Multivariate probability distributions math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

Gunnar Stefansson (editor) with contribu Multivariate probability distributions

Joint probability distribution

If X_1, \ldots, X_n are discrete random variables with $P[X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n] = p(x_1, \ldots, x_n)$, where x_1, \ldots, x_n are numbers, then the function p is the joint probability mass function (p.m.f.) for the random variables X_1, \ldots, X_n .

For continuous random variables Y_1, \ldots, Y_n , a function f is called the joint probability density function if,

 $P[Y \in A] = \int \int \ldots \int f(y_1, \ldots y_n) dy_1 dy_2 \cdots dy_n.$

The random sample

- A set of random variables X_1, \ldots, X_n is a random sample if they are independent and identically distributed (i.i.d.).
- A set of numbers x_1, \ldots, x_n are called a random sample if they can be viewed as an outcome of such random variables.

The sum of discrete random variables

< ロト < 同ト < ヨト < ヨト

The sum of two continuous random variables

If X and Y are continuous random variables with joint p.d.f. f and Z = X + Y, then we can find the density of Z by calculating the cumulative distribution function.

Means and variances of linear combinations of independent random variables

If X and Y are random variables and $a,b\in\mathbb{R}$, then

$$E[aX + bY] = aE[X] + bE[Y].$$

Means and variances of linear combinations of measurements

If x_1, \ldots, x_n and y_1, \ldots, y_n are numbers, and we set

$$z_i = x_i + y_i$$

$$w_i = a x_i$$

where a > 0, then

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i = \overline{x} + \overline{y}$$
$$\overline{w} = a\overline{x}$$
$$s_w^2 = \frac{1}{n-1} \sum_{i=1}^{n} (w_i - \overline{w})^2$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} (ax_i - a\overline{x})^2$$

Gunnar Stefansson (editor) with contribu Multivariate probability distributions

The joint density of independent normal random variables

If $Z_1, Z_2 \sim n(0, 1)$ are independent then they each have density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \mathbb{R}$$

and the joint density is the product $f(z_1,z_2)=\phi(z_1)\phi(z_2)$ or

$$f(z_1, z_2) = \frac{1}{(\sqrt{2\pi})^2} e^{\frac{-z_1^2}{2} - \frac{z_2^2}{2}}.$$

More general multivariate probability density functions

A⊒ ▶ < ∃

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.