Einfaldar diffurjöfnur

x
#FIG 3.2
Landscape
Center
Inches
Letter  
100.00
Single
-2
1200 2
2 1 0 1 0 7 50 0 -1 0.000 0 0 -1 0 0 2
	 1650 4050 6450 4050
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 3450 2250 3900 2250
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 3442 2542 3892 2542
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 3442 2850 3892 2850
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 3465 3135 3915 3135
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 4417 2280 4792 2467
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 4417 2580 4792 2767
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 4425 2880 4800 3067
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 4425 3173 4800 3360
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 3457 3450 3907 3450
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 4425 3503 4800 3690
2 1 0 1 0 7 50 0 -1 0.000 0 0 -1 0 0 2
	 2700 1530 2700 4605
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 2557 3195 2975 2989
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 2587 2880 3005 2674
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 2610 2572 3028 2366
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 2559 3491 2977 3285
2 1 0 1 20 7 50 0 -1 0.000 0 0 -1 0 0 2
	 2557 3780 2975 3574
2 1 0 1 8 7 50 0 -1 0.000 0 0 -1 0 0 2
	 3675 3975 3675 4200
2 1 0 1 8 7 50 0 -1 0.000 0 0 -1 0 0 2
	 4575 3975 4575 4200
3 0 0 1 10 7 50 0 -1 0.000 0 0 0 4
	 2250 3675 3219 3138 4344 3138 4944 3438
	 0.000 1.000 1.000 0.000
3 0 0 1 10 7 50 0 -1 0.000 0 0 0 4
	 2250 3375 3225 2850 4350 2850 4950 3150
	 0.000 1.000 1.000 0.000
3 0 0 1 10 7 50 0 -1 0.000 0 0 0 4
	 2250 3075 3225 2550 4350 2550 4950 2850
	 0.000 1.000 1.000 0.000
3 0 0 1 10 7 50 0 -1 0.000 0 0 0 4
	 2250 2775 3225 2250 4350 2250 4950 2550
	 0.000 1.000 1.000 0.000
4 0 0 50 0 0 12 0.0000 4 90 90 4500 4425 x\001
$$
\frac{dy}{dx} = 2\cdot x \cdot y, \quad y(0) = 1
$$
Explanation
Deilum í gegn með $y$:
$$
\frac{1}{y}\frac{dy}{dx} = 2x
$$
Heildum m.t.t. $x$:
\begin{eqnarray*}
&\int \frac{1}{y(x)} \frac{dy}{dx} \,dx = \int 2x \,dx\\
&\int \frac{1}{y} \,dy = \int 2x\,dx\\
\Rightarrow \qquad &\ln y + C_1 = x^2 + C_2\\
\end{eqnarray*}
Details
Við erum nú í aðstöðu til að leysa einfaldar diffurjöfnur:\\

Við höfum þegar sé hvernig á að leysa
$$
\frac{dy}{dx} = f(x)
$$
( $y(x) = \int f(x) \, dx + C$ )
\underline{Ath:}
Þetta þýðir að hallatala lausnarferils er $f(\hat{x})$ þegar $x = \hat{x}$.\\

\underline{Ath:}
Fyrir fast $x$ er hallatalan sú sama, \textbf{óháð $y$}.\\

Hvað ef $\frac{dy}{dx} = f(x,y)$ ?\\
þ.e. hallatalan í punkti $(x,y)$ er háð bæði $x$ og $y$:\\
Examples
\underline{Dæmi:}
$$
\frac{dy}{dx} = 2\cdot x \cdot y, \quad y(0) = 1
$$
Deilum í gegn með $y$:
$$
\frac{1}{y}\frac{dy}{dx} = 2x
$$
Heildum m.t.t. $x$:
\begin{eqnarray*}
&\int \frac{1}{y(x)} \frac{dy}{dx} \,dx = \int 2x \,dx\\
&\int \frac{1}{y} \,dy = \int 2x\,dx\\
\Rightarrow \qquad &\ln y + C_1 = x^2 + C_2\\
\end{eqnarray*}
\begin{eqnarray*}
\Rightarrow \qquad &\ln y = x^2 + C_3\\
\Rightarrow \qquad &y(x) = e^{x^2 + C_3}\\
\Rightarrow \qquad &y(x) = e^{C_3}e^{x^2}\\
\Rightarrow \qquad &y(x) = Ce^{x^2}
\end{eqnarray*}
$y(0) = 1 \quad \Rightarrow \quad 1 = Ce^0 = C$
$$
\Rightarrow \qquad y(x) = e^{x^2}
$$
\underline{Ath:}
Þetta er sá ferill í $x-y$ plani sem hefur hallatölu $2x\cdot y$ í punktinum $(x,y)$ og gengur í gegnum punktinn $(0,1)$.