# math221.1 0 Applied calculus of two variables

Gunnar Stefansson

November 12, 2015

**Copyright** This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

# Contents

| 1 | On functions of two variables |                                                           |    |  |
|---|-------------------------------|-----------------------------------------------------------|----|--|
|   | 1.1                           | Extensions of univariate functions                        | 4  |  |
|   |                               | 1.1.1 Details                                             | 4  |  |
|   |                               | 1.1.2 Examples                                            | 4  |  |
|   | 1.2                           | Investigating one variable at a time                      | 5  |  |
|   | 1.3                           | Contour plots                                             | 5  |  |
|   | 1.4                           | The equation $F(x,y) = c$                                 | 5  |  |
|   |                               | 1.4.1 Details                                             | 6  |  |
|   |                               | 1.4.2 Examples                                            | 6  |  |
|   | 1.5                           | Partial derivatives                                       | 7  |  |
|   |                               | 1.5.1 Examples                                            | 7  |  |
| 2 | Mor                           | re on real-valued functions of two variables              | 8  |  |
| 4 |                               |                                                           | 0  |  |
|   | 2.1                           | Real functions of more than one variable                  | 8  |  |
|   |                               | 2.1.1 Details                                             | 8  |  |
|   |                               | 2.1.2 Examples                                            | 8  |  |
|   | 2.2                           | Partial differentiation                                   | 9  |  |
|   |                               | 2.2.1 Details                                             | 9  |  |
|   | 2.3                           | The gradient                                              | 9  |  |
|   |                               | 2.3.1 Details                                             | 9  |  |
|   |                               | 2.3.2 Examples                                            | 9  |  |
|   | 2.4                           | Higher order derivatives                                  | 10 |  |
|   |                               | 2.4.1 Details                                             | 10 |  |
|   |                               | 2.4.2 Examples                                            | 10 |  |
|   | 2.5                           | The Hessian matrix                                        | 10 |  |
|   |                               | 2.5.1 Details                                             | 10 |  |
|   |                               | 2.5.2 Examples                                            | 11 |  |
| 3 | Max                           | xima and minima of real-valued functions of two variables | 11 |  |
|   | 3.1                           | Unconstrained local optimization                          | 11 |  |
|   |                               | 3.1.1 Details                                             | 11 |  |
|   |                               | 3.1.2 Examples                                            | 11 |  |
|   |                               | E                                                         | -  |  |

| 3.2 | Classif | fication of extrema             | 12 |
|-----|---------|---------------------------------|----|
|     | 3.2.1   | Details                         | 12 |
|     | 3.2.2   | Examples                        | 12 |
| 3.3 | Constr  | rained optimization             | 13 |
|     | 3.3.1   | Details                         | 13 |
|     | 3.3.2   | Examples                        | 13 |
| 3.4 | Classif | fication of constrained extrema | 14 |
|     | 3.4.1   | Details                         | 14 |
|     | 3.4.2   | Examples                        | 14 |

# **1** On functions of two variables

# **1.1 Extensions of univariate functions**



# 1.1.1 Details

One can extend the univariate case of  $f : \mathbb{R} \to \mathbb{R}$  in several ways.

Here we will consider only the simplest case:

 $f: \mathbb{R}^2 \to \mathbb{R}$ 

so *f* is of the form  $f(x, y) \in \mathbb{R}$ .

## 1.1.2 Examples

**Examples**:

$$f(x,y) = x + y$$

$$f(x,y) = x^2 + y^2$$

Another interesting function is  $f(x, y) = xy^2$ . Note that, as a function of y, the behavior of this function changes completely depending on the sign of x.

$$f(x,y) = (x-y)^2$$
$$f(x,y) = x/y \text{ if } y \neq 0$$

A popular functions is:

$$f(x,y) = sin(x^2 + y^2)/(x^2 + y^2)$$

This last function can be drawn with the R commands

x <- seq(-10, 10, length= 30)
y <- x
f <- function(x, y) { r <- sqrt(x<sup>2</sup>+y<sup>2</sup>); 10 \* sin(r)/r }
z <- outer(x, y, f)</pre>

```
z[is.na(z)] <- 1
op <- par(bg = "white")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")</pre>
```

# **1.2** Investigating one variable at a time



# 1.3 Contour plots

A contour plot is a set of points of the form

$$\left\{(x,y)\in\mathbb{R}^2:f(x,y)=c\right\}$$

for some number c.

# **1.4** The equation F(x, y) = c



### 1.4.1 Details

The methodology here involves differentiating an equation F(x, y) = c, which defines y only implicitly as a function of x.

Any terms in the function are differentiated taking into account that derivatives of components such as h(y) become  $\frac{d}{dx}h(y) = h'(y)\frac{dy}{dx}$ .

