On functions of two variables (MATH221.0: 0 Functions of two variables)

Gunnar Stefansson

November 16, 2014

Extensions of univariate functions

One can extend the univariate case of $f: \mathbb{R} \rightarrow \mathbb{R}$ in several ways. Here we will consider only the simplest case: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ so $f(x, y) \in$ \mathbb{R}.

Figure: The function
$f(x, y)=\sin \left(x^{2}+y^{2}\right) /\left(x^{2}+y^{2}\right)$, plotted as a surface of points $(x, y, z) \in \mathbb{R}$ with $z=f(x, y)$.

Examples:

$f(x, y)=x+y ; f(x, y)=x^{2}+y^{2}$
$f(x, y)=x y^{2}$ - check how this behaves as a function of y for different x-values.
$f(x, y)=(x-y)^{2} ; f(x, y)=x / y$ if $y \neq 0$
A popular functions is:

$$
f(x, y)=\sin \left(x^{2}+y^{2}\right) /\left(x^{2}+y^{2}\right)
$$

Figure: The surface $z=x y^{2}$.

Investigating one variable at a time

Figure: Plots of a function $z=f(x, y)$, viewed as a function of x, for several fixed levels of y.

Contour plots

A contour plot is a set of points of the form

$$
\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=c\right\}
$$

for some number c.
Example: Plot the contours of $2 x+3 y, x^{2}+y^{2}, \ldots$

The equation $F(x, y)=c$

$F: \mathbb{R}^{2} \rightarrow \mathbb{R}$
Then $F(x, y)=c$ defines a relationship between x and y.
Note that this is a contour of the function.
We can sometimes solve this equa-
 tion to write y as a function of x. We can also differentiate this equation...

Figure: Points $(x, y) \in \mathbb{R}^{2}$ satisfying $\frac{(x-3)^{2}}{4}+\frac{(y-4)^{2}}{9}=1$.

Example: $F(x, y)=x^{2}+y^{2}$ etc
See also example with this slide.
If $x y=\arctan (y)$ then we can write $y=f(x)$ and then compute $\frac{d y}{d x}$ by differentiation both sides of the equation and solving for $f^{\prime}(x)$.
See also https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/implicitdiffdirectory\}

Partial derivatives

A function of two or more variables can be inspected as a function of one variable at a time:
Suppose $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable in each variable.
We write $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ for the two derivatives.
A local maximum (or minimum) must have

$$
\frac{\partial F}{\partial x}=0
$$

Figure: The function $F(x, y)=x^{2}+y^{2}$.
and

$$
\frac{\partial F}{\partial y}=0
$$

but this may still not be a maximum

