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1 On functions of two variables

1.1 Extensions of univariate functions

One can extend the univariate casefofR — R in several
ways.

Here we will consider only the simplest cade:R? — R so
f(x,y) € R.

The
function f(x,y) = sin(x? +y2)/(x? +y?), plotted as a
surface of pointgx,y,z) € R with z= f(x,y).

1.1.1 Details

One can extend the univariate casef ofR — R in several ways.
Here we will consider only the simplest case:
f:R2 >R

sof is of the formf (x,y) € R.

1.1.2 Examples

Examples
fxy) =x+y
f(xy) =x2+y?

Another interesting function i§(x,y) = xy?. Note that, as a function of the behavior of this function
changes completely depending on the sigr.of

f(xy) = (x—y)?
f(xy) =x/yif y#0
A popular functions is:

f(xy) =sn(¢+y%)/(x* +y?)

This last function can be drawn with the R commands

x <- seq(-10, 10, length= 30)

y <- X

f <- function(x, y) { r <- sqrt(x~2+y~2); 10 * sin(r)/r }
z <- outer(x, y, f)



z[is.na(z)] <- 1
op <- par(bg = "white")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

1.2 Investigating one variable at a time

Plots of a functiorz = f(x,y), viewed as a function of
x, for several fixed levels of.

1.3 Contour plots

A contour plot is a set of points of the form
{(xy) eR*: f(xy) =c}

for some numbet.

1.4 The equationF(x,y) =c

F:RZ-R

ThenF (x,y) = c defines a relationship betwermandy.
Note that this is a contour of the function.

We can sometimes solve this equation to wyites a func-
tion of x.

We can also differentiate this equation...

o 1z 3 4 s & 7

2 2
Points(x,y) € R? satisfying &2~ + -4~ — 1,




1.4.1 Details
The methodology here involves differentiating an equakiox y) = ¢, which definey only implicitly
as a function ok.

Any terms in the function :é\re differentiated taking into agot that derivatives of components such as
h(y) becomegh(y) = ' (y) .

1.4.2 Examples

Example: Consider the function

a2 LY
oy = 03, 09

and suppose we are interested in the particular coftéury) = 1.

We can first analyse this contour by noticing that we can write

- (55

and it follows that if we write

u - X—3
o 2
_ y-4
V= 3
so we also have
X = 2u+3
y = 3v+4

thenF (x,y) = 1 is equivalent ta® +v? = 1 so(u,v) must lie on the unit circle angk,y) are a transfor-
mation of(u,v) obtained by stretching and then shifting the circle fr(@r0) to (3,4), resulting in an
ellipse.

Note that an ellipse does NOT defipas a function ok.

On the other hand, for a given poiliXp, o), on the curve, we can consideas a function ok in a small
neighborhood around the point and wnte= f(x) (or y(x) etc). Alternatively one can simply writg
but keep in mind thay is now a function ok.

SinceF (x,y) = ¢ now definesy as a function ok, we can writeF (x, f(x)) = ¢ and this is an equation
which should hold fox in some interval and this is an equation which we can in ppiediifferentiate.

Fiofp) =1 X3 (I0=47 d(<X—3>2 (f(x)—4)2)—0

7 T 9 “ax\ a2 T

We need to be careful with the differentiation since one eftdrms is a composite function, but we

obtain:
2(x—=3) 2(f(x)—4)

1y
7 + 9 f'(x)=0
and this we can rewrite to obtain
2(x—3)
1(y\ 4
P =—ama



We have therefore shown that(i,y) is a point on the curve where# 4, then we can writg = f(x)
with
2(x—3)
T Z
P =—za
9

in other words we can find the derivative of the function withknowing the shape.

Examplelf xy = arctarfy) then we can writgy = f(x) and then fin(%’ by differentiation both sides of
the equation and solving fd¥ (x).

1.5 Partial derivatives

A function of two or more variables can be inspected a
function of one variable at a time:

Supposé : R? — R is differentiable in each variable.

We write & and%—'; for the two derivatives.

A local maximum (or minimum) must have

oF
=0
X
and oF
=0
oy
but this may still not be a maximum or a minimum. The

functionF (x,y) = X2 +y2.

1.5.1 Examples

ExampleE (x,y) = X2 +y?
ExampleE(x,y) = x* —y?



2 More on real-valued functions of two variables

2.1 Real functions of more than one variable

The
function sir(x® +y?) /(X% +y?).

