Multivariate probability distributions

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Joint probability distribution

If
X_{1}, \ldots, X_{n} are discrete random variables with
$P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right]=p\left(x_{1}, \ldots, x_{n}\right)$, where x_{1}, \ldots, x_{n} are numbers, then the function p is the joint probability mass function (p.m.f.) for the random variables X_{1}, \ldots, X_{n}.

For continuous random variables Y_{1}, \ldots, Y_{n}, a function f is called the joint probability density function if, $P[Y \in A]=\iint \ldots \int f\left(y_{1}, \ldots y_{n}\right) d y_{1} d y_{2} \cdots d y_{n}$.

The random sample

A set of random variables X_{1}, \ldots, X_{n} is a random sample if they are independent and identically distributed (i.i.d.).

A set of numbers x_{1}, \ldots, x_{n} are called a random sample if they can be viewed as an outcome of such random variables.

The sum of discrete random variables

The sum of two continuous random variables

If X and Y are continuous random variables with joint p.d.f. f and $Z=X+Y$, then we can find the density of Z by calculating the cumulative distribution function.

Means and variances of linear combinations of independent random variables

If X and Y are random variables and $a, b \in \mathbb{R}$, then

$$
E[a X+b Y]=a E[X]+b E[Y]
$$

Means and variances of linear combinations of measurements

 If x_{1}, \ldots, x_{n} and $y_{1}, \ldots ., y_{n}$ are numbers, and we set$$
\begin{gathered}
z_{i}=x_{i}+y_{i} \\
w_{i}=a x_{i}
\end{gathered}
$$

where $a>0$, then

$$
\begin{gathered}
\bar{z}=\frac{1}{n} \sum_{i=1}^{n} z_{i}=\bar{x}+\bar{y} \\
\bar{w}=a \bar{x} \\
s_{w}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(w_{i}-\bar{w}\right)^{2} \\
=\frac{1}{n-1} \sum_{i=1}^{n}\left(a x_{i}-a \bar{x}\right)^{2}
\end{gathered}
$$

The joint density of independent normal random variables

If $Z_{1}, Z_{2} \sim n(0,1)$ are independent then they each have density

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, x \in \mathbb{R}
$$

and the joint density is the product $f\left(z_{1}, z_{2}\right)=\phi\left(z_{1}\right) \phi\left(z_{2}\right)$ or

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{(\sqrt{2 \pi})^{2}} e^{\frac{-z_{1}^{2}}{2}-\frac{z_{2}^{2}}{2}} .
$$

More general multivariate probability density functions

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

