Lines as functions of two variables math121-1-linprog Introduction to linear programming

Gunnar Stefansson

September 1, 2016

The linear objective function

Commonly income, profit or cost are a linear combination of control variables.
$z=a x+b y$
Here, z is a function of two variables, x and y. The constants a and b determine the form of the relationship.
The goal will be to find the minimum or maximum of such an objective function, but with some constraints.

The line as a contour

A straight line: $a x+b y=c$
A function: $z=a x+$ by (or $z=f(x, y)$ where f is defined by $f(x, y)=$ $a x+$ by for real numbers x, y)
A contour line is a set of points where a function takes a constant value: $a x+b y=c$ is a contour line for the function $z=a x+b y$.
Example: If the unit cost of material A is $3 \$$ and the unit cost of material B is $4 \$$ then the cost of purchasing x units of A and y units of B will be $3 x+4 y$. The set of all (x, y) values on the line

$$
3 x+4 y=25
$$

is the set of (x, y)-units, which give a total cost of $25 \$$.

Moving with the normal vector

If $z=a x+$ by and $z_{0}=a x_{0}+b y_{0}$, a move from $\left(x_{0}, y_{0}\right)$, in the direction of the normal vector (a, b) for the line $a x+b y=z_{0}$ will lead to an increase in the value of z :
 $(x, y)=\left(x_{0}, y_{0}\right)+d(a, b)$ with $d>0$ implies $z>z_{0}$.

