Lines as functions of two variables math121-1-linprog Introduction to linear programming

Gunnar Stefansson

September 1, 2016

Gunnar Stefansson

Lines as functions of two variables

September 1, 2016

1/4

The linear objective function

Commonly income, profit or cost are a linear combination of control variables.

z = ax + by

Here, z is a function of two variables, x and y. The constants a and b determine the form of the relationship.

The goal will be to find the minimum or maximum of such an objective function, but with some constraints.

The line as a contour

A straight line: ax + by = cA function: z = ax + by (or z = f(x, y) where f is defined by f(x, y) = ax + by for real numbers x, y) A **contour line** is a set of points where a function takes a constant value: ax + by = c is a contour line for the function z = ax + by. **Example**: If the unit cost of material A is 3\$ and the unit cost of material B is 4\$ then the cost of purchasing x units of A and y units of B will be 3x + 4y. The set of all (x, y) values on the line

$$3x + 4y = 25$$

is the set of (x, y)-units, which give a total cost of 25\$.

3 / 4

《曰》 《圖》 《글》 《글》 _ 글

Moving with the normal vector

If
$$z = ax + by$$
 and $z_0 = ax_0 + by_0$, a move
from (x_0, y_0) , in the direction of the normal
vector (a, b) for the line $ax + by = z_0$ will
lead to an increase in the value of z :
 $(x, y) = (x_0, y_0) + d(a, b)$ with $d > 0$ implies
 $z > z_0$.

(日) (周) (日) (日)

4 / 4

Э