2.1.1 Details

The general real-valued function of two (real) variablea fsinctionf : R* — R. This can be defined
by any formula which includes the two variables.

The general real-valued function of several (real) vagali$ a functiorh : R* — R defined by some
formula.

Definitions of when these functions are continuous are aites of the univariate case. Loosely, a real-
valued function of two real variables is continuous at a poig, yo) if the valuesf (x,y) are “close” to
f(x0,Y0) when(x,y) is “close” enough tdXo, Yo).

The set of points where a function like this is constant:
{xeR": f(x) =c}
is alevel set or, in the case of the plana £ 2), alevel curveor contour line.

Values of a function of two variables can be drawn in 3 dimensj as the set of points

{0yf(xy)) i xy€eR}

2.1.2 Examples

Example:

f:R?2 5 R f(xy) =x2+y?
Here the contour curves are circl&ample:

9:R* 5 Rg(XY,2) =xyz

Example:
h:R"—R...



2.2 Partial differentiation

2.2.1 Details

In principle, just differentiate with respect to one vat@aht a time. Write

af(x,y)
0Xx

af(xy)

oy

To be differentiable, these partial derivatives need tsfatriteria...if the partial derivatives are con-
tinuous, then the function is differentiable.

2.3 The gradient

If f:R"— R, then we define thgradient of f as the vector

9f (X1, X2, %n)
aXl
Of (X1, %2,---,Xn)
Of(x) = o

0f (X1, %2,---,Xn)
0Xn

2.3.1 Details

If f:R"— R, then we define thgradient of f as the vector

Of (X1,X2,--,Xn)
0X1
0f (X1,%2,...,%n)

Of (x) = oz

Of (X1, X2,--,Xn)
0Xn

2.3.2 Examples

Example: Consider the functiori (x,y) = x* +x2(1 — 2y) + y? — 4x+ 4. The gradient of this function
at a general pointx,y) is

2y — 2x2

[ afgx.,y) ] _ [ A3+ 2x(1-2y) -4



Hence e.g. afx,y) = (0,1) we can calculate the gradient at this particular point as

Of (x) = [ “2‘}

and we can identify any potential maxima or minima as the fgoivherelf = O, i.e. where both
0= % =43 +2x(1—2y) — 4 and 0= % = 2y — 2x2. For this to occur we neeg = x? and also

0=43+2x(1—2x%) — 4= 2x— 4 = x = 2 and thereforg = 4.

2.4 Higher order derivatives

2.4.1 Details

If the functions are differentiable in the coordinates tiencan keep on differentiating to get mixed
derivatives...

2.4.2 Examples

Example: For a function of only two variables we can compute
21 _ 0 (of
ax2  0x \ Ox
and
ot _ 0 (ot
oxdy  0x \ dy
Example: Consider the function ...

2.5 The Hessian matrix

2.5.1 Details

The Hessian matrix is the matrix of all combinations of setonder derivatives, for example:

Pi(xy)  0*f(xy)
H— X2 0yox

iy 02 (xy)
oxay ay?

10



2.5.2 Examples

The Hessian matrix is the matrix of all combinations of setonder derivatives, for example:

ox2 0yox
Prxy)  0%f(xy)
0xay ay?

H:

Pixy)  2ixy) }

Example: Consider the functiori (x,y) = x* +x2(1 — 2y) +y? — 4x+ 4. The gradient of this function
at a general poinx,y) is

A (x,
070 = 2l ] adt2x(1-2y) -4
of (xy) 2y—2x2

6X2

Hence e.g. afx,y) = (0,1) we can calculate the gradient at this particular point as

Of (x) = [ “2‘}

and the Hessian is

Pfxy)  0%f(xy) —4x 2
oxay ay?

2 2
o [ T } _ { 122+ 2(1-2y) —4x

so e.g. at the poir(x,y) = (0,1) the value of the Hessian is ...

3 Maxima and minima of real-valued functions of two variables

3.1 Unconstrained local optimization

Local extrema must satisfy

Of(xy)=0
(if the derivatives exist everywhere)
3.1.1 Details
Local extrema must satisfy
Of(xy) =0

(if the derivatives exist everywhere)

3.1.2 Examples

Example: Consider again the functiof(x,y) = x* +x2(1 — 2y) +y? — 4x+ 4. The gradient of this
function at a general poirik, y) is

11



Of(x)

|

of (xy)
aXl

of (xy
6X2

=

|

|

43+ 2x(1-2y) -4
2y — 2x2

To find potential maxima and minima we solve the equatiohgx) = 0to find (x,y) = (2,4).