#### 1.4.2 Examples

Example: Consider the function

$$F(x,y) = \frac{(x-3)^2}{4} + \frac{(y-4)^2}{9}$$

and suppose we are interested in the particular contour F(x, y) = 1.

We can first analyse this contour by noticing that we can write

$$F(x,y) = \left(\frac{x-3}{2}\right)^2 + \left(\frac{y-4}{3}\right)^2$$

and it follows that if we write

$$u = \frac{x-3}{2}$$
$$v = \frac{y-4}{3}$$

so we also have

$$\begin{array}{rcl} x & = & 2u+3 \\ y & = & 3v+4 \end{array}$$

then F(x,y) = 1 is equivalent to  $u^2 + v^2 = 1$  so (u,v) must lie on the unit circle and (x,y) are a transformation of (u,v) obtained by stretching and then shifting the circle from (0,0) to (3,4), resulting in an ellipse.

Note that an ellipse does NOT define *y* as a function of *x*.

On the other hand, for a given point,  $(x_0, y_0)$ , on the curve, we can consider y as a function of x in a small neighborhood around the point and write y = f(x) (or y(x) etc). Alternatively one can simply write y but keep in mind that y is now a function of x.

Since F(x,y) = c now defines y as a function of x, we can write F(x, f(x)) = c and this is an equation which should hold for x in some interval and this is an equation which we can in principle differentiate.

$$F(x, f(x)) = 1 \Rightarrow \frac{(x-3)^2}{4} + \frac{(f(x)-4)^2}{9} = 1 \Rightarrow \frac{d}{dx} \left(\frac{(x-3)^2}{4} + \frac{(f(x)-4)^2}{9}\right) = 0$$

We need to be careful with the differentiation since one of the terms is a composite function, but we obtain:

$$\frac{2(x-3)}{4} + \frac{2(f(x)-4)}{9}f'(x) = 0$$

2(r-3)

and this we can rewrite to obtain

$$f'(x) = -\frac{\frac{2(x-3)}{4}}{\frac{2(f(x)-4)}{9}}.$$

We have therefore shown that if (x, y) is a point on the curve where  $y \neq 4$ , then we can write y = f(x) with

$$f'(x) = -\frac{\frac{2(x-3)}{4}}{\frac{2(y-4)}{9}},$$

in other words we can find the derivative of the function without knowing the shape.

**Example**: If  $xy = \arctan(y)$  then we can write y = f(x) and then find  $\frac{dy}{dx}$  by differentiation both sides of the equation and solving for f'(x).

# 1.5 Partial derivatives



# 1.5.1 Examples

Example: $F(x,y) = x^2 + y^2$ Example: $F(x,y) = x^2 - y^2$ 

# 2 More on real-valued functions of two variables



# 2.1 Real functions of more than one variable

# 2.1.1 Details

The general real-valued function of two (real) variables is a function  $f : \mathbb{R}^{\nvDash} \to \mathbb{R}$ . This can be defined by any formula which includes the two variables.

The general real-valued function of several (real) variables is a function  $h : \mathbb{R}^{\ltimes} \to \mathbb{R}$  defined by some formula.

Definitions of when these functions are continuous are extensions of the univariate case. Loosely, a real-valued function of two real variables is continuous at a point  $(x_0, y_0)$  if the values f(x, y) are "close" to  $f(x_0, y_0)$  when (x, y) is "close" enough to  $(x_0, y_0)$ .

The set of points where a function like this is constant:

$$\{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c\}$$

is a level set, or, in the case of the plane (n = 2), a level curve or contour line.

Values of a function of two variables can be drawn in 3 dimensions, as the set of points

$$\{(xyf(x,y)): x, y \in \mathbb{R}\}$$

## 2.1.2 Examples

Example:

$$f: \mathbb{R}^2 \to \mathbb{R} f(x, y) = x^2 + y^2$$

Here the contour curves are circles. Example:

$$g: \mathbb{R}^3 \to \mathbb{R} g(x, y, z) = xyz$$

**Example:** 

 $h: \mathbb{R}^n \to \mathbb{R} \ldots$ 

# 2.2 Partial differentiation



## 2.2.1 Details

In principle, just differentiate with respect to one variable at a time. Write

$$\frac{\partial f(x,y)}{\partial x}$$
$$\frac{\partial f(x,y)}{\partial y}$$

To be differentiable, these partial derivatives need to satisfy criteria...if the partial derivatives are continuous, then the function is differentiable.

