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1 On functions of two variables

1.1 Extensions of univariate functions

One can extend the univariate case off : R → R in several
ways.
Here we will consider only the simplest case:f : R2 →R so
f (x,y) ∈ R.

x

y

z

The
function f (x,y) = sin(x2 + y2)/(x2 + y2), plotted as a
surface of points(x,y,z) ∈ R with z = f (x,y).

1.1.1 Details

One can extend the univariate case off : R→R in several ways.

Here we will consider only the simplest case:

f : R2 → R

so f is of the form f (x,y) ∈ R.

1.1.2 Examples

Examples:

f (x,y) = x+ y

f (x,y) = x2+ y2

Another interesting function isf (x,y) = xy2. Note that, as a function ofy, the behavior of this function
changes completely depending on the sign ofx.

f (x,y) = (x− y)2

f (x,y) = x/y if y 6= 0

A popular functions is:
f (x,y) = sin(x2+ y2)/(x2+ y2)

This last function can be drawn with the R commands

x <- seq(-10, 10, length= 30)

y <- x

f <- fun
tion(x, y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }

z <- outer(x, y, f)
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z[is.na(z)℄ <- 1

op <- par(bg = "white")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, 
ol = "lightblue")

1.2 Investigating one variable at a time

−4 −2 0 2 4

−
5

0
5
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x

z

Plots of a functionz = f (x,y), viewed as a function of
x, for several fixed levels ofy.

1.3 Contour plots

A contour plot is a set of points of the form
{

(x,y) ∈R
2 : f (x,y) = c

}

for some numberc.

1.4 The equationF(x,y) = c

F : R2 → R

ThenF(x,y) = c defines a relationship betweenx andy.
Note that this is a contour of the function.
We can sometimes solve this equation to writey as a func-
tion of x.
We can also differentiate this equation...
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0
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x

y

Points(x,y) ∈R
2 satisfying (x−3)2

4 + (y−4)2

9 = 1.
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1.4.1 Details

The methodology here involves differentiating an equationF(x,y) = c, which definesy only implicitly
as a function ofx.

Any terms in the function are differentiated taking into account that derivatives of components such as
h(y) becomed

dx h(y) = h′(y) dy
dx .

1.4.2 Examples

Example: Consider the function

F(x,y) =
(x−3)2

4
+

(y−4)2

9

and suppose we are interested in the particular contourF(x,y) = 1.

We can first analyse this contour by noticing that we can write

F(x,y) =

(

x−3
2

)2

+

(

y−4
3

)2

and it follows that if we write

u =
x−3

2

v =
y−4

3

so we also have

x = 2u+3

y = 3v+4

thenF(x,y) = 1 is equivalent tou2+ v2 = 1 so(u,v) must lie on the unit circle and(x,y) are a transfor-
mation of(u,v) obtained by stretching and then shifting the circle from(0,0) to (3,4), resulting in an
ellipse.

Note that an ellipse does NOT definey as a function ofx.

On the other hand, for a given point,(x0,y0), on the curve, we can considery as a function ofx in a small
neighborhood around the point and writey = f (x) (or y(x) etc). Alternatively one can simply writey
but keep in mind thaty is now a function ofx.

SinceF(x,y) = c now definesy as a function ofx, we can writeF(x, f (x)) = c and this is an equation
which should hold forx in some interval and this is an equation which we can in principle differentiate.

F(x, f (x)) = 1⇒
(x−3)2

4
+

( f (x)−4)2

9
= 1⇒

d
dx

(

(x−3)2

4
+

( f (x)−4)2

9

)

= 0

We need to be careful with the differentiation since one of the terms is a composite function, but we
obtain:

2(x−3)
4

+
2( f (x)−4)

9
f ′(x) = 0

and this we can rewrite to obtain

f ′(x) =−
2(x−3)

4
2( f (x)−4)

9

.
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We have therefore shown that if(x,y) is a point on the curve wherey 6= 4, then we can writey = f (x)
with

f ′(x) =−
2(x−3)

4
2(y−4)

9

,

in other words we can find the derivative of the function without knowing the shape.

Example:If xy = arctan(y) then we can writey = f (x) and then finddy
dx by differentiation both sides of

the equation and solving forf ′(x).

1.5 Partial derivatives

A function of two or more variables can be inspected as a
function of one variable at a time:
SupposeF : R2 →R is differentiable in each variable.
We write ∂F

∂x and ∂F
∂y for the two derivatives.

A local maximum (or minimum) must have

∂F
∂x

= 0

and
∂F
∂y

= 0

but this may still not be a maximum or a minimum.

x

y

z

The
functionF(x,y) = x2+ y2.

1.5.1 Examples

Example:F(x,y) = x2+ y2

Example:F(x,y) = x2− y2
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2 More on real-valued functions of two variables

2.1 Real functions of more than one variable

x

y

z

X
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0

5

10

Y

−10

−5

0

5

10

S
inc( r )

−2

0

2

4

6

8

The
function sin(x2+ y2)/(x2+ y2).

