Inverse functions and the logarithm

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Inverse Function

If f is a function, then the function g is the inverse function of f if

$$
g(f(x))=x
$$

for all x in which $f(x)$ can be calculated

When the inverse exists: The domain question

Inverses do not always exist. For an inverse of f to exist, f must be one-to-one, i.e. for each $x, f(x)$ must be unique.

Figure: The function $f(x)=x^{2}$ does not have an inverse since $f(x)=1$ has two possible solutions -1 and 1 .

The base 10 logarithm

When x is a positive real number in $x=10^{y}, y$ is referred to as the base 10 logarithm of x and is written as:

$$
y=\log _{10}(x)
$$

or

$$
y=\log (x)
$$

The natural logarithm

A logarithm with e as a base is referred to as the natural logarithm and is denoted as In :

$$
y=\ln (x)
$$

if

$$
x=e^{y}=\exp (y)
$$

Note that $I n$ is the inverse of exp.

Figure: The curve depicts the fuction $y=\ln (x)$ and shows that \ln is the inverse of exp. Note that $\ln (1)=0$ and when $y=0$ then $e^{0}=1$.

Properties of logarithm(s)

Logarithms transform multiplicative models into additive models, i.e.

$$
\ln (a \cdot b)=\ln a+\ln b
$$

The exponential function and the logarithm

The exponential function and the logarithms are inverses of each other

$$
x=e^{y} \Leftrightarrow y=\ln x
$$

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

