Linear programming math121-1-linprog Introduction to linear programming

Gunnar Stefansson

September 1, 2016

Linear programming

Optimization projects are quite common, i.e. one needs to find a best numerical solution.
This is usually either a request for finding a maximum or a minimum and sometimes the function to be optimized is linear.
Sometimes one has bounds on the solutions and these are sometimes linear. Example: Suppose we want to make animal feed as cheaply as possible. We have two feed mixed which we can use. Mix A, costs $10 \mathrm{kr} / \mathrm{kg}$, but mix B costs $20 \mathrm{kr} / \mathrm{kg}$.
The two mixes are different so the energy content of mix A has 500 Kcal but B has 4000 $\mathrm{Kcal} / \mathrm{kg}$. Mix A has a lot of protein, 200 g per kg of mix, B has 100 g per kg .
A farmer wants to combine the two feeds and minimize costs, but still fulfill the needs of the animals. They need at least $2000 \mathrm{Kcal} /$ day and 400 g of protein per day.
What is the optimal mix of the two feeds?

Linear objective function

Want to maximize a function of e.g. 2 variables:

$$
z=a x+b y
$$

but there may be many more variables.
The objective function is a constant, $z=z_{0}$, if $a x+b y=z_{0} \Rightarrow$ on a straight line.
The objective function increases in the direction of the normal vector, $\mathbf{n}=(a, b)^{\prime}$.

Example: Suppose we want to produce two products, A and B where the profit is 3 kr of each unit of product A but 2 kr per unit of product B . If we produce a total of x units of A and y units of B then the total profits are $3 x+2 y$.

The solution set

The set may be empty
The set may be unbounded
There may be a unique solution to the problem

The general form

In matrix and vector notation:

$$
\min _{x} c^{\prime} x
$$

w.r.t.

$$
A x \leq b
$$

Shadow values

At the optimum, the value of the objective functions $\left(z^{*}\right)$ of a linear programming problem is attained with some constraints aactive, i.e. $\mathbf{a}_{\mathbf{i}}^{\prime} \mathbf{x}^{*}=b_{i}$, but others may not be, i.e. $\mathbf{a}_{i}^{\prime} \mathbf{x}^{*}<b_{i}$. One can view the optimum value of the objective function as a function of these constraints $z^{*}=f\left(b_{1}, b_{2}, \ldots\right)$.
When we relax the constraints, the solution can only improve.
The shadow value of a constraint is the answer to "how much does z^{*} increase if we relax $\mathbf{a}_{i}^{\prime} \mathbf{x}^{*} \leq b_{i}$ by one unit ${ }^{\prime \prime}$.
We can write this as $\frac{\partial z^{*}}{\partial b_{i}}$.

A visual solution

$$
\min _{x} c^{\prime} x
$$

w.r.t.

$$
A x \leq b
$$

GeoGebra
is
an
excellent
tool
to
draw
the
figures https://www.youtube.com/watch?v=qjDG940t-PA\&feature=relmfu Example (from a 2004 exam in Iceland) Draw a figure and use it to find the values, x and y, which minimize $z=2 x-y$ with respect to

$$
\begin{aligned}
4 x+3 y & \leq 12 \\
-x+y & \leq 2 \\
x+2 y & \geq 2
\end{aligned}
$$

An example

$$
\begin{array}{lrl}
\max z= & 3 x-4 y & \\
\text { w.r.t. } & x-y \leq 1 \\
& x-y & \leq 5 \\
& x+y & \leq 6 \\
& x & x \\
& & y
\end{array}
$$

Orð̌alisti

* Línuleg bestun

An example

