Natural logarithm

Handout
The power function
$x\mapsto x^m$ has the antiderivative $x\mapsto x^{m+1}/(m+1)$
for any rational number $m\neq -1$.
The function $x\mapsto x^{-1}=1/x$ is continuous on the positive real
axis and therefore has an antideriviative. The particular antiderivative which
takes on the value $0$ at the point $x=1$ is called the {\it natural
  logarithm} and is given by the formula

$$
\ln x=\int_1^x \dfrac {dt}t, \qquad x>0.
$$
\begin{wrapfigure}[10]{l}[0cm]{0pt}
\hspace{0.3cm}
{
\beginpicture
  \setcoordinatesystem units <0.8cm,0.8cm> point at 0 0
  \setplotarea x from 0 to 5.5, y from 0 to 4

  \arrow <0.2cm> [0.2,0.4] from -0.5 0 to 4 0
  \arrow <0.2cm> [0.2,0.4] from 0 -0.5 to 0 4

  %\plot 0.5 0 0.5 5 /
  \setquadratic
  \plot 0.25 4
        0.375 2.667
        0.5 2
        0.625 1.6
        0.75 1.333
        1 1
        1.25 0.8
        1.5 0.667
        1.75 0.571
        2 0.5
        2.25 0.444
        2.5 0.4
        2.75 0.364
        3 0.333
        3.25 0.308
        3.5 0.286
        %3.75 0.267
        4 0.25
        /
  \setlinear

  \setquadratic
  \setshadegrid span <0.5mm>
  \vshade
        1 0 1
        1.25 0 0.8
        1.5 0 0.667
        1.75 0 0.571
        2 0 0.5
        2.25 0 0.444
        2.5 0 0.4
        2.75 0 0.364
        3 0 0.333
        /
  \setlinear

  \setdots <0.75mm>
  \plot 1 0 1 1 /
  \plot 3 0 3 0.333 /
  \setsolid

  \plot 1 -0.1 1 0.1 /
  \plot 3 -0.1 3 0.1 /
  \put {$1$} [t] <0mm,-2mm> at 1 0
  \put {$x$} [t] <0mm,-2mm> at 3 0

  \put {$f(x) = 1/x$} <1mm,1mm> [bl] at 0.5 3

  \put {$\ln x = \int_1^x \frac 1t dt$} [bl] <1mm,1mm> at 2 0.5

\endpicture
}
%\hspace{-0.5cm}
\end{wrapfigure}
For all real numbers $x$ and $y$ and all rational numbers $r$ we have
$$
\ln(xy)=\ln x+\ln y,\quad
\ln(x/y)=\ln x -\ln y \quad \text{ og } \quad
\ln (x^r)=r\ln x.
$$

The natural logarithm is strictly increasing and we have the limits
$$
\lim_{x\to 0+}\ln x=-\infty \qquad \text{ og } \qquad
\lim_{x\to +\infty}\ln x=+\infty.
$$
This implies that $\ln$ has an inverse, which we denote by
$\exp$. The inverse turns out to be an exponential function $\exp
x=e^x$ with a number, $e$, as base. This number has the property that
$\ln e=1$. Any exponential function $x\mapsto a^x$ with base
$a>0$ can be written as
$a^x=e^{(\ln a)x}$.




\textbf{Example 10.8.1}\\
Simplify $ \ln(20) - 2\ln(2) + \ln(3)$.\\
\textbf{Solution:} By rules for logarithm we get
\[
    \ln(20) - 2 \ln(2) + \ln(3)
    = \ln(20) - \ln(2^2) + \ln(3)
    = \ln(20 \cdot 3) - \ln(4)
    = \ln \left( \frac{60}{4} \right) = \ln(15).
\]