# 2.3 The gradient



# 2.3.1 Details

If  $f : \mathbb{R}^n \to \mathbb{R}$ , then we define the **gradient** of *f* as the vector

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\frac{\partial f(x_1, x_2, \dots, x_n)}{\partial x_1}}{\frac{\partial f(x_1, x_2, \dots, x_n)}{\partial x_2}} \\ \frac{\frac{\partial f(x_1, x_2, \dots, x_n)}{\partial x_2}}{\frac{\partial f(x_1, x_2, \dots, x_n)}{\partial x_n}} \end{bmatrix}$$

### 2.3.2 Examples

**Example:** Consider the function  $f(x,y) = x^4 + x^2(1-2y) + y^2 - 4x + 4$ . The gradient of this function at a general point (x,y) is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 4x^3 + 2x(1-2y) - 4 \\ 2y - 2x^2 \end{bmatrix}$$

Hence e.g. at (x,y) = (0,1) we can calculate the gradient at this particular point as

$$\nabla f(\mathbf{x}) = \left[ \begin{array}{c} -4\\2 \end{array} \right]$$

and we can identify any potential maxima or minima as the points where  $\nabla f = \mathbf{0}$ , i.e. where both  $0 = \frac{\partial f}{\partial x} = 4x^3 + 2x(1-2y) - 4$  and  $0 = \frac{\partial f}{\partial x} = 2y - 2x^2$ . For this to occur we need  $y = x^2$  and also  $0 = 4x^3 + 2x(1-2x^2) - 4 = 2x - 4 \Rightarrow x = 2$  and therefore y = 4.

# 2.4 Higher order derivatives



#### 2.4.1 Details

If the functions are differentiable in the coordinates then we can keep on differentiating to get mixed derivatives...

## 2.4.2 Examples

Example: For a function of only two variables we can compute

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right)$$

and

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right)$$

Example: Consider the function ...

# 2.5 The Hessian matrix



#### 2.5.1 Details

The Hessian matrix is the matrix of all combinations of second-order derivatives, for example:

$$H = \begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} & \frac{\partial^2 f(x,y)}{\partial y \partial x} \\ \frac{\partial^2 f(x,y)}{\partial x \partial y} & \frac{\partial^2 f(x,y)}{\partial y^2} \end{bmatrix}$$

#### 2.5.2 Examples

The Hessian matrix is the matrix of all combinations of second-order derivatives, for example:

$$H = \begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} & \frac{\partial^2 f(x,y)}{\partial y \partial x} \\ \frac{\partial^2 f(x,y)}{\partial x \partial y} & \frac{\partial^2 f(x,y)}{\partial y^2} \end{bmatrix}$$

**Example:** Consider the function  $f(x,y) = x^4 + x^2(1-2y) + y^2 - 4x + 4$ . The gradient of this function at a general point (x,y) is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x_1} \\ \frac{\partial f(x,y)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4x^3 + 2x(1-2y) - 4 \\ 2y - 2x^2 \end{bmatrix}$$

Hence e.g. at (x, y) = (0, 1) we can calculate the gradient at this particular point as

$$\nabla f(\mathbf{x}) = \begin{bmatrix} -4\\2 \end{bmatrix}$$

and the Hessian is

$$H = \begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} & \frac{\partial^2 f(x,y)}{\partial y \partial x} \\ \frac{\partial^2 f(x,y)}{\partial x \partial y} & \frac{\partial^2 f(x,y)}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 12x^2 + 2(1-2y) & -4x \\ -4x & 2 \end{bmatrix}$$

so e.g. at the point (x, y) = (0, 1) the value of the Hessian is ...

# 3 Maxima and minima of real-valued functions of two variables

# 3.1 Unconstrained local optimization

 $\nabla f(x,y) = 0$ 

(if the derivatives exist everywhere)

#### 3.1.1 Details

Local extrema must satisfy

 $\nabla f(x,y) = 0$ 

(if the derivatives exist everywhere)

### 3.1.2 Examples

**Example:** Consider again the function  $f(x,y) = x^4 + x^2(1-2y) + y^2 - 4x + 4$ . The gradient of this function at a general point (x, y) is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x_1} \\ \frac{\partial f(x,y)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4x^3 + 2x(1-2y) - 4 \\ 2y - 2x^2 \end{bmatrix}$$

To find potential maxima and minima we solve the equations  $\nabla f(\mathbf{x}) = \mathbf{0}$  to find (x, y) = (2, 4).

# 3.2 Classification of extrema



#### 3.2.1 Details

 $\lambda$ , is an **eigenvalue** a matrix *A* if there is a non-zero **x** such that  $A\mathbf{x} = \lambda \mathbf{x}$ .

