sides we again obtain an equivalent
equation

T 432 a 4@

The complex numbe = b? — 4ac is called thediscriminantof the equation. 1D # 0,
thenD has two square roots. LefD denote one of them. The the other-is/D and we
obtain two distinct solutions

( b )2 b ¢ b?-4ac
2+ —) = ==
2a

~b++/D ~b—+D
= " - and =
a 2a 2 2a
If D =0, there is one solution o
Z= Z—a

In the special case whdd € R andD < 0 then we can select a squate rqdD = i,/|D|
and the solutions becomes

_ —b—i/|D]|

B 2a

— M and

2a
Recall that ifa is a positive real, ther/a denotes the positive number which satisfies
(v/a)?2 = a and of course/0 = 0. If a # 0 is a complex number arwl is not a positive
real number, theR/a has no standard meaning. We just know that two complex nusnber
3 andy exist which are square roots aofand they have the property that: —f3.
The fundamental theorem of algebra
At the outset we defined the complex number in order to solw&atons with no real
solutions. The fundamental theorem of algebra states thapalynomial of order> 1
with complex coefficients are zeroes@ From this point of view the extension of the
number system from the real line to the complex plane is aesscc The proof of the
fundamental theorem demands considerable knowledge@flaaland is usually given in
the second year of university studies.
We will take the fundamental theorem for granted and comsdme important consequ-
ences of the theorem. Polynomial division works in the saraemar for polynomials with
complex coefficients as for real coefficients. If we take aypomialP of orderm> 1 and
divide (z— a) into it, we obtain

V4] V)

P(2) = (z—a)Q(2) +C,
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whereQ is a polynomial of ordem— 1 andC is a complex number. By insertirg= a

into thie equation we see th@t= P(a). This gives us a factorization methods which states
that(z— o) dividesP(z) if and only if a is a zero ofP.

Now suppose is a zero ofP and that the order im > 2. ThenQ is of orderm—1 and
according to the fundamental theorérhas a zerof3. We factorz— 3 out of Q and obtain
P(z) = (z—a)(z— B)R(z) whereR is a polynomial of ordem— 2. This can be continued
until we end up with a perfect factorization Bfinto first order terms,

P(z) =A(z—a1)(z—03) - (z—ap)

whereas,...,0m is an enumeration of all the roots, possibly repeteted, Ag€0 is a
complex number.

Polynomials with real coefficients

The real numbers are always viewed as a part of the complekersnand therefore a po-
lynomial with real coefficients is also a polynomial with cplax coefficients. The funda-
mental theorem of algebra therefore applies to these poljais. Now supposP(z) is a
polynomial of ordem > 1 with real coefficientsy, ...,ayn and thatn € C is a root. Supp-
ose further thatt is not a real number. Using the computational rules for cgaijes, noting
in particular thatj = aj, we obtain

0="P(a)=P(a) = Zm:akorkziazﬁz iak(ﬁ)"zp(@
k=0 k=0 k=0

We have therefore shown thatis also a zero oP. We can there fore factor ogz— o)
and(z—a) Next note that

(z—a)(z—a) =Z— (a+0a)z+0aa = Z — 2(Rea)z+|al?,

i.e. the product is a quadratic polynomial with real coedfits. It follows that when
we factor out the two complex roots we have in fact writiez) as a product of two
polynomials with real coefficients:

P(2) = (Z-2(Rea)z+|a|?)Q(2),

and from this we can draw the surprising conclusion that amyrmial with real coefficients
can be written as a product of polynomials of order one or with real coefficients.
Expanding the exponential function

We have seen how the domain of polynomials can be extendedtfre real number axis
R to be the entire complex plarig This can in fact be done for many functions which are
defined on subsets of the real line, so they have a naturalidom@.

The exponential function expR — R is the inverse of the natural logarithm which is

defined by the integral
x dt
Inx:/ —, x> 0.
1t

The numbee is defined bye = exp(1). We will now extend the domain of exp to become
all of C with the formula

exp(z) = €(cosy +isiny), z=x+iyeC, xyeR

Euler's equations

Take a pure imaginary numb& where8 € R and insert this into the new definition of
the exponential function to obta#® = (cosd +isin@) € T. This shows how the function
0 — € projects the real line onto the unit circle.
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Now consider the following two equations

d® = cosB+ising,

e '® = cosH—isind.
By adding the left and right hand sides we see ##4te'® = 2cosh. Next take the
difference between the two. Then we obtaih— e '® = 2isinB. This gives us certain
relationships between the exponential function and tlgetdmetric functions, which are

termedEuler’s equations

df 40
cosh = —5
db_oif
ing=————
sin 5

Additive theorem for the exponential function

Recall that the exponential function exp — R, x — €, satisfies the equalig?™? = e?e?
for all real numbers andb. This rule is theaddition theorenfor the exponential function.
Now take two complex numbers= x+ iy andw = u+iv to see how the rule generalizes
when the domain of the exponential function has been exgkiodae entire complex plane
C:

e’e" = &(cosy +isiny)e’(cosv+isinv)
= (€"e")(cosy + i siny)(cosv+isinv)

