The Hessian matrix is the matrix of all combinations of second-order derivatives, for example: $$ H= \left [ \begin{array}{rr} \frac{\partial^2 f(x,y)}{\partial x^2}& \frac{\partial^2 f(x,y)}{\partial y\partial x} \\ \frac{\partial^2 f(x,y)}{\partial x\partial y}& \frac{\partial^2 f(x,y)}{\partial y^2} \end{array} \right ] $$
% this is actually (y-x^2)^2+(x-2)^2 \textbf{Example:} Consider the function $f(x,y)=x^4+x^2(1-2y) + y^2 -4x +4$. The gradient of this function at a general point $(x,y)$ is
$$ \nabla f (\mathbf{x} )=\left [ \begin{array}{r}
Hence e.g. at $(x,y)=(0,1)$ we can calculate the gradient at this particular point as $$ \nabla f (\mathbf{x} )=\left [ \begin{array}{r} -4\\ 2 \end{array} \right ] $$ and the Hessian is $$ H= \left [ \begin{array}{rr} \frac{\partial^2 f(x,y)}{\partial x^2}& \frac{\partial^2 f(x,y)}{\partial y\partial x} \\ \frac{\partial^2 f(x,y)}{\partial x\partial y}& \frac{\partial^2 f(x,y)}{\partial y^2} \end{array} \right ] = \left [ \begin{array}{rr} 12x^2+2(1-2y)&-4x \\ -4x&2 \end{array} \right ] $$ so e.g. at the point $(x,y)=(0,1)$ the value of the Hessian is ...
Details
The Hessian matrix is the matrix of all combinations of second-order derivatives, for example: $$ H= \left [ \begin{array}{rr} \frac{\partial^2 f(x,y)}{\partial x^2}& \frac{\partial^2 f(x,y)}{\partial y\partial x} \\ \frac{\partial^2 f(x,y)}{\partial x\partial y}& \frac{\partial^2 f(x,y)}{\partial y^2} \end{array} \right ] $$
Examples
The Hessian matrix is the matrix of all combinations of second-order derivatives, for example: $$ H= \left [ \begin{array}{rr} \frac{\partial^2 f(x,y)}{\partial x^2}& \frac{\partial^2 f(x,y)}{\partial y\partial x} \\ \frac{\partial^2 f(x,y)}{\partial x\partial y}& \frac{\partial^2 f(x,y)}{\partial y^2} \end{array} \right ] $$
% this is actually (y-x^2)^2+(x-2)^2 \textbf{Example:} Consider the function $f(x,y)=x^4+x^2(1-2y) + y^2 -4x +4$. The gradient of this function at a general point $(x,y)$ is
$$ \nabla f (\mathbf{x} )=\left [ \begin{array}{r}
Hence e.g. at $(x,y)=(0,1)$ we can calculate the gradient at this particular point as $$ \nabla f (\mathbf{x} )=\left [ \begin{array}{r} -4\\ 2 \end{array} \right ] $$ and the Hessian is $$ H= \left [ \begin{array}{rr} \frac{\partial^2 f(x,y)}{\partial x^2}& \frac{\partial^2 f(x,y)}{\partial y\partial x} \\ \frac{\partial^2 f(x,y)}{\partial x\partial y}& \frac{\partial^2 f(x,y)}{\partial y^2} \end{array} \right ] = \left [ \begin{array}{rr} 12x^2+2(1-2y)&-4x \\ -4x&2 \end{array} \right ] $$ so e.g. at the point $(x,y)=(0,1)$ the value of the Hessian is ...