2.1.1 Details

The general real-valued function of two (real) variables isa function f : R2 → R. This can be defined
by any formula which includes the two variables.

The general real-valued function of several (real) variables is a functionh : R⋉ → R defined by some
formula.

Definitions of when these functions are continuous are extensions of the univariate case. Loosely, a real-
valued function of two real variables is continuous at a point (x0,y0) if the valuesf (x,y) are “close” to
f (x0,y0) when(x,y) is “close” enough to(x0,y0).

The set of points where a function like this is constant:

{x ∈R
n : f (x) = c}

is a level set, or, in the case of the plane (n = 2), alevel curveor contour line.

Values of a function of two variables can be drawn in 3 dimensions, as the set of points

{(xy f (x,y)) : x,y ∈R}

2.1.2 Examples

Example:
f : R2 →R f (x,y) = x2+ y2

Here the contour curves are circles.Example:

g : R3 → R g(x,y,z) = xyz

Example:
h : Rn →R . . .
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2.2 Partial differentiation

2.2.1 Details

In principle, just differentiate with respect to one variable at a time. Write

∂ f (x,y)
∂x

∂ f (x,y)
∂y

To be differentiable, these partial derivatives need to satisfy criteria...if the partial derivatives are con-
tinuous, then the function is differentiable.

2.3 The gradient

If f : Rn → R, then we define thegradient of f as the vector

∇ f (x) =













∂ f (x1,x2,...,xn)
∂x1

∂ f (x1,x2,...,xn)
∂x2

...
∂ f (x1,x2,...,xn)

∂xn













2.3.1 Details

If f : Rn → R, then we define thegradient of f as the vector

∇ f (x) =













∂ f (x1,x2,...,xn)
∂x1

∂ f (x1,x2,...,xn)
∂x2

...
∂ f (x1,x2,...,xn)

∂xn













2.3.2 Examples

Example: Consider the functionf (x,y) = x4+ x2(1−2y)+ y2−4x+4. The gradient of this function
at a general point(x,y) is

∇ f (x) =

[

∂ f (x,y)
∂x

∂ f (x,y)
∂y

]

=

[

4x3+2x(1−2y)−4
2y−2x2

]
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Hence e.g. at(x,y) = (0,1) we can calculate the gradient at this particular point as

∇ f (x) =
[

−4
2

]

and we can identify any potential maxima or minima as the points where∇ f = 0, i.e. where both
0 = ∂ f

∂x = 4x3 + 2x(1− 2y)− 4 and 0= ∂ f
∂x = 2y− 2x2. For this to occur we needy = x2 and also

0= 4x3+2x(1−2x2)−4= 2x−4⇒ x = 2 and thereforey = 4.

2.4 Higher order derivatives

2.4.1 Details

If the functions are differentiable in the coordinates thenwe can keep on differentiating to get mixed
derivatives...

2.4.2 Examples

Example: For a function of only two variables we can compute

∂2 f
∂x2 =

∂
∂x

(

∂ f
∂x

)

and

∂2 f
∂x∂y

=
∂
∂x

(

∂ f
∂y

)

Example: Consider the function ...

2.5 The Hessian matrix

2.5.1 Details

The Hessian matrix is the matrix of all combinations of second-order derivatives, for example:

H =





∂2 f (x,y)
∂x2

∂2 f (x,y)
∂y∂x

∂2 f (x,y)
∂x∂y

∂2 f (x,y)
∂y2




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2.5.2 Examples

The Hessian matrix is the matrix of all combinations of second-order derivatives, for example:

H =





∂2 f (x,y)
∂x2

∂2 f (x,y)
∂y∂x

∂2 f (x,y)
∂x∂y

∂2 f (x,y)
∂y2





Example: Consider the functionf (x,y) = x4+ x2(1−2y)+ y2−4x+4. The gradient of this function
at a general point(x,y) is

∇ f (x) =

[ ∂ f (x,y)
∂x1

∂ f (x,y)
∂x2

]

=

[

4x3+2x(1−2y)−4
2y−2x2

]

Hence e.g. at(x,y) = (0,1) we can calculate the gradient at this particular point as

∇ f (x) =
[

−4
2

]

and the Hessian is

H =





∂2 f (x,y)
∂x2

∂2 f (x,y)
∂y∂x

∂2 f (x,y)
∂x∂y

∂2 f (x,y)
∂y2



=

[

12x2+2(1−2y) −4x
−4x 2

]

so e.g. at the point(x,y) = (0,1) the value of the Hessian is ...

3 Maxima and minima of real-valued functions of two variables

3.1 Unconstrained local optimization

Local extrema must satisfy
∇ f (x,y) = 0

(if the derivatives exist everywhere)

3.1.1 Details

Local extrema must satisfy
∇ f (x,y) = 0

(if the derivatives exist everywhere)

3.1.2 Examples

Example: Consider again the functionf (x,y) = x4 + x2(1− 2y) + y2 − 4x+ 4. The gradient of this
function at a general point(x,y) is
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∇ f (x) =

[ ∂ f (x,y)
∂x1

∂ f (x,y)
∂x2

]

=

[

4x3+2x(1−2y)−4
2y−2x2

]

To find potential maxima and minima we solve the equations∇ f (x) = 0 to find (x,y) = (2,4).