= &Y(cogy+ V) +isin(y+V))
— @ WHi(y+v) _ gxtiy)+(utiv) _ 24w

We thus see that the additive theorem for the exponentiaitiiom is valid on the entire
complex plane.

Example 6.2.1

Find all roots of the polynomiaf® — 2+ 5.

Solution: Here we use the solution formula for quadratic equationctliyethe solutions

are
2++4-2
X= fo: 1+v—-4=1+2i.

Example 6.2.2
Solve the equatioix? 4 2x+ 2+ 2i.
Solution: We use solution formula for quadratic equation and get thgisos

244818 _-2+VI2-& -2 /1(22.—)& _iiyaT3

2i 2i 2 2

Example 10.9.1
Calculated"®+73
Solution: We put this into formula and get

e+ — 5(005(1—;) +isin(g) = %ﬁ
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Example 10.9.2
Use Euler’s equations to simplify c@ sin(0) cog260).
Solution: By rewriting the trigonometric functions by Euler’s equats we get

ei6+e—i9 df _ g0 e2i9+e—2i6

cog0)sin(0)cog20) = > 5 >
B (eZie_e—Zie)(e2i9+e—2i9) B eAie_e—4i9 B sin(49)
N 8i N 8i 4

53 Matrices and linear algebra

53.1 Matrices and linear algebra
53.1.1 Handout

Linear systems of equations

As we increase the number of unknown quantities or variakagsually need more equati-
ons to decribe the relationships between them. If there ar&known we normally need at
leastn equations to determine their values.

When more than one equation is used to describe the relatphstween the same varia-
bles they are called aystem of equationsr simultaneous equatiorsnd the operation
of using these equations to compute the values of the unkasmassolve the system of
equations

The two main methods used to solve systems of equationslianationandinsertion
Suppose by way of example that we are given the equafisrsBy = C andDx+Ey=F
whereA,B,C,D, E, F are known real numbers.

To solve the system by elimination we multiply one of the doumes by a number so as
to obtain a common term in both equations. If the nunibés not zero we can multiply
the equatiorDx+ Ey = F by the numbeA/D and obtain the equatiofx-+ %* = %. By
subtractin the right hand side of this equation from thetrigind side oAx+ By = C and
similarly for the left side we obtain

EA FA

AX+By— (Ax+ —y) = C— —

X+By— (Ax+—-Y) 5

EA FA

iff B——)y =C——

! (B—5)y 5
. DC—-FA
iff y = ———.
DB—EA

(The notation “iff” is short-hand for “if and only if”, whichmeans that the statements on
both sides are equivalent.) This can then be put into oneeobtiginal equations to find
the value ofx:

DC—-FA
AX+B—— =C
““DB_EA
BDC— BFA
iff AX=C—————
' X=C~"pg_EA
. BF -CE
iff X — —
DB—-EA
To solve the same system of equations using insertion webstasolating eithex or y in

one of the equations. Using the first this gixes %’. If we insert thisx into the second

equation we obtain
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C—-By
D Ey =
A Y
DC BD
ff — — —Vy+Ey =
I A Ay-l— Yy
iff (EA—BD)y = FA—CD
- _ DC—FA'
DB—EA

x is then computed as was done in the earlier case.

The two methods are equivalent and a matter of convenienmwhe is used at any given
time.

Note that it is not particularly useful to try to learn thesenulas. It is much more useful
to understand the methods used above and apply the methaditmlual examples.
Example 3.5.1

Solve the system

da+2b—c=2,
a—b+c=12
a+b+c=5.

Solution: We start by adding up the last to equations, we get 2c = 17 which implies
17

C= 7 —a.

We then add the middle equation two times with the top eqoatiad get &+ ¢ = 26 and

puti —ain for c. Then notice:

17 17 35 7
6a—|—?—a:5a+?:26<:> 5a:? <— azé.

Whenais determined we find = 3/ —a= 157 = 5. By putting that into the last equation

wegetc=5-c—a=-a= 77 We have found the solution which is
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