Eigenvalues can be found by solving the **characteristic equation**:  $det(A - \lambda I) = 0$ 

If  $\nabla f(x_0, y_0) = 0$ , *H* is the Hessian (of continuous partial derivatives) and

- The two eigenvalues of H are positive, then f has a local minimum at  $(x_0, y_0)$ ;  $\leftarrow det(H) > 0$ , tr(H) > 0
- The two eigenvalues of H are negative, then f has a local maximum at  $(x_0, y_0)$ ;  $\leftarrow det(H) > 0$ , tr(H) < 0
- The two eigenvalues of H are of different sign, then f has a saddle point at  $(x_0, y_0)$ ;  $\leftarrow det(H) < 0$

#### 3.2.2 Examples

**Example:** Consider the function  $f(x,y) = x^4 + x^2(1-2y) + y^2 - 4x + 4$ . The gradient of this function at a general point (x,y) is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x_1} \\ \frac{\partial f(x,y)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4x^3 + 2x(1-2y) - 4 \\ 2y - 2x^2 \end{bmatrix}$$

Weknow that the only local extremum is (2,4) and and since the Hessian is

$$H = \begin{bmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} & \frac{\partial^2 f(x,y)}{\partial y \partial x} \\ \frac{\partial^2 f(x,y)}{\partial x \partial y} & \frac{\partial^2 f(x,y)}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 12x^2 + 2(1-2y) & -4x \\ -4x & 2 \end{bmatrix}$$

so at the point (x, y) = (2, 4) the value of the Hessian is ...

We can now find the eigenvalues at this point by solving the equation  $det(H - \lambda I) = 0$  for  $\lambda$ .

# **3.3** Constrained optimization

To maximize  $f(\mathbf{x})$  with respect to  $g(\mathbf{x}) = 0$ , where both are real-valued, set up the Lagrange function

 $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$ 

and solve

$$\frac{\partial L}{\partial x_i} = 0, \ i = 1, \dots, n$$

along with  $g(\mathbf{x}) = 0$ .

This will (under certain regularity conditions) give the extrema of f with respect to g = 0.

#### 3.3.1 Details

To maximize  $f(\mathbf{x})$  with respect to  $g(\mathbf{x}) = 0$ , where both are real-valued,

set up the Lagrange function

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

and solve

$$\frac{\partial L}{\partial x_i} = 0, \ i = 1, \dots, n$$

along with  $g(\mathbf{x}) = 0$ .

This will (under certain regularity conditions) give the extrema of f with respect to g = 0.

#### 3.3.2 Examples

**Example:** Consider the optimization problem to minimize  $f(x,y) = x^2 + y^2$  subject to g(x,y) = x + y - 1 = 0.

Here the Lagrangian is

$$L(x, y, \lambda) = x^2 + y^2 + \lambda(x + y - 1)$$

and hence

$$0 = \frac{\partial L}{\partial x} = 2x + \lambda \Rightarrow \lambda = -2x$$
$$0 = \frac{\partial L}{\partial y} = 2y + \lambda \Rightarrow \lambda = -2y$$

from which it follows that the extremum must satisfy x = y. Since we also have x + y = 1, the only potential local minimum  $x = y = \frac{1}{2}$ 

# 3.4 Classification of constrained extrema

Write  $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$  and suppose  $\mathbf{x}^*$  is a potential extremum with  $0 = \nabla_{\mathbf{x}^*} L = \nabla f(\mathbf{x}^*) + \lambda^* \nabla g(\mathbf{x}^*)$  and  $g(\mathbf{x}^* = 0)$ .

Further, define the Hessian of L, with respect to  $\mathbf{x}$  as

$$H = \nabla_{\mathbf{x}^*}^2 L = \nabla^2 f(\mathbf{x}^*) + \lambda^* \nabla^2 g(\mathbf{x}^*)$$

If eigenvalues of H are all positive, then  $\mathbf{x}^*$  is a local minimum.

# 3.4.1 Details

Write  $L(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$  and suppose  $\mathbf{x}^*$  is a potential extremum with  $0 = \nabla_{\mathbf{x}^*} L = \nabla f(\mathbf{x}^*) + \lambda^* \nabla g(\mathbf{x}^*)$  and  $g(\mathbf{x}^* = 0)$ .

Further, define the Hessian of L, with respect to  $\mathbf{x}$  as

$$H = \nabla_{\mathbf{x}^*}^2 L = \nabla^2 f(\mathbf{x}^*) + \lambda^* \nabla^2 g(\mathbf{x}^*)$$

If eigenvalues of *H* are all positive, then  $\mathbf{x}^*$  is a local minimum.

Note that *H* is just computed at  $\mathbf{x}^*$ . It is also true that a much weaker condition is sufficient for the point to be a minimum, but this is outside the scope of these notes.

## 3.4.2 Examples

**Example:** For  $f(x,y) = x^2 + y^2$  and g(x,y) = x + y - 1 we have  $L(x,y,\lambda) = x^2 + y^2 + \lambda(x+y-1)$ ,  $\nabla_x L = (2x + \lambda, 2y + \lambda)'$  and thus

$$\nabla_{\mathbf{x}}^2 L = \left[ \begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right]$$

which has both eigenvalues equal to two and therefore both positive.