3.2 Classification of extrema

If ∇ f (x0,y0) = 0, H the Hessian with eigenvaluesλ1 > λ2.

• λ1 > λ2 > 0: local minimum⇐ det(H)> 0, tr(H)>
0

• 0> λ1 > λ2: local maximum⇐ det(H)> 0, tr(H)<
0

• λ1 > 0> λ2: saddle point⇐ det(H)< 0

x

y

z

The
function f (x,y) = x2− y2.

3.2.1 Details

λ, is aneigenvaluea matrixA if there is a non-zerox such thatAx = λx.

Eigenvalues can be found by solving thecharacteristic equation: det(A−λI) = 0

If ∇ f (x0,y0) = 0, H is the Hessian (of continuous partial derivatives) and

• The two eigenvalues ofH are positive, thenf has a local minimum at(x0,y0); ⇐ det(H) >
0, tr(H)> 0

• The two eigenvalues ofH are negative, thenf has a local maximum at(x0,y0); ⇐ det(H) >
0, tr(H)< 0

• The two eigenvalues ofH are of different sign, thenf has a saddle point at(x0,y0); ⇐ det(H)< 0

3.2.2 Examples

Example: Consider the functionf (x,y) = x4+ x2(1−2y)+ y2−4x+4. The gradient of this function
at a general point(x,y) is

∇ f (x) =

[ ∂ f (x,y)
∂x1

∂ f (x,y)
∂x2

]

=

[

4x3+2x(1−2y)−4
2y−2x2

]

Weknow that the only local extremum is (2,4) and and since theHessian is

H =





∂2 f (x,y)
∂x2

∂2 f (x,y)
∂y∂x

∂2 f (x,y)
∂x∂y

∂2 f (x,y)
∂y2



=

[

12x2+2(1−2y) −4x
−4x 2

]
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so at the point(x,y) = (2,4) the value of the Hessian is ...

We can now find the eigenvalues at this point by solving the equationdet(H −λI) = 0 for λ.

3.3 Constrained optimization

To maximizef (x) with respect tog(x) = 0, where both are real-valued,
set up the Lagrange function

L(x,λ) = f (x)+λg(x)

and solve
∂L
∂xi

= 0, i = 1, . . . ,n

along withg(x) = 0.
This will (under certain regularity conditions) give the extrema of f with respect tog = 0.

3.3.1 Details

To maximizef (x) with respect tog(x) = 0, where both are real-valued,

set up the Lagrange function
L(x,λ) = f (x)+λg(x)

and solve
∂L
∂xi

= 0, i = 1, . . . ,n

along withg(x) = 0.

This will (under certain regularity conditions) give the extrema of f with respect tog = 0.

3.3.2 Examples

Example: Consider the optimization problem to minimizef (x,y) = x2+ y2 subject tog(x,y) = x+ y−
1= 0.

Here the Lagrangian is
L(x,y,λ) = x2+ y2+λ(x+ y−1)

and hence
0= ∂L

∂x = 2x+λ ⇒ λ =−2x
0= ∂L

∂y = 2y+λ ⇒ λ =−2y

from which it follows that the extremum must satisfyx = y. Since we also havex+ y = 1, the only
potential local minimumisx = y = 1

2
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3.4 Classification of constrained extrema

Write L(x,λ) = f (x) +λg(x) and supposex∗ is a potential extremum with 0= ∇x∗L = ∇ f (x∗)+
λ∗∇g(x∗) andg(x∗ = 0.
Further, define the Hessian ofL, with respect tox as

H = ∇2
x∗L = ∇2 f (x∗)+λ∗∇2g(x∗)

If eigenvalues ofH are all positive, thenx∗ is a local minimum.

3.4.1 Details

Write L(x,λ) = f (x) + λg(x) and supposex∗ is a potential extremum with 0= ∇x∗L = ∇ f (x∗) +
λ∗∇g(x∗) andg(x∗ = 0.

Further, define the Hessian ofL, with respect tox as

H = ∇2
x∗L = ∇2 f (x∗)+λ∗∇2g(x∗)

If eigenvalues ofH are all positive, thenx∗ is a local minimum.

Note thatH is just computed atx∗. It is also true that a much weaker condition is sufficient forthe point
to be a minimum, but this is outside the scope of these notes.

3.4.2 Examples

Example: For f (x,y) = x2 + y2 and g(x,y) = x+ y− 1 we haveL(x,y,λ) = x2 + y2 + λ(x+ y− 1),
∇xL = (2x+λ,2y+λ)′ and thus

∇2
xL =

[

2 0
0 2

]

which has both eigenvalues equal to two and therefore both positive.
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