Polynomials

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Gunnar Stefansson (editor) with contribu

Polynomials

The general polynomial

The general polynomial:
$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

The simplest: $p(x) = a$

E

<ロト < 四ト < 回ト < 回ト

The quadratic

The general form of the quadratic (parabola)
is
$$p(x) = ax^2 + bx + c$$
.
The simplest quadratic is $p(x) = x^2$

Figure: Parabolas: Quadratic functions.

<ロト < 四ト < 回ト < 回ト

a) Positive: f(x) = x^2

E

b) Negative: f(x)=-(x-2)^2

The cubic

The general form of a cubic polynomial is: $p(x) = ax^3 + bx^2 + cx + d$

Figure: $y = x^3 - 20x^2 - 30x - 4$

The Quartic

The general form of the quartic polynomial is $p(x) = ax^4 + bx^3 + cx^2 + dx + e$

Figure: The general shape. Here we used the following equation $y = x^4 - x^3 - 7x^2 + x + 6$

A (1) < (2) </p>

Solving the linear equation

If the value of y is given and we know that x and y are on a specific line so that y = a + bx, then we can find the value of x

< ロト < 同ト < ヨト < ヨト

Roots of the quadratic equation

The general solution of $ax^2 + bx + c = 0$ is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

(日)

Polynomials

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.