3.2 Classification of extrema

If Of(Xo0,Y0) =0, H the Hessian with eigenvalugg > A».

e A1 > A2 > 0: local minimum«=det(H) > 0, tr(H) >
0

7

17

R 2 ]
ORI T
R 1]

W 1117
QR 1]
irrirrirt

e 0> A1 > Az local maximumedet(H) > 0, tr(H) <
0

e A1 > 0> Ay: saddle point=det(H) <0

The
function f(x,y) = X2 —y2.

3.2.1 Detalils

A, is aneigenvaluea matrixA if there is a non-zera such thatAx = Ax.
Eigenvalues can be found by solving tttearacteristic equatiornt defA—Al)=0

If Of(%o,Y0) =0, H is the Hessian (of continuous partial derivatives) and

e The two eigenvalues dfl are positive, therf has a local minimum afxg,Yo); < det(H) >
0,tr(H)>0

e The two eigenvalues dfl are negative, theri has a local maximum dixo,Yo); < det(H) >
0,tr(H)<O0

¢ The two eigenvalues ¢ are of different sign, theifi has a saddle point &k, yo); < det(H) <0

3.2.2 Examples

Example: Consider the functiori (x,y) = x* +x2(1 — 2y) +y? — 4x+ 4. The gradient of this function
at a general poinx,y) is
of (xy)
aXl
[ of (xy) ]

6X2

|

Weknow that the only local extremum is (2,4) and and sinceéHtbgsian is

Of(x)

43S+ 2x(1-2y) -4
2y — 2%2

92 f X,Y) Ozf(x,y)
Lo | S Gl | _[12¢+21-2y) 4
Pfxy)  0%f(xy) —4x 2
0xoy ()y2

12



so at the poinfx,y) = (2,4) the value of the Hessian is ...

We can now find the eigenvalues at this point by solving theaggndet(H — Al) = 0 for A.

3.3 Constrained optimization

To maximizef (x) with respect tay(x) = 0, where both are real-valued,
set up the Lagrange function
L(x,A) = f(x) +Ag(x)
and solve oL
x =0,i=1,...,n
along withg(x) = 0.
This will (under certain regularity conditions) give thetexma off with respect ta = 0.

3.3.1 Detalils

To maximizef (x) with respect tay(x) = 0, where both are real-valued,
set up the Lagrange function

L(x,A) = f(x) +Ag(x)
and solve

—=0,i=1,...,n
aX| ’I ) b)

along withg(x) = 0.

This will (under certain regularity conditions) give thetima off with respect tay = 0.

3.3.2 Examples

Example: Consider the optimization problem to minimizéx,y) = x? + y? subject tag(x,y) = X+y—
1=0.

Here the Lagrangianis
LOGYA) =X+ Y +A(x+y—1)

and hence
0=% 2t A=A=—-2x

X

0=% =2y+A=>A=-2

from which it follows that the extremum must satisfy=y. Since we also have+y = 1, the only
potential local minimumis =y = 3

13



3.4 Classification of constrained extrema

Write L(x,A) = f(X) +Ag(x) and suppose* is a potential extremum with & Oy-L = Of(x*) +
A*0g(x*) andg(x* = 0.
Further, define the Hessian bofwith respect ta as

H = 02.L = 0%f (x*) + A*0%g(x*)

If eigenvalues oH are all positive, then* is a local minimum.

3.4.1 Detalils

Write L(x,A) = f(X) + Ag(x) and suppose* is a potential extremum with & OyL = Of(x*) +
A*Og(x*) andg(x* = 0.

Further, define the Hessian bf with respect tx as

H = 02.L = 0% (x*) + A*0%g(x")

If eigenvalues of are all positive, them* is a local minimum.

Note thatH is just computed at*. It is also true that a much weaker condition is sufficientlf@r point
to be a minimum, but this is outside the scope of these notes.

3.4.2 Examples

Example: For f(x,y) = x> +y? andg(x,y) = x+y— 1 we haveL(x,y,A) = x> +y? + A(x+y — 1),
OxL = (2x+A,2y+A)" and thus

0 2

which has both eigenvalues equal to two and therefore bttty

mgL:[z o]
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